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Abstract

The contribution of the magnetic field to the formation of high-mass stars is poorly understood. We report the high
angular resolution (∼0 3, 870 au) map of the magnetic field projected on the plane of the sky (BPOS) toward the
high-mass star-forming region G333.46−0.16 (G333), obtained with the Atacama Large Millimeter/submillimeter
Array at 1.2 mm as part of the Magnetic fields in Massive star-forming Regions survey. The BPOS morphology
found in this region is consistent with a canonical “hourglass” with an embedded flattened envelope in a
perpendicular direction, which suggests a dynamically important field. This region is fragmented into two
protostars that appear to be gravitationally bound in a stable binary system with a separation of ∼1740 au.
Interestingly, by analyzing H13CO+ (J= 3–2) line emission, we find no velocity gradient over the extent of the
continuum, which is consistent with a strong field. We model the BPOS, obtaining a marginally supercritical mass-
to-flux ratio of 1.43, suggesting an initially strongly magnetized environment. Based on the Davis–Chandrasekhar–
Fermi method, the magnetic field strength toward G333 is estimated to be 5.7 mG. The absence of strong rotation
and outflows toward the central region of G333 suggests strong magnetic braking, consistent with a highly
magnetized environment. Our study shows that despite being a strong regulator, the magnetic energy fails to
prevent the process of fragmentation, as revealed by the formation of the two protostars in the central region.

Unified Astronomy Thesaurus concepts: Dust continuum emission (412); Magnetic fields (994); Polarimetry
(1278); Star formation (1569)

1. Introduction

Star formation is a complex process controlled by several
factors, among which gravity, turbulence, and magnetic field
play a key role. Magnetic fields are believed to oppose the

gravitational contraction and fragmentation of dense cores, thus
delaying the formation of protostars (e.g., Mouschovias &
Ciolek 1999; McKee & Ostriker 2007; Li et al. 2017; Palau
et al. 2021; Hwang et al. 2022). However, magnetic fields can
also help to channel cloud material toward overdense regions,
thus acting as a catalyst in the formation of protostars (e.g.,
Soler & Hennebelle 2017; Hennebelle & Inutsuka 2019).
In a strongly magnetic environment, the morphology of the

magnetic field remains preserved up to scales of dense molecular
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cores of 0.01–0.1 pc (e.g., Qiu et al. 2014; Li et al. 2015; Cortés
et al. 2021). Another possible scenario shows the dragging of the
frozen-in magnetic field along with the gas material toward the
dense core by the gravitational collapse. This phenomenon
creates a pinching effect in the magnetic field lines, leading to an
“hourglass”-like appearance (e.g., Girart et al. 2006, 2009; Rao
et al. 2009; Tang et al. 2009; Stephens et al. 2013; Hull et al.
2014; Qiu et al. 2014; Koch et al. 2018; Maury et al. 2018;
Beltrán et al. 2019; Kwon et al. 2019; Cortés et al. 2021; Huang
et al. 2024). This specific structure may be partially due to
projection and line-of-sight integration effects that lead to the
observed dust polarization. It is of utmost importance to
characterize hourglass patterns when observed, in order to better
understand the initial conditions of star formation.

Despite being a significant regulator of star formation, the role
of the magnetic field during the birth of massive stars is still
poorly understood. To make progress, the survey Magnetic fields
in Massive star-forming Regions (MagMaR) has been carried
out. In MagMaR, a total of 30 high-mass star-forming regions
were observed at 1.2 mm with the Atacama Large Millimeter/
submillimeter Array (ALMA). A few detailed characteristics of
some targets, such as G5.89−0.39, IRAS 18089−1732, NGC
6334I(N), and NGC 6334I have been discussed by Fernández-
López et al. (2021), Sanhueza et al. (2021), Cortés et al. (2021),
and Cortés et al (2024), respectively.

