# The puzzle of the edge effect – a tale with two ends



Stefan Heigl

#### Elena Hoemann

Andreas Burkert

# **Central question:**

# Why don't we observe strong core/star formation at the ends of all filaments?

## How do isolated filaments evolve?



# The filament ends sweep up material



T=3.0E13 CYCLE 59 MIN=1.8E-21 MAX=1.0E-20 DQ=1.18



T=4.0E13 CYCLE 81 MIN=1.6E-21 MAX=8.7E-21 DQ=1.18



T=6.0E13 CYCLE138 MIN=1.0E-21 MAX=1.4E-20 DQ=1.29

Bastien 1983

# The filament ends sweep up material



### Acceleration shows sharp increase at ends



# Edge effect results in fast end core growth



Clarke and Whitworth 2015, see also Bastien et al. 1991



Seifried and Walch 2015

# Line-mass influences where cores form first

### Large line-mass, $M/L \gtrsim 1 M/L_{crit}$



# Line-mass influences where cores form first

Large line-mass,  $M/L \gtrsim 1 M/L_{crit}$ 

#### Low line-mass, $M/L \lesssim 1 M/L_{crit}$

bert Cedae



# Line-mass influences where cores form first

Large line-mass,  $M/L \gtrsim 1 M/L_{crit}$ 

Low line-mass,  $M/L \lesssim 1 M/L_{crit}$ 



# Not many filaments show edge effect



# Herschel shows distributed core formation



Aquila in dust emission, Könyves et al. 2015 and André et al. 2010

# Central collapse common for large line-mass



G035.39–00.33 with  $N_2H^+$  contours, Henshaw et al. 2014

#### SDC13 with dust continuum contours, Peretto et al. 2014

# Observational evidence of end cores is rare



Cheng et al. 2021

# **Open Questions**

- Why don't we observe strong core/star formation at the ends of all filaments?
- How do we get from low to high line-mass filaments without forming end cores?
- How important are tidal forces, magnetic fields and other dynamical processes?

