what is the role of the local bubble?

Deutsche Forschungsgemeinschaft DFG

European Research Council

dust polarization Faraday rotation map

Deutsche Forschungsgemeinschaft DFG

can we fully understand this map?

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

the sky as seen by Planck

can we fully understand this map?

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

unfortunately we are far away from that still ...

the sky as seen by Planck

dust polarization maps

synthetic maps with Polaris ...

Polaris polarized radiative transfer

- MC dust heating: Combined heating algorithm of continuous absorption and immediate temperature correction
- grid: octree-grid with adaptive refinement
- polarization mechanism: Dichroic extinction, thermal reemission, and scattering
- dust grain alignment mechanisms:
 - Imperfect Davis-Greenstein (IDG)
 - Radiative torques (RAT)
 - Mechanical alignment (GOLD)
 - Imperfect internal alignement
 - Independent dust grain composition
- optimization: Enforced scattering, wavelength range selection, and modified random walk

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Reissl et al. (2016, A&A, 593,87) Reissl et al. (2019, ApJ, 885, 15)

Polaris website in Kiel: http://www1.astrophysik.uni-kiel.de/~polaris/

Polaris 1 modeling Faraday rotation

Stokes formalism:

 $\vec{S} = \left(I, Q, U, V\right)^T$

I = total intensityQ, U = linear polarizationV = circular polarization

$$P_{\rm l} = \sqrt{\frac{U^2 + Q^2}{I^2}} \; .$$

fraction of linear polarization

$$p_{\rm t} = \sqrt{U^2 + Q^2 + V^2}$$

total polarization fraction

Equation of radiative transfer:

$$\frac{d}{d\ell}\vec{S} = -\hat{K}\vec{S} + \vec{J}\,.$$

K = 4x4 Müller matrix J =emissivity

$$\frac{\mathrm{d}}{\mathrm{d}\ell} \begin{pmatrix} I\\Q\\U\\V \end{pmatrix} = \begin{pmatrix} j_{\mathrm{I}}\\j_{\mathrm{Q}}\\0\\j_{\mathrm{V}} \end{pmatrix} - \begin{pmatrix} \alpha_{\mathrm{I}} & \alpha_{\mathrm{Q}} & 0 & \alpha_{\mathrm{V}}\\\alpha_{\mathrm{Q}} & \alpha_{\mathrm{I}} & \kappa_{\mathrm{V}} & 0\\0 & -\kappa_{\mathrm{V}} & \alpha_{\mathrm{I}} & \kappa_{\mathrm{Q}}\\0 & -\kappa_{\mathrm{V}} & \alpha_{\mathrm{I}} & \kappa_{\mathrm{Q}}\\\alpha_{\mathrm{V}} & 0 & -\kappa_{\mathrm{Q}} & \alpha_{\mathrm{I}} \end{pmatrix} \begin{pmatrix} I\\Q\\U\\V \end{pmatrix} .$$

with appropriate rotation of coordinate direction to simplify system in each cell

Polaris 2 modeling Faraday rotation

position angle:

 $\chi = \frac{1}{2} \tan^{-1} \left(\frac{U}{Q} \right).$

change of position angle:

$$\chi_{\rm obs} = \chi + \lambda^2 \times RM$$

with Faraday rotation measure

$$RM = \frac{1}{2\pi} \frac{n_{\rm th} e^2}{m_{\rm e}^2 c^4} \int n_{\rm th} B_{||} d\ell$$

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Faraday depolarization

$$DP = \frac{I_{\lambda_1} \times P_{\mathbf{l},\lambda_1}}{I_{\lambda_2} \times P_{\mathbf{l},\lambda_2}} \left(\frac{\lambda_1}{\lambda_2}\right)^{\alpha}$$

WARPFIELD 1D cloud/cluster model

WARPFIELD:

- 1D model of cluster embedded in spherical cloud
- starburst99 cluster evolution
- dynamics of think shell is calculated consistently
- with all relevant forms of stellar feedback
- fast, allowing for large parameter studies

