

Where are the first hydrostatic cores?

ALISON YOUNG

UNIVERSITY OF WARWICK (SOON LEEDS!)

First core theory

Why is the first core important?

Rapid dust growth within first core (up to 100 micron)

Bate (2022)

Hincelin+ 2016 Chemistry at first core stage

Why is the first core important?

Addresses theoretical questions:

- Resolving the fragmentation limit
- How do close binaries form?

How do we identify first cores then?

Synthetic SEDs

Central density (g cm⁻³) blue dotted: 1.4×10^{-18} blue dashed: 10^{-12} FHSC solid black: 5×10^{-11} FHSC black dashed: 10^{-9} FHSC red dotted: 10^{-4} (2^{nd} collapse) red dashed: 10^{-2} (2^{nd} core formed)

SED fitting

Young+ 2018 & PhD Thesis

SED fitting – was it correct?

SED fitting – was it correct?

Compact object observed by Maria Jose Maureira! (Unpublished)

What happened to the candidate first cores?

Source	Mass $[M_{\odot}]$	Outflow ^a	Features	First core?
Aqu-MM1	0.27 ^{a1}	ş	SED fitted by fast rotating first core models ²	ş
B1-bN	0.36 ³	4.5 km s^{-1} , few hundred au extent ³	Class 0 protostar	No
B1-bS	0.36 ³	7 km s ⁻¹ , few hundred au extent ^{3,4}	~ 100 au compact object ³	No
CB17 MMS	0.045	(2.5 km s ^{-1} but now attributed to nearby protostar ⁶)	Starless core- no compact mm source detected ⁶	No
Cha-MM1	1.44 ^{b,7}	up to 17 km s ⁻¹⁸ , extends up to 2,700 au ⁹	Probably very young Class 0 protostar	No
HOPS 404	0.45 ^{b10}	extent <700 au, $\leq 2 \text{ km s}^{-1}$	SED fitted by late first core models ¹¹	ş
K242	0.4 ^{b11}	ş	Fit by FHSC SEDs ²	ş
L1451-mm	0.36 ^{b12}	1.5 km s ⁻¹ , 500 au extent ^{9,13}	Methanol and SiO emission detected ²¹	No
L1448 IRS 2E	(0.04 ¹³)	(25 km s ⁻¹ , 9,600 au lobe ¹⁴)	Outflow attributed to different source and there is no star forming core here. ⁹	No
MC35-mm	Ş	$2-4 \text{ km s}^{-1}$, extends around 2000 au ¹⁵	$\rm N_2D^+(3{-}2)$ emission peaks with continuum (cold centre)^{15}	Ş
Oph A N6	0.025-0.0316	Possible slow redshifted lobe ¹⁶	compact ~100 au source ¹⁶	ş
Oph A SM1N	0.03 ¹⁶	Possible slow, broad, not obviously bipolar ¹⁶	elongated continuum ¹⁷ , unresolved emission ¹⁶	ş
Per-bolo 45	ş	No clear outflow ⁹	Very low luminosity ¹⁸ , could be prestellar ⁹	ş
Per-bolo 58	0.8 ^{b19}	7 km s ⁻¹²⁰	Large central warm region ⁹ heated by a central protostar	No

Table from Young (2023) A.K.YOUNG@LEEDS.AC.UK

Chemical evolution

Young+ 2019

FHSC chemical evolution

a = first collapse b & d = FHSC g = stellar core

Young+ 2019

FHSC chemical evolution

Young+ 2019

Post-FHSC

Years after stellar core formation g -- +50 --- +150

.

+250

Whole cluster CO relative abundance evolution

Young (PhD Thesis 2019)

Identification approach

Faint (undetected) at 24 microns

Rule out starless cores by lack of compact continuum, and chemistry

Rule out protostars by compact CS emission (and extended outflow if present)

Is there a better question?

How do we find the FHSC in observations?

- Risky observing proposals -> rejected :'(
- What science can we learn from finding/deep observations of very faint protostars?

What difference does the FHSC phase make to e.g. chemistry, dust?

Can we deduce FHSC from its effects on the protostellar core or disc?