Out of the 30 targets, the magnetic field projected on the plane
of the sky (BPOS) toward the high-mass star-forming region
G333.46−0.16 (hereafter G333) shows the most extended
hourglass morphology on a few thousand au scale (assuming a
distance of 2.9 kpc; Lin et al. 2019). This target was studied as a
part of the ATLASGAL survey of massive clumps by Csengeri
et al. (2014) and Lin et al. (2019). The bolometric luminosity of
this target is 4.4× 103 Le (Lin et al. 2019). Based on its spectral
energy distribution, Lin et al. (2019) estimated a dust
temperature and mass of 25.2 K and 282 Me, respectively, for
this region. Here, we aim to assess the magnetic properties and
investigate the importance of the magnetic field, gravity, and
turbulence in the star-forming region G333.

2. Observations

ALMA polarimetric observations toward G333 were carried
out on 2018 September 27 using ALMA Band 6 (1.2 mm) as a
part of the MagMaR project (project ID: 2017.1.00101.S and
2018.1.00105.S; PI: P. Sanhueza). The maximum recoverable
scale (MRS) was ∼4 5. During the observing runs, J1650–5044
was used as phase calibrator, while J1427–4206 was used as a
calibrator for bandpass, flux, and polarization. Details of the
observational setup are discussed by Cortés et al. (2021),
Fernández-López et al. (2021), and Sanhueza et al. (2021).

Linearly polarized dust continuum emission is identified within
the the inner one-third area of the primary beam (24″). Bright
emission lines have been eliminated from the Stokes I continuum
following the method elaborated by Olguin et al. (2021). We used
CASA 6.5.2 to perform self-calibration and imaging. Self-
calibration of the Stokes I was performed with three iterations in
phase with a final solution interval of 10 s. The self-calibration
solutions were applied to the respective spectral cubes. The
imaging of each Stokes parameter was performed separately
employing the CASA task tclean using Briggs weighting with a
robust parameter of 1. The resulting Stokes I image has an angular
resolution of 0 318× 0 290 with a position angle of 49°.4
(922× 841 au). The sensitivities of the images are 160μJy beam−1

for the final Stokes I and 29μJy beam−1 for the final Stokes Q and
U. The source is bright in continuum Stokes I emission, making the
image dynamic range limited. However, the polarized emission
(Stokes Q and U) is significantly weaker compared to the
continuum Stokes I; therefore, it is unlikely to be dynamic-range-
limited, making it possible to reach the thermal noise. The debiased
linear polarized intensity, polarization fraction, and polarization
angle images were constructed following Vaillancourt (2006).
The image of H13CO+ (J= 3–2) line emission, also included

in the spectral setup, was obtained by the automatic masking
method yclean (Contreras et al. 2018). The CASA task tclean
was performed using Briggs weighting with a robust parameter
of 1, leading to a noise level of 2.9 mJy beam−1 (0.61 K) per
0.56 km s−1 channel.

3. Results

The ALMA 1.2 mm continuum emission with ∼900 au
spatial resolution is shown in Figure 1(a) and reveals details of
the internal structure of G333. The dust continuum emission
shows a flattened structure that is elongated in the northwest–
southeast direction. The center of this flattened structure is
fragmented into two more condensations with a separation of
∼1740 au along the major axis of the elongation. Both the
condensations show the presence of hot molecular core
emission lines (Taniguchi et al. 2023), suggesting that they
are potential protostars. The peak flux at the position of the
brightest component, located toward the southeast (MM1), is
53.5 mJy beam−1, while the fainter one located toward the
northwest (MM2) has a peak flux of 38.8 mJy beam−1.
The direction of the BPOS is inferred by assuming the dust

grains are aligned with respect to the magnetic fields (i.e., rotating
the polarization segments by 90°; Cudlip et al. 1982; Hildebrand
et al. 1984; Hildebrand 1988; Lazarian 2000; Andersson et al.
2015). The polarized emission detected in G333 suggests an
hourglass-like geometry of the magnetic field aligned with the
symmetry axis of the hourglass almost parallel to the minor axis
of the flattened envelope. For our analysis, we focus on the
circular area as marked in Figure 1(a) that harbors the hourglass
magnetic field. We chose this area to avoid the additional
distortion of BPOS produced by other surrounding cores. The
circle is centered at α= 16:21:20.183 and δ=−50:09:46.662,
with a radius of 1 5 (4350 au). As the diameter of the area of
analysis (3″) is less than the MRS, the extended emission should
not be significantly affected by filtering.
Figure 2(a) presents the integrated intensity map of H13CO+ (J=

