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ABSTRACT

The ability to model the thermomechanicgbrocessingof materialsis an increasinglyimportant
requirementn mary areasof engineering. This is particularlytrue in the aerospacéndustry where
high materialand processcostsdemandmodelsthat canreliably predictthe microstructure®f forged
materials We analysawo typesof forging, cold forging in which the microstructuredevelopsstatically
uponannealingandhotforgingfor whichit developsdynamically andpresentwo differentmodelsfor
predictingthe resultantmaterialmicrostructure For the cold forging problemwe emplgy the Gaussian
processnodel. This probabilisticmodelcanbe seenasa generalisatiomf feedforwardneuralnetworks
with equally powerful interpolationcapabilities. However, asit lacks weightsand hiddenlayers, it
avoids ad hoc decisionsregardinghow complec a ‘network’ needsto be. Resultsare presentedvhich
demonstrat¢he excellentgeneralisatioapabilitiesof this model. For thehhot forging problemwe have
developedatypeof recurrenneuralnetwork architecturavhichmakespredictionsof thetime derivatives
of statevariables.This approachallows usto simultaneouslynodelmultiple time seriesoperatingon
differenttime scalesandsampledat non-constantates.This architecturas very generalndlikely to be
capableof modellingawide classof dynamicsystemsandprocesses.

1. Introduction

The problemin the modelling of materialsforging can

be broadly statedasfollows: Given a certainmaterial
which undegoesa specifiedforging processwhat are

thefinal propertiesof this material?Typical final prop-

ertiesin which we areinterestedarethe microstructural
properties,suchasthe meangrain size and shapeand

the extent of grain recrystallisation. Relevant forging

processcontrol variablesare the strain, strainrate and

temperatureall of which maybefunctionsof time.

A trial-and-errorapproachto solving this problem
has often beentaken in the materialsindustry with
mary differentforging conditionsattemptedo achieve
agivenfinal product. Theobviousdravbacksof this ap-
proacharelargetime andfinancialcostsandthelack of
ary reliablepredictive capability Anothermethodis to
develop a parameterisedphysically-motvatedmodel,
andto solve for theparametersisingempiricaldata[1].
However, the limitation with this approachis that in
termsof the physicaltheorythe microstructurakevolu-
tion dependsupon several “intermediate”microscopic
variableswhich have to be measuredn orderto apply
themodel. Someof thesevariables suchasdislocation
density are difficult and time-consumingo measure,
makingit impracticableto apply suchan approachto
large-scal@ndustrialprocesses.

Our approachto the predictionof forgedmicrostruc-
tures is thereforeto develop an empirical model in
which we definea parameterisednon-linearrelation-
ship betweenthe microstructuralvariablesof interest
and those easily measuredorocessvariables. Sucha
modelcould be implementedfor example,asa neural
network with thehiddennodesessentiallyplayingarole
analogouso the“intermediate’microscopicvariables.

2.MaterialsForging

When a materialis deformed,potentialenegy is put
into the systemby virtue of work having beendoneto
mave crystalplanesrelative to oneanother The mate-
rial is thereforenot in equilibriumandhasa tendeng
to lower its potentialenegy by atomicrearrangement,
throughthe competingprocesse®f recovery, recrys-
tallisation and grain growth. Theseprocessesre en-
couragedy raisingthetemperaturef thematerial(an-
nealing). Forge deformationprocessesanbe divided
into two classes.In cold working the recrystallisation
rateis solow thatrecrystallisatioressentiallydoesnot
occurduringforging. Recrystallisations subsequently
achievedstaticallyby annealing.In contrasthot work-
ing refersto thehightemperaturéorging of materialdn
whichrecrystallisatioroccursdynamicallyduring forg-
ing. This processis considerablymore comple than
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Fig. 1: Deformationgeometries(a) Plane-straimliametricatompres-
sion. The workpieceis subsequentlgectionednto mary nominally
identicalspecimensvhich are annealedat differentcombinationsof

temperatur@ndtime. The compressiomivesriseto anon-lineardis-

tribution of strainsacrosshe specimer(seeFigure2b). Theseallow

us to obtain mary input training vectors,x, for our modelusinga

singlecompressionest. (b) Axisymmetricaxial compression.

coldworking asnow thefinal microstructureof thema-

terial is generallya path-dependertinction of the his-

tory of the processvariables. This is particularlytrue

of the Aluminium—Magnesiumalloy considerecdhere,
which have a relatively long ‘memory’ of the process,
thusnecessitating modelwhich keepgrackof the his-

tory of thematerial. We shall considera modelfor this

dynamicprocessn Sectiord4.

