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We review the state of the field of terrestrial planet formation with the goal of understanding
the formation of the inner Solar System and low-mass exoplanets. We review the dynamics and
timescales of accretion from planetesimals to planetary embryos and from embryos to terrestrial
planets. We discuss radial mixing and water delivery, planetary spins and the importance of
parameters regarding the disk and embryo properties. Next,we connect accretion models to
exoplanets. We first explain why the observed hot Super Earths probably formed by in situ
accretion or inward migration. We show how terrestrial planet formation is altered in systems
with gas giants by the mechanisms of giant planet migration and dynamical instabilities.
Standard models of terrestrial accretion fail to reproducethe inner Solar System. The “Grand
Tack” model solves this problem using ideas first developed to explain the giant exoplanets.
Finally, we discuss whether most terrestrial planet systems form in the same way as ours, and
highlight the key ingredients missing in the current generation of simulations.

1. INTRODUCTION

The term “terrestrial planet” evokes landscapes of a
rocky planet like Earth or Mars but given recent discov-
eries it has become somewhat ambiguous. Does a5 M⊕

Super Earth count as a terrestrial planet? What about the
Mars-sized moon of a giant planet? These objects are ter-
restrial planet-sized but their compositions and correspond-
ing landscapes probably differ significantly from our ter-
restrial planets’. In addition, while Earth is thought to have
formed via successive collisions of planetesimals and plan-
etary embryos, the other objects may have formed via dif-
ferent mechanisms. For instance, under some conditions a
10 M⊕ or larger body can form by accreting only planetes-
imals, or even only cm-sized pebbles. In the context of the
classical stages of accretion this might be considered a “gi-
ant embryo” rather than a planet (see§7.1).

What criteria should be used to classify a planet as
terrestrial? A bulk density higher than a fewg cm−3

probably indicates a rock-dominated planet, but densities
of low-mass exoplanets are extremely challenging to pin
down (seeMarcy et al.2013). A planet with a bulk den-

sity of 0.5 − 2g cm−3 could either be rocky with a small
H-rich envelope or an ocean planet (Fortney et al.2007;
Valencia et al.2007;Adams et al.2008). Bulk densities
larger than3g cm−3 have been measured for planets as mas-
sive as10 − 20 M⊕, although higher-density planets are
generally smaller (Weiss et al.2013). Planets with radii
R . 1.5 − 2 R⊕ or massesM . 5 − 10 M⊕ are likely to
preferentially have densities of3g cm−3 or larger and thus
be rocky (Weiss and Marcy2013;Lopez and Fortney2013).

In this review we address the formation of planets in
orbit around stars that are between roughly a lunar mass
(∼ 0.01 M⊕) and ten Earth masses. Although the com-
positions of planets in this mass range certainly vary sub-
stantially, these planets are capable of having solid sur-
faces, whether they are covered by thick atmospheres or
not. These planets are also below the expected threshold
for giant planet cores (e.g.Lissauer and Stevenson2007).
We refer to these as terrestrial planets. We start our discus-
sion of terrestrial planet formation when planetesimals have
already formed; for a discussion of planetesimal formation
please see the chapter by Johansen et al.
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Our understanding of terrestrial planet formation has
undergone a dramatic improvement in recent years. This
was driven mainly by two factors: increased computational
power and observations of extra-solar planets. Computing
power is the currency of numerical simulations, which con-
tinually increase in resolution and have become more and
more complex and realistic. At the same time, dramatic ad-
vances in exoplanetary science have encouraged many tal-
ented young scientists to join the ranks of the planet for-
mation community. This manpower and computing power
provided a timely kick in the proverbial butt.

Despite the encouraging prognosis, planet formation
models lag behind observations. Half of all Sun-like stars
are orbited by close-in “super Earths”, yet we do not know
how they form. There exist ideas as to why Mercury is so
much smaller than Earth and Venus but they remain spec-
ulative and narrow. Only recently was a cohesive theory
presented to explain why Mars is smaller than Earth, and
more work is needed to confirm or refute it.

We first present the observational constraints in the So-
lar System and extra-solar planetary systems in§2. Next,
we review the dynamics of accretion of planetary embryos
from planetesimals in§3, and of terrestrial planets from em-
bryos in§4, including a discussion of the importance of a
range of parameters. In§5 we apply accretion models to
extra-solar planets and in§6 to the Solar System. We dis-
cuss different modes of accretion and current limitations in
§7 and summarize in§8.