3–2) line, which is a cold dense gas tracer (upper energy level, Eu, of
25 K), toward G333. Figure 2(b) shows the H13CO+ distribution of
the intensity-weighted velocity structure (moment 1 map) toward
G333 with respect to the systemic velocity (vlsr∼−43 km s−1). No
clear signature of a large-scale velocity gradient is detected with a
spectral resolution of 0.56 km s−1, suggesting a quiescent environ-
ment at ∼10,000 au scale. However, the velocity field over MM1
and MM2 is relatively more blueshifted than their immediate
vicinities, which could be a sign of infall, as suggested by Estalella
et al. (2019) and Olguin et al. (2021).

4. Discussion

4.1. Dust Continuum Emission and Velocity Dispersion

The flux density enclosed in the circular region is 493 mJy.
The temperature of the region marked with a circle as in
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Figure 1 is determined using the CH3CN (J= 14–13) rotational
transitions. We primarily detected the four brightest K
components (K= 0, 1, 2, 3) of the transition toward this area.
We avoided the region very close to MM1 and MM2 to refrain
from line contamination by radiation from MM1 and MM2. In
Figure 3, we present the average brightness distribution of the
CH3CN (J= 14–13) transitions in black. The blue dashed line
represents the fitted spectrum that is obtained by fitting the
observed spectrum with XCLASS (Möller et al. 2017) resulting
in a temperature of 50 K. Using this temperature, and assuming
optically thin dust emission and a spherical geometry, the total
gas mass is estimated using

( )
( )

k
= L n

n n
M

F D

B T
, 1

2

where Λ is the gas-to-dust mass ratio, Fν is the flux density of
the source, D is the distance to the target, κν is the dust opacity
per gram of dust, and Bν is the Planck function with a dust
temperature T. The gas-to-dust ratio is assumed to be 100:1.
The dust opacity is assumed as 1.03 cm2 g−1 (interpolated to
1.2 mm; Ossenkopf & Henning 1994). Using a dust
temperature of 50 K, the total mass is estimated as 23 Me.

We estimate the mass density ρ as 3.9× 10−17 gm cm−3

using a volume ( p=V R4

3
3, where R= 1 5). The number

density n(H2) is r m mH H2
, where ( )m =2.86H2

is the mean
molecular weight per hydrogen molecule (Kirk et al. 2013) and
mH is the atomic mass of hydrogen. The n(H2) enclosed in the
area of analysis is estimated as 8.4× 106 cm−3.

Using the dendogram technique (Rosolowsky et al. 2008)
adopted in the astrodendro Python package,24 the flux densities

of MM1 and MM2 are estimated as 59.5 mJy and 25.8 mJy,
respectively. Assuming a similar temperature, MM1 is 2.3
times more massive than MM2. Table 1 lists the dendogram
results for both protostars.
Considering a bolometric luminosity of 4.4× 103 Le (Lin

et al. 2019) and assuming that a single main-sequence star is
responsible for the bolometric luminosity, the stellar mass
would then be ∼6 Me (Mottram et al. 2011). However, there
are two protostars at the center. At larger scales, based on the
ALMA 7m array observations with an angular resolution of
3 7 (Csengeri et al. 2017), the mass of the structure containing
MM1 and MM2 is determined as 120 Me, suggesting that most
of the clump mass (282 Me) is concentrated in the central
region of the clump. Thus, these protostars are potential
candidates for becoming high-mass stars by accreting gas
material from the available mass reservoir.
Using H13CO+ line emission, we derive the dispersion in the

turbulent velocity along the line of sight, ( )s s s= -vlos obs
2

th
2 .

The σobs and σth are the observed and thermal velocity
dispersions of the H13CO+ line, respectively. The σth can be
expressed as mk T mB H , where kB is the Boltzmann constant
and μ is the molecular weight of H13CO+ (30). Assuming a
temperature of 50 K, σth and σvlos are estimated as 0.12 and 1.21
km s−1, respectively.