The ultimate goal of forge modelling is the inverse
problem: Given a setof desiredfinal propertiesfor a
componentwhat is the optimal material and forging
processwhich will realisetheseproperties?This is a
considerabljharderproblemsincetheremaybe a one-
to-mary mappingbetweenthe desiredpropertiesand
the necessaryorging process. This problemwill not
beaddresseth this paper

3. Static Modelling

Coldforging canin generabe modelledwith theequa-
tion
v =F(x) (1)

wherev is amicrostructuralariable x is thesetof pro-
cessvariablesandF is somenon-linearfunction. In our
particularimplementatiorwe areinterestedn predict-
ing asinglemicrostructuralariable,namelygrainsize,
in agivenmaterial(anAl-1%Mg alloy) asafunctionof
thetotalstrain,e, annealingemperature]’, andanneal-
ing time, t. Theexperimentaket-upfor obtainingthese
datais asfollows. A workpieceof the materialis com-
pressedn plane-straincompressiorat room tempera-
ture,asshovnin Figurela. After thespecimerhasbeen
annealedit is etchedandthe grainsizesmeasureavith
an optical microscope.The local strainexperiencedat
eachpointin thematerialis evaluatedusinga Finite El-
ement(FE) model,the parametersf this modelbeing
determinedby the known materialproperties,forging
geometriesfriction factorsandsoon. Figure2b shavs
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Fig. 2: (a) Theleft half of this diagramshawvs the microstructureof
half of a sectionedspecimerwhich hasbeendeformedunderaplane-
strain compression. The materialhasbeenannealedat 350°C for
30 mins producingmary recrystallisedgrains. (b) Theright half of
this diagramis the correspondingstrain contour map producedby
the Finite Elementmodel. Note that the areasof high strainin (b)
correspondo smallgrainsin (a).

an exampleof an FE map. Marny grain sizeswithin
a single small areaare averagedto give a meangrain
size. Thuswe now have a setof modelinputs, e, T
andt, associatedvith a single meangrain size which
canbeusedto developa staticmicrostructuramodelof
forging. Furtherdetailsof the experimentalprocedure
canbefoundin Sabinetal. [7].

3.1. The Gaussian Process M ode

The Gaussiarprocessmodel[3] [8] assumeghat the

prior joint probability distribution of a setof ary N

obsenationsis given by an N-dimensionalGaussian,
ie.

Pvn[{xn}, 1, Cn) @)

x e (=3lon - CRvn =) @)

wherevy = (v1(x1),v2(x2),...,vn(xy)) is the set
N of obsenationscorrespondingo the setof N in-
put vectors,{xy} = {x1,X2,...,xny}. p andCuy,

respectiely themeanandcovariancematrixfor thedis-
tribution, parameteris¢éhis model. The elementof the
covariancematrix arespecifiedby the covariancefunc-
tion, which is a function of the input vectors,{xx},
and a setof hyperpaametes. A typical form of the
covariancefunctionis
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Thisequatiorgivesthecovariancebetweerary two val-
uesy; andv; with corresponding.-dimensionainput
vectorsx; anx; respectrely, andis capableof imple-
mentinga wide classof functions,F, thatcouldappear
in equationl. (TheGaussiamprocessnodelhasascalar
‘output’, v; to modelseveral microstructuralvariables
we would usesereral independenmodels.) The first
termin equatiord expressesur beliefthatthefunction
we are modellingis smoothlyvarying, wherer; is the
lengthscaleoverwhichthefunctionvariesin thelt” in-
putdimension.Thesecondermallows thefunctionsto




have a constanbffsetandthethird is a noiseterm: this
particularform is a modelfor input independenGaus-
siannoise.Thehyperparameters; (I =1...L), 61, 6>,
03, specifythefunction,andaregenerallyinferredfrom
asetof trainingdatain afashionanalogouso traininga
neuralnetwork. They arecalledhyperpaametesrather
thanparametes becausehey explicitly parameterisa
probability distribution ratherthan the function itself.
This distinguisheghemfrom weightsin a neuralnet-
work, which are rather“arbitrary”, in that addingan-
other hiddennode could changethe weightsyet leave
theinput—outpuimappingessentiallyunaltered.
Oncethe hyperparameterare known, the probabil-
ity distribution of a new predictedvalue,vn 41, cOrre-
spondingo anew ‘input’ variable xx 1, is

P(uvN41|vN, {XN}, XN+1,Cn 1) (5)
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i.e. a one-dimensionalGaussian,where ox4; and
o5y 4, areevaluatedn termsof the covariancefunction
and the training data. We would typically report our
predictionasiyy; + 045, Theseerrorsreflectboth
the noisein the data(third termin equation4) andthe
modeluncertaintyin interpolatingthetrainingdata.The
factthatthe Gaussiamprocessnodelnaturallyproduces
confidenceintervals on its predictionsis importantin
the materialsindustry where material propertiesmust
oftenbespecifiedwithin certaintolerances.