2. OBSERVATIONAL CONSTRAINTS

Given the explosion of new discoveries in extra-solar
planets and our detailed knowledge of the Solar System,
there are ample observations with which to constrain accre-
tion models. Given the relatively low resolution of numer-
ical simulations, accretion models generally attempt to re-
produce large-scale constraints such as planetary mass-and
orbital distributions rather than smaller-scale ones likethe
exact characteristics of each planet. We now summarize the
key constraints for the Solar System and exoplanets.

2.1 The Solar System

The masses and orbits of the terrestrial planets.There
exist metrics to quantify different aspects of a planetary sys-
tem and to compare it with the Solar System. The angular
momentum deficitAMD (Laskar1997) measures the dif-
ference in orbital angular momentum between the planets’
orbits and the same planets on circular, coplanar orbits. The
AMD is generally used in its normalized form:

AMD =

∑

j mj
√

aj

(

1 − cos(ij)
√

1 − e2
j

)

∑

j mj
√

aj
, (1)

whereaj , ej , ij, andmj are planetj’s semimajor axis, ec-
centricity, inclination and mass. TheAMD of the Solar
System’s terrestrial planets is 0.0018.

The radial mass concentrationRMC (defined asSc by
Chambers2001) measures the degree to which a system’s
mass is concentrated in a small region:

RMC = max

( ∑

mj
∑

mj [log10(a/aj)]2

)

. (2)

Here, the function in brackets is calculated fora across the
planetary system, and theRMC is the maximum of that
function. For a single-planet system theRMC is infinite.
The RMC is higher for systems in which the total mass
is packed in smaller and smaller radial zones. TheRMC
is thus smaller for a system with equal-mass planets than a
system in which a subset of planets dominate the mass. The
RMC of the Solar System’s terrestrial planets is 89.9.

The geochemically-determined accretion histories of
Earth and Mars. Radiogenic elements with half-lives of
a few to 100 Myr can offer concrete constraints on the ac-
cretion of the terrestrial planets. Of particular interestis
the182Hf-182W system, which has a half life of 9 Myr. Hf
is lithophile (“rock-loving”) and W is siderophile (“iron-
loving”). The amount of W in a planet’s mantle relative to
Hf depends on the timing of core formation (Nimmo and
Agnor 2006). Early core formation (also called “core clo-
sure”) would strand still-active Hf and later its product W in
the mantle, while late core formation would cause all W to
be sequestered in the core and leave behind a W-poor man-
tle. Studies of the Hf-W system have concluded that the
last core formation event on Earth happened roughly 30-100
Myr after the start of planet formation (Kleine et al.2002;
Yin et al.2002;Kleine et al.2009;König et al.2011). Simi-
lar studies on martian meteorites show that Mars’ accretion
finished far earlier, within 5 Myr (Nimmo and Kleine2007;
Dauphas and Pourmand2011).

The highly-siderophile element (HSE) contents of the
terrestrial planets’ mantles also provide constraints on the
total amount of mass accreted by a planet after core clo-
sure (Drake and Righter2002). This phase of accretion is
called thelate veneer(Kimura et al.1974). Several un-
solved problems exist regarding the late veneer, notably
the very high Earth/Moon HSE abundance ratio (Day et al.
2007;Walker2009), which has been proposed to be the re-
sult of either a top-heavy (Bottke et al.2010;Raymond et al.
2013) or bottom-heavy (Schlichting et al.2012) distribution
of planetesimal masses.

The large-scale structure of the asteroid belt.Repro-
ducing the asteroid belt is not the main objective of forma-
tion models. But any successful accretion model must be
consistent with the asteroid belt’s observed structure, and
that structure can offer valuable information about planet
formation. Populations of small bodies can be thought of as
the “blood spatter on the wall” that helps detectives solve
the “crime”, figuratively speaking of course.

The asteroid belt’s total mass is just5×10−4 M⊕, about
four percent of a lunar mass. This is 3-4 orders of magni-
tude smaller than the mass contained within the belt for any
disk surface density profile with a smooth radial slope. In
addition, the inner belt is dominated by more volatile-poor
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bodies such as E-types and S-types whereas the outer belt
contains more volatile-rich bodies such as C-types and D-
types (Gradie and Tedesco1982;DeMeo and Carry2013).
There are no large gaps in the distribution of asteroids
– apart from the Kirkwood gaps associated with strong
resonances with Jupiter – and this indicates that no large
(& 0.05 M⊕) embryos were stranded in the belt after accre-
tion, even if the embryos could have been removed during
the late heavy bombardment (Raymond et al.2009).