4.2. Modeling of the Hourglass-shaped Magnetic Field

In order to model the magnetic field pattern, we used the DustPol
module included in the ARTIST package (Padovani et al. 2012),
which is based on the Line Modeling Engine radiative transfer code
(Brinch & Hogerheijde 2010). DustPol generates the synthetic
Stokes I, Q, and U images in FITS format, which are used as an
input for the simobserve and simanalyze tasks of CASA, considering

Figure 1. (a) The BPOS geometry (black line segments) toward G333, obtained after rotating the polarization segments by 90°, overplotted on ALMA 1.2 mm dust
continuum emission. The BPOS segments have arbitrary length and are plotted above the 3σ (σ = 29 μJy beam−1 for Stokes Q and U) level. Contours correspond to
dust continuum emission 5, 10, 50, 100, 190, 230, 300, and 340 times σ (=160 μJy beam−1). The positions of MM1 and MM2 are marked as plus symbols. The circle
in magenta represents the area of analysis. The scale bar and the beam size of 880 au are displayed on the bottom right and bottom left sides, respectively. The line
segments are drawn following the Nyquist sampling (every 3 pixels each of size 0 05). (b) Magnified view of the area of analysis. Symbols are the same as in
panel (a).

24 http://www.dendrograms.org/
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the same antenna configuration of the observing runs in ALMA. In
this way, polarization position angle maps are created and compared
with the observations. The physical modeling of the 3D magnetic
field is done by combining an axisymmetric singular toroid threaded
by a poloidal field (Li & Shu 1996; Padovani & Galli 2011). Based
on Padovani et al. (2013), we added a toroidal force-free component
of the magnetic field to represent the effects of rotation.

The model used in this work has four free parameters: (1) the
mass-to-flux ratio normalized to its critical value, λ, defined as

( )
( )

( )l p=
F
F

=
F

M

M
G

M
2 , 2B

B cr B

where G is the gravitational constant, ΦB is the magnetic flux
(=πR2B), and M is the mass of the core; (2) the ratio of the
strengths of the toroidal and the poloidal components of the
magnetic field in the midplane of the source, b0; (3) the orientation
of the magnetic axis projected on the plane of the sky, j, starting
from north and increasing eastward; and (4) the inclination with
respect to the plane of the sky, i, with an assumption of being
positive/negative when the magnetic field in the northern part
directs toward/away from us. A χ2 test is performed on the
polarization angle residuals (Δψ) of the polarization angle ψ,
obtained from the difference between the observed (ψobs) and the
modeled (ymod) polarization angles ( y y yD = -obs mod),
enclosed within the circular area for each combination of the four
free parameters. The χ2 is estimated accounting for regions lying
above the 3σ level (σ= 29 μJy beam−1) of the Stokes Q and U
images. A constant temperature (50 K) has been adopted in the
modeling, as no temperature map of this region is available
currently. On the other hand, the region close to MM1 and MM2 is
expected to be relatively hot and have more weight in estimating
the Stokes parameters.
The best-fit model provides the minimum reduced χ2 value of

9.39 with the combination of model parameters: λ= 1.63,
b0=−0.1± 0.1, ◦=


-

+i 45 6
13 , and ◦j =


-

+40 4
1 . The errors are

estimated following Lampton et al. (1976). A low value of b0 in the
best-fit model is consistent with no apparent rotation toward G333
as found in H13CO+. The value of λ= 1.63 obtained from the
model (see Equation (2)) is relative to the mass enclosed in a flux
tube, but observationally, the mass is derived considering a spherical
system. Therefore, the estimated λ is transformed to an effective λ
of 1.43 (Li & Shu 1996), which is marginally supercritical.
In Figure 4(a), we show a comparison between the observed

and modeled magnetic field geometry, limited to the area within
the circle shown in Figure 1(a). Although the hourglass model
reproduces quite well the observed magnetic field geometry,
deviations can be seen around MM1, mainly toward its southern
and eastern regions. Since MM1 is relatively more massive than
MM2, it is possible that the gravity of MM1 might have dragged
and distorted the magnetic field lines more effectively than MM2.
In Figure 4(b), we show the histogram of the Δψ. A Gaussian fit

Figure 2. (a) The moment zero or integrated intensity map of H13CO+ line
emission. (b) The moment 1 or intensity-weighted velocity map of the same.
The white line segments show the BPOS geometry, and the contours outline the
dust continuum emission (same as Figure 1). The positions of MM1 and MM2
are marked as plus symbols. The scale bar and the spatial resolution are
displayed on the bottom right and bottom left sides, respectively, in all panels.