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Rahner et al. (2017, MNRAS, 470, 4453) Rahner et al. (2019, MNRAS, 483, 2547)

WARPFIELD-EMP emission predictor

WARPFIELD-EMP:

- 1D model of cluster embedded in spherical cloud
- starburst99 cluster evolution
- dynamics of think shell is calculated consistently
- with all relevant forms of stellar feedback
- fast, allowing for large parameter studies
- coupled to CLOUDY and 1D RT
- many different emission diagnostics

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Phase II Momentum Driven Static + Shell Emission Phase I Energy Driven Winds Phase III Only Shell Emission Ionizing Stellar-Radiation Gas density → Non-ionizing Stellar-Radiation Wind Pressure → Shell emission

Pellegrini et al. (2020, MNRAS, 496, 339)

WARPFIELD-EMP emission predictor

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

WARPFIELD-EMP:

- 1D model of cluster embedded in spherical cloud
- starburst99 cluster evolution
- dynamics of think shell is calculated consistently
- with all relevant forms of stellar feedback
- fast, allowing for large parameter studies
- coupled to CLOUDY and 1D RT
- many different emission diagnostics

Polaris & WARPFIELD-POP dust polarization, synchrotron, Faraday rotation

- take density and magnetic field configuration from theoretical or numerical model
- use KS relation to estimate star formation (or any other rule)
- sample star cluster mass function and merge with WARPFIELD
- use WARPFIELD-EMP with Polaris (CLOUDY) to construct the ISRF
- use Polaris again generate maps of the emission diagnostics of interest
- and to compute Faraday rotation measure (RM) maps

Pellegrini et al. (2020, MNRAS, 498, 3193) Reissl et al. (in prep.) UNIVERSITÄT

HEIDELBERG

ZUKUNFT

SEIT 1386

Polaris & WARPFIED-POP modeling Faraday rotation

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Reissl et al. (in prep.)

Auriga 6 galaxy

UNIVERSITÄT

synthetic maps from **Polaris & model galaxy**

dust polarization maps

UNIVERSITÄT

synthetic maps from **Polaris & model galaxy**

dust polarization maps

importance of local bubble

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Pelgrims et al. (2020, A&A, 636, A17)

see also: Alves et al. (2018, A&A, 611, L5), Marechal & Miville-Deschênes (2021, ApJ, 908, 186), Krause & Hardcastle (2021, MNRAS, 502, 2807)

importance of local bubble

80

[pc]

360

Polaris modeling local bubble

- very high resolution simulation from Philipp Girichidis
- models of magnetized bubbles

Polaris modeling local bubble

Polaris modeling local bubble

UNIVERSITÄT

HEIDELBERG

-6.5

ZUKUNFT SEIT 1386

all-sky maps

Reissl et al. (in prep.)

Reissl et al. (in prep.) Oppermann et al. (2012, A&A, 542, A93)

Reissl et al. (in prep.) Oppermann et al. (2012, A&A, 542, A93), Hutschenreuther & Enßlin, 2020, A&A, 633, A150)

Reissl et al. (in prep.) Oppermann et al. (2012, A&A, 542, A93), Hutschenreuther & Enßlin, 2020, A&A, 633, A150), Pakmor et al. (2018, ApJ, 783, L20)

modeling Faraday rotation all-sky maps

- faithful reproduction of the Milky Way measurements requires knowledge of local star forming regions
- we need to combine galaxy formation simulations with population synthesis models

Reissl et al. (in prep.) Pakmor et al. (2018, ApJ, 783, L20)

THOR Faraday sky

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Hutschenreuther & Ensslin (2020, A&A, 633, A150)

Hutschenreuther & Ensslin (2020, A&A, 633, A150)

THOR Faraday sky

THOR + Polaris Faraday sky

Shanahan et al. (2019, ApJ, 887, L7) Reissl et al. (2020, A&A, 642, A201)

what is the role of the local bubble?

Deutsche Forschungsgemeinschaft DFG

what is the role of the local bubble?

Deutsche Forschungsgemeinschaft DFG

