

The Puzzles of Star Formation II (PoSF II) Ringberg castle, May 4-7, 2025

Shaping filaments The role of the interstellar environment

EMERGE ERC-StG

Andrea Socci, University of Vienna

universität wien

Filaments in the interstellar medium **Filament families and nearby filaments**

HI4PI 21 cm

Striations

Giant Filaments

Puzzles of Star Formation II, 05.05.25

Andrea Socci, University of Vienna

8 pc

Nearby filaments The Taurus complex

Puzzles of Star Formation II, 05.05.25

Nearby filaments The Taurus complex

"One of our key conclusions is that the morphology of this region is very complex."

Puzzles of Star Formation II, 05.05.25

Prototypical nearby filaments: Musca The monolithic structure

Puzzles of Star Formation II, 05.05.25

Andrea Socci, University of Vienna

Prototypical nearby filaments: Musca The radial profile and pressure measurement

Puzzles of Star Formation II, 05.05.25

Prototypical nearby filaments: Musca A candidate accretion process

Puzzles of Star Formation II, 05.05.25

Prototypical nearby filaments: Pipe The overall structure

Puzzles of Star Formation II, 05.05.25

Prototypical nearby filaments: Pipe The pressurised cores

Puzzles of Star Formation II, 05.05.25

Galactic Longitude

Prototypical nearby filaments: Pipe The local feedback

Puzzles of Star Formation II, 05.05.25

Galactic Longitude

Prototypical nearby filaments: Pipe The large-scale compression

Puzzles of Star Formation II, 05.05.25

Prototypical nearby filaments: Orion The Orion A & B clouds

Puzzles of Star Formation II, 05.05.25

Puzzles of Star Formation II, 05.05.25

Prototypical nearby filaments: Orion **Orion A & B sub-regions**

Prototypical nearby filaments: Orion LDN 1641, OMC-5, NGC 2024 as prototypes

Puzzles of Star Formation II, 05.05.25

Socci et al. (2024)

Points for discussion

- Are we able to fully characterise the interstellar environment?
- How can we connect the large-scales (>1 pc) to the small scales (< 0.1 pc)?
 - Which effects dominate, and at which scales?
 - How they influence the properties and star-formation potential of filaments?
- How can we achieve a "cheap", yet comprehensive, description of the interstellar environment?
- Can we infer the evolution of filaments over time from their environment?
- •