Our modelassumeshatthe measurementoiseand
the prior probability of the unknovn function can be
describedy a Gaussiardistribution. In our application
it is moresensibleto assumehatit is the logarithm of
grain sizeswhich aredistributed as a Gaussianrather
than the grain sizesthemseles. This is becauseun-
certaintiesn measuringgrain size scalewith the mean
grain size, and are thereforemore appropriatelyex-
presseasafractionof themeangrainsizeratherthana
fixedabsolutegrainsize.Moreover, empiricalevidence
suggestshatgrainsizedistributionsarewell described
by alog normaldistribution.

(vnN41 — On41)?
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3.2. Model Predictions

A Gaussiarprocessnodelwastrainedusinga setof 46
datapairsobtainedrom theplane-strairgeometrywith
0.08 <e<0.79,325°C< T < 375° C, 1 mins< t <
60minsastheinputs.Oncetrained themodelwasused
to producepredictionsof grain sizesfor a rangeof the
input variables. Thesepredictions shavn in Figure 3,
agreewell with metalluigical expectations.

Oneof theassumptiongmplicit in our modelof cold
forging is thatgiventhelocal strainconditions,the mi-
crostructureis independenof the material shapeand
forgegeometryIn otherwords,we assumehatpredic-
tions canbe obtainedgivenonly thelocal accumulated
strain (and annealingconditions). This is an impor-
tantrequirementasit meanshata singlemodelcould
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Fig. 3: Grain size predictionsobtainedwith the Gaussiarprocess
modeltrainedon datafrom the plane-straincompressiorgeometry
In eachof thethreeplots,two of theinputvariablesareheld constant
andthe othervaried. When not being varied, the inputs were held
constantat: 7' = 350°C; ¢t = 30 mins; e = 0.5. Thecrossesn
the strainplot aredatafrom thetraining set. As the Gaussiarprocess
is aninterpolationmodel, predictionsat ary valuesof theinputsare
constrainedy theentiretraining set.

be appliedto a rangeof industrial forging geometries,
provided that the local strainscould be obtained(e.g.
with an FE model). We testedthe validity of this as-
sumptionby usingthe Gaussiarprocessnodeltrained
on plane-straindatato predict grain sizesin a mate-
rial compressedsinga differentgeometry namelyan
axial compressior(Figure 1b). As before,after com-
pressiorthe materialwasannealedsectionedandgrain
sizesmeasuredA new FE modelgave the concomitant
local strains. Theseprocessnputs were then usedto
obtainpredictionsof the grain sizesusingthe previous
Gaussiarprocessnodel. Figure 4 plots thesepredic-
tions againstthe measurements.We seeremarkable
agreement—wellvithin the predictederrors—thusval-
idatingour modellingapproachA practicalapplication
of ourmodelis to producediagramssuchasthatshavn
in Figure5, amapof thegrainsizes.Suchamapis im-
portantfor engineersvho needto know the grainsizes
atdifferentpointsin thematerial,andcanthusassesgts
resistancéo phenomenauchascreepandfatigue.

It should be noted that this method containsother
implicit assumptionsThefinal materialmicrostructure
is very stronglydependentiponthe materialcomposi-
tion. It is well known that even small changesn the
fractionsof thealloying constituentgandby extension,
impurities) can have a strongeffect on the thermome-
chanicalprocessingf the material. Oneway forward
is to include further input variablescorrespondingo
compositior[2]. A secondmplicit assumptiomasbeen
the constang of the initial microstructure.Depending
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Fig. 4: Gaussiarprocessnodelpredictionscomparedvith measured
values. The Gaussiamprocessmodelwas trainedon datafrom one
compressionageometry(plane-strainandits performancevaluated
usingdatafrom anotheigeometry(axial-compressionyhichwasnot
seenduringtraining. They = z line is to guidethe eye. Note that
not even a perfectmodelwould producepredictionson this line due
to finite noisein thedata.