Table 1
Results Obtained from Astrodendroa

R.A. Decl. FWHM
Peak

Intensity
Flux

Density

(ICRS) (ICRS) (arcsec × arcsec)
(mJy

beam−1) (mJy)

MM1
16:21:20.20 −50:09:46.91 0.31 × 0.21 53.5 59.5

MM2
16:21:20.17 −50:09:46.41 0.23 × 0.14 38.8 25.8

Note.
a s=F 5min : the threshold above which the structures are defined. δ = 1σ: the
minimum significance for separation of the structures. Smin = half of the beam
size: the minimum area to be allocated in the individual structure.

Figure 3. The spectra of CH3CN (J = 14–13) toward G333. The black line
shows the observed spectrum, and the dashed blue line shows the fitted spectrum.
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to the whole distribution of Δψ provides a mean value of
〈Δψ〉=−3°.32 and a standard deviation of σψ= 19°.48.

4.3. Magnetic Field Strength

We estimate BPOS toward G333 using the well-known
Davis–Chandrasekhar–Fermi (DCF) method (Davis 1951;
Chandrasekhar & Fermi 1953),25 which states

( )pr
s
dy

=B Q
v

4 , 3POS
los

int

where Q is a correction factor, 0.5,26 adopted from simulations
in turbulent clouds (Ostriker et al. 2001); ρ is the mass density
of the cloud; σvlos is the dispersion in the turbulent velocity

along the line of sight; and δψint is the intrinsic dispersion in the
polarization angle ψ. The δψint can be obtained from

s dy-y
2

obs
2 . The average uncertainty in the observed ψ

within the circle of analysis is δψobs= 5°.4. The δψint obtained
is 18°.7. Consequently, BPOS is estimated as 4.0 mG. Adopting
i= 45° from our model, we also estimate the total magnetic
field strength ( )= =B B icos 5.7POS mG. With a density of
n(H2)= 8.4× 106 cm−3, this strength is consistent as found in
the compilation of B-field strength with density by Liu et al.
(2022a) using the DCF method.
The DCF method assumes the deviation of the uniform

magnetic field by turbulent gas motions without considering
gravity, which is most likely responsible for the hourglass
shape. In this work, gravity is taken into account while using
the DustPol model, and by considering the Δψ, we eliminate
the gravitational effect, and the δψ is supposed to be the
interplay between the turbulence and the magnetic field.
While computing λ using Equation (2), we assumed that all

the mass is in the envelope, while the protostellar mass should
also be added to the envelope mass. Therefore, the estimated λ

should be considered as a lower limit. As mentioned in
Section 4.1, based on the luminosity, an additional stellar mass
of ∼6 Me could be added to the envelope mass, making the
total mass 29 Me, which leads to a mass-to-flux ratio of 1.22.
The fact that the dust emission may be optically thick at the
very central bright fragmented region leads to an underestimate
of the mass of the circular region that cannot be ignored.
However, the estimated value of λ is similar to the one
obtained from the modeling (1.43).
We compute the Alfvén speed, pr= =v B 4A

2.58 km s−1, through which we estimate the turbulent to
magnetic energy, ( )b s= =v v3 0.66t los A

