

The role of Streamers in star and disk formation: mirage or reality?

Jaime Pineda & Dominique Segura-Cox

Max Planck Institute for Extraterrestrial Physics Center for Astrochemical Studies (CAS@MPE) 13/07/21

The Need to Connect Scales Per-emb-2 (Class 0)

Filament Scale

Sadavoy et al. (2012, 2014)

Core/Envelope Scale

Disk Scale

The Need to Connect Scales Per-emb-2 (Class 0)

Filament Scale

Sadavoy et al. (2012, 2014)

Core/Envelope Scale

Disk Scale

Reprocessed from Tobin et al. (2018)

Streamers Bridge the Gap Per-emb-2 (Class 0)

Filament Scale

Sadavoy et al. (2012, 2014)

Pineda et al. (2020)

Core/Envelope Scale

Disk Scale

Reprocessed from Tobin et al. (2018)

Streamer: Unrelated to Outflow

Contour: CO(2-1)- Image: $HC_3N(10-9)$

5,000 au

Analytic streamline prescription: *Mendoza et al. (2009)*

Per-emb-2 Class 0

 $M_{streamer} > 0.1 M_{\odot}$ $t_{ff} \sim 98 \times 10^3 \, {\rm yr}$

 $HC_3N(10-9)$

 $\dot{M}_{streamer} \sim 10^{-6} M_{\odot} \,\mathrm{yr}^{-1}$ $\dot{M}_{YSO,\text{now}} \sim 7 \times 10^{-7} M_{\odot} \,\text{yr}^{-1}$

5,000 au

Streamer Infall Rate is Important

Pineda et al. (2020)

Streamers Important over Multiple Phases

Per-emb-2 (Class 0) Length of 10 500 au $\dot{M}_{in} \approx 10^{-6} M_{\odot} yr^{-1}$ $\dot{M}_{in}/\dot{M}_{acc} \approx 1.4$

Pineda et al. (2020)

Per-emb-50 (Class I) Length of ~ 3000 au $\dot{M}_{in} \approx 1.3 \times 10^{-6} M_{\odot} yr^{-1}$ $\dot{M}_{in}/\dot{M}_{acc} \approx 1-2$

Valdivia-Mena et al. (2020)

Questions about Streamers

How common are they?

How long are streamers?

What are the best tracers to find streamers?

How dominant are they in the mass accretion process?

Do they modify the chemical composition of the disk?

> Are streamers present in previous numerical simulations?

Infalling Streamers with Dust?

Per-emb-8 Red and blue: C¹⁸O 2-1 Green/cyan: SO

Per-emb-8 ALMA 1.3 mm dust continuum

Segura-Cox et al. in prep

3.1'' = 1000 au

velocity dispersion + 3D geometry

B-field orientation + strength

density + polarization angle dispersion

Segura-Cox et al. in prep

Measure the Magnetic Field? To get tiny disks: and/or B field strong field

Joos et al. 2012, Li et al. 2013

Segura-Cox et al. in prep

Asymmetry in the Gas Disk

Segura-Cox et al. in prep

Segura-Cox et al. in prep

Streamer Causes Gas Disk to Spread?

Streamer Feeds a Ringed Disk

Class I

Segura-Cox et al. (2020)

IRS 63 $H^{13}CO^{+}(4-3)^{-}$ ALMA 870 μ m ·

Segura-Cox et al. in prep

500 au

More Young Rings & Streamers

Could these streamers help form the young dust rings?

Segura-Cox et al. in prep Segura-Cox et al. (2020)

Alves et al. (2020)

Yen et al. (2019) ALMA Partnership et al. (2015)

Pineda et al. (2020)

Reprocessed from Tobin et al. (2018)

Can streamers let us observe how the magnetic field matters in disk formation?

More Questions: Streamers + Disks

Do streamers cause gas disks to spread?

Can streamers form concentric rings, or can they make disks unstable?