Fig. 5: Theleft half is animageof the microstructuren the axially
compressedpecimen.Theright half is the correspondingrain size
predictiondrom theGaussiamprocessnodelshavn asacontourmap.

uponthe materialandthe degreeof thermomechanical

processing the final microstructuremay retain some

‘memory’ of its initial microstructurethus necessitat-

ing amodelwhichhas"initial conditions”asadditional
inputvariables.

4. A Recurrent Neural Network for
Dynamic Process M odelling

For the hot working problem,we assumehatthereare
two setsof variableswhich arerelevantin describing
the behaiour of the dynamicalsystem. The first, x,
areexternalvariableswhich influencethe behaiour of

Recurrent
Inputs, v

External
Inputs, x

Fig. 6: A recurrentneuralnetwork architecture(‘dynet’) for mod-
elling dynamicalsystems.The outputs,y, from the network arethe
timederwativesof thestatevariablesof thedynamicakystem.There-
currentinputs,v, arethesestatevariables.Thevaluesof v atthenext
time stepare evaluated(using equation9) from the outputs(via the
recurrentconnectionspandthe previous valuesof v. All connections
andthetwo biasnodesareshavn.

but which, for whaterer reasonwe donotmeasure.
Bothx andv arefunctionsof time. A generablynam-
ical equationwhich describeshe temporalevolution of
the statevariablesin responséo the externalvariables
is
ov(t)

5 = Fv(n,x(1) | @)
whereF is somenon-linearfunction. To a first-order
approximationyve canwrite

ov(t)
5 8

This dynamicalsystemcanbe modelledwith therecur
rentneuralnetwork architectureshovnin Figure6. This
is a discretetime network in which the input dataare
providedasadiscretdist of valuesseparatethy known
time intenals. The input—outputmappingof this net-
work implementsequation? directly: Ratherthanpro-
ducingthestatevariablesattheoutputof thenetwork, as
is oftenthe casewith recurrentnetworks (e.g.[6]), we
producethe time derivativesof the statevariables,for
reasonshatareexpoundecnbelov. Thehiddennodes
computea non-linearfunction of both the externaland
therecurreninputswith a sigmoidfunction(e.g.tanh),
ascorventionallyusedin feedforward networks. A lin-
earhidden—outpufunction is usedto allow for an ar
bitrary scaleof the outputs. The recurrentpart of the

ot .

v(t+0t) =v(t) +

the system suchasthe strain, strainrateandtempera- dynamicalsystemyiz. equatiors, is implementedvith
ture. It is assumedhatall of thesecanbe measured. the recurrentloops shavn in Figure 6, by settingthe
The secondsetof variables,v, arethe statevariables Weightsof theserecurrentioopsto the sizeof thetime
which describethe systemitself. Thesearesplitinto Step.dt, betweersuccessie epochs Explicity, the k*"
two cateyories. The first are measuredsuchasgrain fecurreninputattime stepr is givenby

size,andthe secondare unmeasuredsuchas disloca- _
tion density Notethattheunmeasuresariablesarenot Ok(r) = vi(r = 1) + il — 1)3t(7) ©
intrinsically unmeasurablehisis simplyacatgoryfor whereyy (7 — 1) = dv(r — 1) /0t anddt(7) is thetime
all of thestatevariableswvhichwe believeto berelevant  betweerepoch(r — 1) andepoch(r).



Theprincipalreasorfor developinga network which
predictsthetime derivativesof the statevariabless that
it canbetrainedon time-seriedatain which the sepa-
rationsbetweertheepochsgt(r), neednotbeconstant:
ateachepochr we simply setthe weightsof the recur
rentfeedbacKoopsto §t(7). Furthermorethe network
canbetrainedon multiple time seriesn which thetime
scaledor eachtime seriesmay be very different. This
is importantin forging applicationsas the forging of
large componentsvould occurover alongertime scale
thanfor smallcomponentsyhereashemicroscopide-
haviour of the materialswould essentiallybe the same
(for a given material). In sucha casewe would want
to incorporatedatafrom both forgingsinto the same
model, but without having to obtain measurementat
thesameratein bothcases.