2 . This indicates that
the magnetic energy dominates moderately over the turbulent
energy in this region. Thus, the magnetic field toward G333, in
spite of being quite strong, could not prevent the fragmentation
and eventually star formation.
Based on nonideal magnetohydrodynamic simulations of an

initially subcritical core by Machida & Basu (2020), the
collapse happens after the core reaches a marginally super-
critical mass-to-flux ratio, leaving behind a considerable
amount of magnetic flux, which helps to transport out the
angular momentum through strong magnetic braking. As a
result, the protostar may harbor no disk or a very small one,
with a very weak outflow signature. In G333, we do not find
any evidence of rotation in the envelope region (Figure 2(b)) or
in any of the protostars at the current angular resolution. Even
in higher angular resolution (∼0 05) observations of the same
region obtained as part of the survey Digging into the Interior
of Hot Cores with ALMA (DIHCA; Olguin et al. 2022, 2023)
survey (P. Sanhueza, private communication), no clear
signature of rotation was found in any of the protostars,
making the argument of strong magnetic braking more evident.
Additionally, we found no significant outflow signature coming
from the two protostars in G333 (see Appendix A). This is
consistent with the overall physical scenario of very weak
outflow and no disk when starting with strongly magnetized
initial conditions (Machida & Basu 2020). This leads to the
possibility that star formation in G333 started in an initially
subcritical or transcritical cloud.

Figure 4. (a) Comparison between the observed (green segments) and modeled
(yellow segments) magnetic field orientations overplotted on the polarized
intensity map (gray scale). The black contours are the same as Figure 1. (b)
Histogram of the polarization angle residuals (Δψ) along with the Gaussian fitting.

25 Also see Liu et al. (2022a, 2022b).
26 In Ostriker et al. (2001), the size scale adopted is ∼8 pc, whereas Liu et al.
(2021) estimated Q to be ∼0.28 at a size scale of 1–0.2 pc, which is relatively
closer to the size scale of the area of analysis. Adopting the latter, the BPOS is
estimated as ∼2.3 mG.
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4.4. Analysis of the Energy Balance

The current dynamical state toward G333 can be inferred
from the virial parameter (αvir), the ratio of the virial mass
(Mvir) to the total mass (M) of the system with considerations of
both the turbulent and magnetic supports. While αvir∼ 1
indicates the equilibrium state, αvir> 1 implies expansion, and,
conversely, αvir< 1 signifies contraction under gravity. We
estimate αvir as 1.3 for a centrally peaked density profile (see
Appendix B). This suggests that G333 is currently close to a
quasi-equilibrium state or undergoing quasi-static evolution,
which is further supported by the quiescent environment of
G333 as implied by the velocity field traced by the H13CO+

line emission (Figure 2(b)). A strongly magnetized environ-
ment exerts adequate support against rapid gravitational
collapse, although the magnetic field could not hinder the
fragmentation. This is consistent with a second stage of
fragmentation within an initial massive core that forms out of a
transcritical cloud (Bailey & Basu 2014).

4.5. Flattened Envelope Harboring the Hourglass Magnetic
Field

Theoretical studies suggest that for a relatively strong
magnetic field environment (λ� 3), the core material is
channeled primarily along the magnetic field lines by the
gravitational pull, building a flattened pancake-like structure
perpendicular to the field lines and developing a small toroidal
component of the magnetic field (Allen et al. 2003; Price &
Bate 2007). As shown in Figure 1, the flattened structure where
the fragmentation took place agrees well with the strong
magnetic field case, which is further supported by a low λ
obtained from our best-fit model as well as the observations.
Additionally, a small contribution of the toroidal component of
the field (∼10% of the poloidal component) obtained from the
best-fit model supports this phenomenon. This is consistent
with some previous studies (e.g., Qiu et al. 2014; Beltrán et al.
2019; Kwon et al. 2019), which suggest a major contribution of
the magnetic field in the formation of high-mass protostars.

