Formation of GMCs

Evolution and Destruction of GMCs

Star Formation Rate of GMCs o

◆ロト ◆帰 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

Conclusion o

Formation of Molecular Clouds and Global Conditions for Star Formation

Melanie Schellenberg

University of Heidelberg

MVSem: Star Formation Prof. Dr. Henrik Beuther & Dr. Jouni Kainulainen

November 3rd, 2016

000000	000000					
Motivation						

Reference: https://de.wikipedia.org/wiki/Urbanisierung, 2016

Formation of GMCs

Evolution and Destruction of GMCs

Star Formation Bate of GMCs

Conclusion

Formation of Molecular Clouds and Global Conditions for Star Formation

List of Contents

- Introduction
 - Observed Properties of GMCs
- Parameter Eormation of GMCs
- Evolution and Destruction of GMCs
- Star Formation Rate of GMCs - what regulates the SFR?

Credit: NASA, ESA, S. Beckwith (STScI), and the Hubble Heritage Team (STScI/AURA))

<ロト < 理ト < ヨト < ヨト = ヨ = つへつ

Introduction	Formation of GMCs	Evolution and Destruction of GMCs	Star Formation Rate of GMCs	Conclusion

1

Introduction - Observed Properties of GMCs

- What are GMCs?
- Identification of GMCs
- Statistical Properties of GMCs
- GMCs Parameter
- Star Formation Efficiency

Pormation of GMCs

- Evolution and Destruction of GMC
 - 4 Star Formation Rate of GMCs

Introduction Formation of GMCs Evolution and Destruction of GMCs Star Formation Rate of GMCs

What are Giant Molecular Clouds (GMCs)?

Credit: NASA, ESA, S. Beckwith (STScI), and the Hubble Heritage Team (STScI/AURA))

- densest, coldest, highest column density, highest extinction, molecular component
- coherent, localized volumes or clouds in Milky-Way like galaxies
- mass contribution: 70% H₂, 26 % He
- radial H-distribution within spiral galaxy

Formation of GMCs

Evolution and Destruction of GMCs

Star Formation Rate of GMCs

Conclusion

What are Giant Molecular Clouds (GMCs)?

- $\blacktriangleright ~T \sim 10~K$
- ▶ n > 300 cm⁻³
- $\blacktriangleright\,$ environment dependent $M\sim 10^2$ $10^9~M_{\odot}$
- M_{mol}/M_{stellar} increases with galaxy colors

Credit: S. Guisard and R. Gendler

Formation of GMCs

Evolution and Destruction of GMCs

Star Formation Rate of GMCs

Conclusion o

Identification of GMCs

- crucial H₂ is not detectable
- tracers as CO line emission and dust extinction

Credit: NRAO

 definition of cloud: contiguous voxels in PPV cube of CO emission above surface brightness threshold

Credit: IOA/S/U-TOKYO/VST

Formation of GMCs

Evolution and Destruction of GMCs

Conclusion o

Statistical Properties of GMCs

Reference: Williams et al., 2000

• mass spectrum powerlaw: $\frac{dN}{dM} = M^{-\gamma}$ with $\gamma < 2$

size and area:

- \sum_{GMC} environment-variation
- \blacktriangleright Larson (1981) M \propto A relation

velocity dispersion:

•
$$\sigma_v = 0.7 \sqrt{\frac{\sum_{GMC}}{100 M_\odot pc^{-2}}} \sqrt{\frac{R}{1pc}} \frac{km}{s}$$

 processes driving velocity structure operate on scales cloud

Introduction ○○○○●○	Formation of GMCs	Evolution and Destruction of GMCs	Star Formation Rate of GMCs o	Conclusion O
GMC	s Parame	eter		

Virial Theorem Analysis:

$$\rho(\frac{d\vec{u}}{dt} + (\vec{u}\nabla)\vec{u}) = -\nabla\vec{P} - \rho\nabla\vec{\phi_G} + \frac{1}{c}\vec{j}\times\vec{B}$$
$$2T = 2U - W + M$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

virial parameter: $\alpha_G = \frac{M_{virial}}{M_{GMC}} \sim 1$ virial mass: $M_{virial} = \frac{5\sigma^2 R}{G}$ mass to flux ratio: $\frac{M_{GMC}}{M_{cr}} \sim 2 - 3$ critical mass: $M_{cr} = \frac{\phi}{\sqrt{4\pi^2 G}}$

Introduction	Formation of GMCs	Evolution and Destruction of GMCs	Star Formation Rate of GMCs o	Conclusion o
GMC	s Parame	eter		

Reference: Krumholz et al., 2012

free-fall time:

$$t_{ff} = \sqrt{\frac{3 * \pi}{32G\rho}} = 3.4\sqrt{\frac{100}{n_{H_2}}}Myr$$
$$= 1 - 8Myr$$

► lifetime:

 $t_{\textit{lifetime}} \sim 100 \; \text{Myr}$

depletion time: $t_{dep}(H_2) = \frac{M(H_2)}{SFR} \sim 2.2 \text{ Gyr}$

$$ightarrow {f t}_{\it lifetime}$$
 < ${f t}_{\it dep}$

Introduction	Formation of GMCs	Evolution and Destruction of GMCs	Star Formation Rate of GMCs	Conclusion