The existence and abundance of volatile species – es-
pecially water – on Earth. Although it contains just 0.05-
0.1% water by mass (Lécuyer et al.1998; Marty 2012),
Earth is the wettest terrestrial planet. It is as wet as ordi-
nary chondrite meteorites, thought to represent the S-type
asteroids that dominate the inner main belt, and wetter than
enstatite chondrites that represent E-types interior to the
main belt (see, for example, figure 5 fromMorbidelli et al.
2012). We think that this means that the rocky building
blocks in the inner Solar System were dry. In addition, heat-
ing mechanisms such as collisional heating and radiogenic
heating from26Al may have dehydrated fast-forming plan-
etesimals (e.g.Grimm and McSween1993). The source of
Earth’s water therefore requires an explanation.

The isotopic composition of Earth’s water constrains its
origins. The D/H ratio of water on Earth is a good match to
carbonaceous chondrite meteorites thought to originate in
the outer asteroid belt (Marty and Yokochi2006). The D/H
of most observed comets is2× higher – although one comet
was recently measured to have the same D/H as Earth (Har-
togh et al.2011) – and that of the Sun (and presumably
the gaseous component of the protoplanetary disk) is6×
smaller (Geiss and Gloeckler1998). It is interesting to note
that, while the D/H of Earth’s water can be matched with a
weighted mixture of material with Solar and cometary D/H,
that same combination does not match the15N/14N isotopic
ratio (Marty and Yokochi2006). Carbonaceous chondrites,
on the other hand, match both measured ratios.

The bulk compositions of the planets are another con-
straint. For example, the core/mantle (iron/silicate) mass
ratideo of the terrestrial planets ranges from 0.4 (Mars) to
2.1 (Mercury). The bulk compositions of the terrestrial
planets depend on several factors in addition to orbital dy-
namics and accretion: the initial compositional gradientsof
embryos and planetesimals, evolving condensation fronts,
and the compositional evolution of bodies due to collisions

Key inner Solar System Constraints
Angular momentum deficitAMD 0.0018
Radial Mass ConcentrationRMC 89.9
Mars’ accretion timescale1 3-5 Myr
Earth’s accretion timescale2

∼ 50 Myr
Earth’s late veneer3 (2.5 − 10) × 10−3 M⊕

Total mass in asteroid belt 5 × 10−4 M⊕

Earth’s water content by mass4 5 × 10−4
− 3 × 10−3

Table 1:1Dauphas and Pourmand(2011).2Kleine et al.(2009);König
et al. (2011). 3Day et al. (2007); Walker (2009), see alsoBottke et al.
(2010);Schlichting et al.(2012);Raymond et al.(2013). 4Lécuyer et al.
(1998);Marty (2012)

and evaporation. Current models for the bulk composition
of terrestrial planets piggyback on dynamical simulations
such as the ones discussed in sections 4-6 below (e.g.Bond
et al. 2010; Carter-Bond et al.2012; Elser et al.2012).
These represent a promising avenue for future work.

2.2 Extrasolar Planetary Systems

The abundance and large-scale characteristics of
“hot Super Earths” . These are the terrestrial exoplanets
whose origin we want to understand. Radial velocity and
transit surveys have shown that roughly 30-50% of main
sequence stars host at least one planet withMp . 10 M⊕

with orbital periodP . 85 − 100 days (Mayor et al.2011;
Howard et al.2010, 2012;Fressin et al.2013). Hot su-
per Earths are preferentially found in multiple systems (e.g.
Udry et al.2007;Lissauer et al.2011). These systems are
in compact orbital configurations that are similar to the So-
lar System’s terrestrial planets’ as measured by the orbital
period ratios of adjacent planets. The orbital spacing of ad-
jacent Kepler planet candidates is also consistent with that
of the Solar System’s planets when measured in mutual Hill
radii (Fang and Margot2013).

Figure 1 shows eight systems each containing 4-5 pre-
sumably terrestrial exoplanets discovered by the Kepler
mission. The largest planet in each system is less than 1.5
Earth radii, and in one system the largest planet is actu-
ally smaller than Earth (KOI-2169). The Solar System is
included for scale, with the orbit of each terrestrial planet
shrunk by a factor of ten (but with their actual masses).
Given that the x axis is on a log scale, the spacing between
planets is representative of the ratio between their orbital
periods (for scale, the Earth/Venus period ratio is about 1.6).