While our network is similar to that of Jordan[4],
our architecturéhastheimportantattributesthat: 1) the
outputsaretime derivatives of the statevariables,and
2) in training the network the error derivatives canbe
propagatedia therecurrentonnectiongo thearbitrar
ily distantpast. Our training algorithmcanbe seenas
ageneralisatiof themethoddescribedy Williams &
Zipser[9] extendedto multiple time series. Although
necessarilyonly the feedforward weightsaretrainable,
theinput—hiddenweights,for example,arenonetheless
dependentiponthevaluesof thehiddennodesby virtue
of the recurrentconnectionsand this dependeng is
taken into account. Training proceedsby minimizing
anerrorfunction,typically the sumof square®rror, by
gradientdescenbr a conjugategradientalgorithm.The
weightscanbe updatedafter eachepochof eachtime-
series(i.e. Real Time Recurrentearning[9]), afterall
epochsof all patternspr atary intermediatepoint.

To trainthe network we needat leastonetargetvalue
at at leastone epoch. Note that the training algorithm
is not restrictedto usetargetsonly for the ‘outputs’
errors can be propagatedrom ary node. Generally
we would have valuesof the statevariables(recurrent
inputs) for the final epoch. However, in metallugical
applicationswe would typically be able to obtain ad-
ditional measurementgt intermediateepochsthusim-
proving the accurag of the derivedinput—outputfunc-
tion. We will of coursenot have ary target valuesfor
the ‘unmeasuredstatevariables Hencethesevariables
will not even correspondo ary physicalvariables,in-
steadacting as ‘hidden’ variableswhich corvey some
stateinformationnot containedn the ‘measured’state
variables Nonethelessve maybeableto provide some
loosephysicalinterpretatiorfor unmeasuredariables.
Oncetrained thenetwork producesa completdime se-
guenceof the statevariablesgiven a sequencef the
externalinputs,i.e. theforging process.

5. Future Work

Future work will focus on the applicationof the re-
currentneuralnetwork describedo the dynamicalhot-

forging problem. Given that the time-seriestraining
datawill typically bemadeupof mary epochdor which
thereareno targetoutputs regularizationis likely to be
necessaryand we will thereforeexaminethe applica-
tion of the Bayesiamrmethodglevelopedby Mackay[5].

Furthermorewe will investigatethe feasibility of the
Hessianmatrix for evaluating confidenceintervals on
thenetwork predictions.

Acknowledgements

The authorsare gratefulto the EPSRC(grantnumber
GR/L10239),DERA andINCO Alloys Ltd. for finan-
cial supportandto Mark Gibbsfor useof his Gaussian
processoftware.

References

[1] T. Furu, H.R. Sherclif, C.M. Sellars, M.F.
Ashby, “Physically-basedmodelling of strength,
microstructureandrecrystallisatiorduring thermo-
mechanicaprocessingf Al-Mg alloys”, Materials
Sci.Forum, 217-222pp. 453-458,1996.

L. Gavard, H.K.D.H. BhadeshiaD.J.C. MacKay,
S. Suzuki, “Bayesian neural network model for
austenitdormationin steels”,Materials Sci. Tech-
nol., vol. 12, pp.453-463,1996.

M.N. Gibbs, BayesianGaussianprocessegor re-
gressionand classification PhD thesis,University
of Cambridge1997.

M.l. Jordan, Attractordynamicsandparallelismin
a connectionistsequentiaimachine”, Proc. of the
Eight Ann. Conf of the Cognitive Sci. Soc, Hills-
dale,NJ: Erlbaum,1986.

D.J.C.MacKay, “Probablenetworks and plausible
predictions:areview of practicalBayesiarmethods
for supervisedheuralnetworks”, Network: Compu-
tationin Neural Systemsvol. 6, pp.469-505,1995.
A.J.RobinsonF. Fallside,"A recurrenterror prop-
agationnetwork speeclrecognitionsystem”,Com-
puter Speeh and Language, vol. 5, pp. 259-274,
1991.

T.J. Sabin, C.A.L. BailerJones, S.M. Roberts,
D.J.C.MacKay, PJ. Withers,“Modelling the evo-
lution of microstructuresn cold-worked and an-
nealedaluminiumalloy”, Proc. of the Int. Conf on
Thermomeleanical Processingin press,1997.
C.K.l. Williams, C.E. Rasmussen;Gaussianpro-
cessesfor regression”, in D.S. Touretzky, M.C.
Mozer, M.E. Hasselmo(eds), Neural Information
ProcessingSystems8, Boston, MA: MIT Press,
1996.

R.J. Williams, D. Zipser “A learning algorithm
for continually runningfully recurrentneuralnet-
works”, Neumal Information ProcessingSystems
vol. 1, pp.270-280,1989.

(2]

(3]

(4]

[5]

[6]

[7]

[8]

[9]