4.6. Stability Analysis of the Central Protostars

To investigate whether the central protostars MM1 and MM2
are gravitationally bound, we followed the methodology
adopted in Pineda et al. (2015) and Li et al. (2024). We
estimate the gravitational potential energy (Vi) by

( )å= -
¹

V
Gm m

r
, 4i

i j

i j

ij

where mi and mj are the masses of objects i and j, respectively,
and rij is the separation between them. The kinetic energy (Ei)
is given by

( ) ( )= -E m v v
1

2
, 5i i i com

2

where vi is the line-of-sight velocity of the object i and vcom is
the velocity of the center of mass of the system. We estimate
vcom by

( )=
å
å

v
m v

m
. 6k k k

k k
com

The velocities of MM1 and MM2 are obtained from
Taniguchi et al. (2023) as −44.06 and −43.55 km s−1,

respectively. Assuming that the measured velocity difference
between MM1 and MM2 is in 1D, the full velocity difference in
3D is ( )D = -v v v3 i3D com along the line of sight. Also, the
total separation between MM1 and MM2 is estimated by
multiplying the measured projected separation (1740 au) with 4/
π, i.e., 2215 au, assuming a random orientation between them.
We measured the masses of MM1 and MM2 from the flux

density obtained from the astrodendro task to estimate the
Ei/Vi for each of them. The Ei/Vi for MM1 and MM2 are
estimated as 0.08 and 0.17, respectively. As both MM1 and
MM2 show Ei/Vi< 1, they could be gravitationally bound in a
binary system at the present stage.

5. Summary and Conclusions

The ALMA high angular resolution (∼0 3) observations of
linearly polarized 1.2 mm dust emission toward the high-mass
star-forming region G333 revealed an hourglass-shaped pattern
of BPOS at a scale of ∼6000 au. The hourglass shape is found to
be more pinched toward MM1 than MM2, which might be
because of the larger mass of MM1 compared to MM2. The
protostars MM1 and MM2 are found to be gravitationally
bound in a binary system at present with a separation of
1740 au.
The H13CO+ line emission shows no strong velocity

gradient that could hint at any rotation toward G333. Also,
none of the protostars show any clear signature of outflows,
suggesting a strong magnetic braking.
The hourglass-shaped BPOS is well fitted with an axisymmetric

semianalytical magnetostatic model. The best-fit model is
primarily governed by a poloidal component tangled with a
small toroidal component (∼10% of the poloidal one). The best-
fit results also provide λ= 1.43, ◦=


-

+i 45 6
13 , and ◦f =


-

+40 4
1 .

Based on the DCF relation, the total magnetic field strength
is estimated as 5.7 mG. We also estimate the mass-to-flux ratio
using the dispersion of polarization angle obtained from the
model fitting, which results in 1.22, consistent with the same
obtained from the best-fit model (λ= 1.43).
Our analysis of energy balance in this area suggests a quasi-

equilibrium state, which is consistent with the current dynamic
environment inferred by H13CO+ line emission. Our specula-
tion based on this work is that the magnetic field toward G333
is strong enough to stabilize the environment toward the center.
A low magnitude of turbulent-to-magnetic energy ratio
indicates a suppression of the magnetic field over the
turbulence in this region. However, both are ultimately
overwhelmed by the gravity, responsible for the fragmentation
and eventually star formation. This leads to a possible scenario
that the star formation in G333 might have started in an initially
subcritical core, when the central peak density area reached the
marginally supercritical mass-to-flux ratio.
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Appendix A
Molecular Outflows Identified around G333

Several molecular outflows are identified around G333 using
the 12CO (J= 3–2) line emission observed by ALMA (project
ID: 2013.1.00960.S; PI: T. Csengeri). Using the CASA task
imregrid, we match the phase center of the 12CO line image
and our 1.2 mm dust continuum image.

Figure 5 shows the 12CO molecular outflows overplotted on
the dust continuum image. The 12CO line emission is integrated
from −106.1 to −65.3 km s−1 for the blueshifted lobe and
−22.1–0.7 km s−1 for the redshifted lobe. The sensitivities of
the integrated images of the blueshifted and redshifted 12CO
line emission are 0.14 and 0.10 Jy beam−1, respectively. The
outflow lobes in the north and south of the region enclosed by
the hourglass-shaped magnetic field (shown as a cyan colored
circle in Figure 5) are highly collimated. Interestingly, it is
noticeable that although there is a significant amount of
redshifted 12CO line emission within the circle (which seems to

be the redshifted lobe of the nearby protostar located south of
the circular area of analysis), none of the outflow lobes are
driven by any of the protostars but likely the low-mass
protostars residing in the outskirts of the dense gas. There are
some dust condensations that likely could host these protostars,
marked with crosses in Figure 5.
The absence of outflows in any of the protostars makes it

difficult to predict the angular momentum direction. In a
classical scenario of magnetized star formation, the angular
momentum is efficiently lost by magnetic braking (Mouscho-
vias & Paleologou 1979). Our speculation is that magnetic
braking is relatively strong in the case of G333, because of
which we do not find any observational signature of strong
angular momentum.