Given the uncertainties in the orbits of extra-solar plan-
ets and observational biases that hamper the detection of
low-mass, long-period planets we do not generally apply
theAMD andRMC metrics to these systems. Rather, the
main constraints come from the systems’ orbital spacing,
masses and mass ratios.

The existence of giant planets on exotic orbits.Simu-
lations have shown in planetary systems with giant planets
the giants play a key role in shaping the accretion of terres-
trial planets (e.g.,Chambers and Cassen2002;Levison and
Agnor2003;Raymond et al.2004). Giant exoplanets have
been discovered on diverse orbits that indicate rich dynam-
ical histories. Gas giants exist on orbits with eccentricities
as high as 0.9. It is thought that these planets formed in
systems with multiple gas giants that underwent strong dy-
namical instabilities that ejected one or more planets and
left behind surviving planets on eccentric orbits (Chatterjee
et al.2008;Jurić and Tremaine2008;Raymond et al.2010).
Hot Jupiters – gas giants very close to their host stars –
are thought to have either undergone extensive inward gas-
driven migration (Lin et al.1996) or been re-circularized by
star-planet tidal interactions from very eccentric orbitspro-
duced by planet-planet scattering (Nagasawa et al.2008;
Beauǵe and Nesvorńy2012) or other mechanisms (e.g.Fab-
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Fig. 1.— Systems of (presumably) terrestrial planets. The top
8 systems are candidate Kepler systems containing four or five
planets that do not contain any planets larger than1.5R⊕ (from
Batalha et al.2013). The bottom system is the Solar System’s
terrestrial planets with semimajor axes scaled down by a factor of
10. The size of each planet is scaled to its actual measured size
(the Kepler planet candidates do not have measured masses).

rycky and Tremaine2007;Naoz et al.2011, see chapter by
Davies et al). There also exist gas giants on nearly-circular
Jupiter-like orbits (e.g.Wright et al.2008). However, from
the current discoveries systems of gas giants like the So-
lar System’s – with giant planets confined beyond 5 AU on
low-eccentricity orbits – appear to be the exception rather
than the rule.

Of course, many planetary systems do not host currently-
detected giant planets. Radial velocity surveys show that
at least 14% of Sun-like stars have gas giants with orbits
shorter than 1000 days (Mayor et al.2009), and projections
to somewhat larger radii predict that∼ 20% have gas gi-
ants within 10 AU (Cumming et al.2008). Although they
are limited by small number statistics, the statistics of high-
magnification (planetary) microlensing events suggest that
50% or more of stars have gas giants on wide orbits (Gould
et al.2010). In addition, the statistics of short-duration mi-
crolensing events suggests that there exists a very abundant
population of gas giants on orbits that are separated from
their stars; these could either be gas giants on orbits larger
than∼ 10 AU or free-floating planets (Sumi et al.2011).

The planet-metallicity correlation. Gas giants – at
least those easily detectable with current techniques – are
observed to be far more abundant around stars with high
metallicities (Gonzalez1997;Santos et al.2001;Laws et al.
2003; Fischer and Valenti2005). However, this correla-
tion does not hold for low-mass planets, which appear to
be able to form around stars with a wide range of metallic-

ities (Ghezzi et al.2010;Buchhave et al.2012;Mann et al.
2012). It is interesting to note that there is no observed
trend between stellar metallicity and the presence of debris
disks (Greaves et al.2006;Moro-Mart́ın et al. 2007), al-
though disks do appear to dissipate faster in low-metallicity
environments (Yasui et al.2009). The planet-metallicity
correlation in itself does strongly constraint the planet for-
mation models we discuss here. What is important is that
the formation of systems of hot Super Earths does not ap-
pear to depend on the stellar metallicity, i.e. the solids-to-
gas ratio in the disk.