Formation of GMCs

- Localized Converging Flows
- Spiral Arm Induced Collisions
- Gravitational Instability
- Magneto-Jeans Instability
- Parker Instability

4 Star Formation Rate of GMCs

Formation of GMCs

Evolution and Destruction of GMCs

Star Formation Rate of GMCs

Conclusion o

Localized Converging Flows

Reference: Schlafly et al., 2015

- stellar feedback processes drive converging flows
- HII region expansion and SNe blast waves
- \blacktriangleright scale of \sim 100 pc

Formation of GMCs

Evolution and Destruction of GMCs

Conclusion o

Spiral Arm Induced Collisions

Reference: Dobbs and Pringle, 2013

black-white: \sum_{gas} colorful: integrated H₂

- spiral arm induced small cloud collisions
- quasi-periodic spacing along arms: set by epicyclic frequency
- counter-rotating GMCs are possible

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

y (kpc)

Formation of GMCs

Evolution and Destruction of GMCs

Star Formation Rate of GMCs

Conclusion o

Gravitational Instability

Reference: Barnes, 2005

- ► axissymmetric perturbations: Toomre parameter = \frac{kc_{eff}}{\pi G \sum 2} < 1</p>
- linear perturbation theory

- analoguous to swing-amplifiaction
- ► calculated M too high → multiphase medium

Formation of GMCs

Evolution and Destruction of GMCs

Conclusion o

Magneto-Jeans Instability

Reference: Kim and Ostriker, 2001

- magnetized gas disk
- Iow-shear disk
- linear perturbation theory
- magnetic tension counteracts
 F_{coreolis}

(口) (四) (日) (日) (日)

Formation of GMCs

Evolution and Destruction of GMCs

Star Formation Rate of GMCs

Conclusion o

Parker Instability

Magnet field lifts up due to differential buoyancy in gravitational field

Top region becomes lighter -> enforced buoyancy force (and magnetic field lift-up) -> growth of instability

Reference: Mizuno, 2015

Formation of GMCs

Evolution and Destruction of GMCs

Star Formation Rate of GMCs

▲ロト ▲課 ト ▲注 ト ▲注 ト 二注 - のへぐ

Conclusion o

Structure of GMCs

$\begin{array}{l} \mbox{Formation} \rightarrow \mbox{Structure} \rightarrow \mbox{Evolution} \rightarrow \mbox{Destruction} \\ \rightarrow \mbox{clumpy} \\ \rightarrow \mbox{filamentary} \end{array}$

Introduction	Formation of GMCs	Evolution and Destruction of GMCs	Star Formation Rate of GMCs	Conclusion

<ロト < 理ト < ヨト < ヨト = ヨ = つへつ

Introduction - Observed Properties of GMCs

2 Formation of GMCs

Evolution and Destruction of GMCs

- Global Collapse Scenario
- External and Internal Driving Scenario
- Mass Loss and Disruption
- 4 Star Formation Rate of GMCs

Formation of GMCs

Evolution and Destruction of GMCs

Star Formation Rate of GMCs

Conclusion o

Global Collapse Scenario

Reference: Lang, 2016

- collision between 2 warm, diffuse gas streams
 - \rightarrow cold cloud formation
 - \rightarrow M_J decreases
 - \rightarrow fragmentation into clumps
 - \rightarrow formation of sheets and filaments
- SFR too high
- smaller lifetimes

External and Internal Driving Scenario

External:

- injection of energy by external flow
- ► large-scale galactic flow → subject of continuous external buffeting

Internal by stellar feedback:

- HII regions
- radiation pressure
- stellar winds
- protostellar outflows

Formation of GMCs

Evolution and Destruction of GMCs

Star Formation Rate of GMCs

Conclusion o

Mass Loss and Disruption

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三里 - のへぐ

Introduction	Formation of GMCs	Evolution and Destruction of GMCs	Star Formation Rate of GMCs	Conclusion

Introduction - Observed Properties of GMCs

Pormation of GMCs

3 Evolution and Destruction of GMCs

4 Star Formation Rate of GMCs

How do Stars form in the frame of evolution?

 $t_{\it ff} \ll t_{\it lifetime} < t_{\it dep} <$ quasi-steady state star formation regulation required

magnetic theory:

STAR-FORMING

Reference: Vallee, 2016

supersonic turbulent motions:

Reference: Gouliermis et al., 2014

Introduction	Formation of GMCs	Evolution and Destruction of GMCs	Star Formation Rate of GMCs $^{\circ}$	Conclusion O

◆ロト ◆帰 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

Introduction - Observed Properties of GMCs

Pormation of GMCs

3 Evolution and Destruction of GMCs

4 Star Formation Rate of GMCs

Introduction Formation of GMCs Evolution and Destruction of GMCs

Star Formation Rate of GMCs

Conclusion

Formation of Molecular Clouds and Global Conditions for Star Formation

localized coverging flows, spiral arm induced collisions, gravitational, magneto-jeans, and parker instability produce GMCs gravitational collapse, externally or internally driven scenarios control cloud evolution magnetic or turbulent supports regulate SFR