Appendix B
Virial Parameter

The virial theorem can be expressed as follows:

( )= + +
d I

dt
E E E

1

2
2 , B1

2

2 k G B

where I is the moment of inertia and Ek, EG, and EB are the
kinetic, gravitational, and magnetic energies, respectively. We
consider a spherical cloud having a radial density profile
ρ∝ r−α, where α= 2 implies that the density profile is
centrally peaked (Belloche 2013). The gravitational energy
(EG) can be expressed by

( )
( )

( )a
a

= -
-
-

E
GM

R

3

5 2
. B2G

2

The magnetic energy (EB) is given by

( )
p

=E
B V

8
. B3B

2

Figure 5. Molecular outflows identified in 12CO (J = 3–2) overplotted on our
observed 1.2 mm dust continuum emission. The plus symbols mark the
positions of MM1 and MM2. The circle in cyan shows the region of analysis.
The blueshifted and redshifted outflows are shown in blue and red contours,
respectively. The blue contours are drawn with levels 3, 5, 7, 9, 12, and 18
times 0.13 Jy beam−1. The red contours are drawn with levels 3, 5, 7, 9, 11, 15,
20, and 25 times 0.10 Jy beam−1. The possible sources driving the outflows are
marked using green crosses. The red and blue arrows show the directions of the
redshifted and blueshifted outflows, respectively.

7

The Astrophysical Journal Letters, 972:L6 (9pp), 2024 September 1 Saha et al.

http://www.dendrograms.org/
http://www.dendrograms.org/


The kinetic energy (Ek) is derived by

( )s=E M
3

2
. B4k tot

2

where σtot is the total gas velocity dispersion defined by
s s s= + vtot th

2
los

2 . The σth is the thermal velocity disper-

sion ( /s m= k T mth B p H ), where μp = 2.37 is the mean
molecular weight per free particle. The rotational energy (Er) is
expressed as

( )
( )

( )a
a

=
-
-

E Mv
1

3

3

5
. B5r rot

2

We do not find any evidence of rotation with a spectral
resolution of 0.56 km s−1 in the area of analysis. If we assume
this resolution as the upper limit of the velocity due to rotation
(vrot), we estimate the ratio Er/EG to be 0.006 for a centrally
peaked density profile. With the same assumption of rotation, a
ratio of Er/EB is estimated to be 0.013 for the same profile.
Similarly, we estimate the ratio of Er/Ek as 0.014. As the
contribution of the rotational energy is negligible compared to
the other energies, we do not account for the upper limit of the
rotational term in the estimation of the virial parameter.

Including both the kinetic and magnetic energies, a system
can be in stable phase, when 2Ek+ EB+ EG< 0. The ratio
between the virial mass Mvir(=Mk+B) and the total mass M
can be defined as the virial parameter αvir. Following Liu et al.
(2020), αvir is given as

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥ ( )a = = + ++M

M M
M

M M1

2 2
, B6vir

k B
B
2 k

2
k

where Mk+B is the total virial mass considering the kinetic
motion and magnetic field. The kinetic virial mass Mk is
defined as

⎛
⎝

⎞
⎠

( )a
a

s
=

-
-

M
R

G
3

5 2

3
. B7k

tot
2

The virial mass accounting for the ordered magnetic fieldMB

is expressed as

( )
( )

( )

p

p
=

a
a

-
-

M
R B

G
. B8B

2

6 3

5 2
2

We estimate the αvir to be 1.3, which suggests an
equilibrium state of G333, implying that the magnetic field
provides significant support against gravity.
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