Additional constraints on the initial conditions of planet
formation come from observations of protoplanetary disks
around other stars (Williams and Cieza2011). These
observations measure the approximate masses and radial
surface densities of planet-forming disks, mainly in their
outer parts. They show that protoplanetary disks tend to
have masses on the order of10−3-10−1 times the stel-
lar mass (e.g.Scholz et al.2006; Andrews and Williams
2007a;Eisner et al.2008;Eisner 2012), with typical ra-
dial surface density slopes ofΣ ∝ r−(0.5−1) in their outer
parts (Mundy et al.2000;Looney et al.2003;Andrews and
Williams2007b). In addition, statistics of the disk fraction
in clusters with different ages show that the gaseous com-
ponent of disks dissipate within a few Myr (Haisch et al.
2001;Hillenbrand et al.2008; Fedele et al.2010). It is
also interesting to note that disks appear to dissipate more
slowly around low-mass stars than Solar-mass stars (Pas-
cucci et al.2009).

3. FROM PLANETESIMALS TO PLANETARY EM-
BRYOS

In this section we summarize the dynamics of accre-
tion of planetary embryos. We first present the standard
model of runaway and oligarchic growth from planetesi-
mals (§3.1). We next present a newer model based on the
accretion of small pebbles (§3.2).

3.1 Runaway and Oligarchic Growth

Growth Modes
There are two growth modes: “orderly” and “runaway”.

In orderly growth, all planetesimals grow at the same rate,
so the mass ratios between planetesimals tend to unity. Dur-
ing runaway growth, on the other hand, larger planetesi-
mals grow faster than smaller ones and mass ratios increase
monotonically. Consider the evolution of the mass ratio be-
tween two planetesimals with massesM1 andM2, assum-
ing M1 > M2. The time derivative of the mass ratio is
given by

d

dt

(

M1

M2

)

=
M1

M2

(

1

M1

dM1

dt
− 1

M2

dM2

dt

)

. (3)

It is the relative growth rate(1/M)dM/dt that determines
the growth mode. If the relative growth rate decreases with
M , d(M1/M2)/dt is negative then the mass ratio tends to
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be unity. This corresponds to orderly growth. If the relative
growth rate increases withM , d(M1/M2)/dt is positive
and the mass ratio increases, leading to runaway growth.

The growth rate of a planetesimal with massM and ra-
dius R that is accreting field planetesimals with massm
(M > m) can be written as

dM

dt
≃ nmπR2

(

1 +
v2
esc

v2
rel

)

vrelm, (4)

wherenm is the number density of field planetesimals, and
vrel andvesc are the relative velocity between the test and
the field planetesimals and the escape velocity from the sur-
face of the test planetesimal, respectively (e.g.,Kokubo and
Ida 1996). The termv2

esc/v2
rel indicates the enhancement of

collisional cross-section by gravitational focusing.

Runaway Growth of Planetesimals
The first dramatic stage of accretion through which

a population of planetesimals passes is runaway growth
(Greenberg et al.1978; Wetherill and Stewart1989;
Kokubo and Ida1996). During planetesimal accretion
gravitational focusing is efficient because the velocity dis-
persion of planetesimals is kept smaller than the escape
velocity due to gas drag. In this case Eq.4 reduces to

dM

dt
∝ ΣdustM

4/3v−2, (5)

whereΣdust andv are the surface density and velocity dis-
persion of planetesimals and we usednm ∝ Σdustv

−1,
vesc ∝ M1/3, R ∝ M1/3, andvrel ≃ v. During the early
stages of accretion,Σdust andv barely depend onM , in
other words, the reaction of growth onΣdust andv can be
neglected since the mass in small planetesimals dominate
the system. In this case we have

1

M

dM

dt
∝ M1/3, (6)

which leads to runaway growth.
During runaway growth, the eccentricities and inclina-

tions of the largest bodies are kept small by dynamical fric-
tion from smaller bodies (Wetherill and Stewart1989;Ida
and Makino1992). Dynamical friction is an equipartition-
ing of energy that maintains lower random velocities – and
therefore lower-eccentricity and lower-inclination orbits –
for the largest bodies. The mass distribution relaxes to a
distribution that is well approximated by a power-law dis-
tribution. Among the large bodies that form in simula-
tions of runaway growth, the mass follows a distribution
dnc/dm ∝ my, wherey ≃ −2.5. This index can be de-
rived analytically as a stationary distribution (Makino et al.
1998). The power index smaller than -2 is characteristic of
runaway growth, as most of the system mass is contained
in small bodies. We also note that runaway growth does not
necessarily mean that the growth time decreases with mass,
but rather that the mass ratio of any two bodies increases
with time.

Oligarchic Growth of Planetary Embryos

During the late stages of runaway growth, embryos grow
while interacting with one another. The dynamics of the
system become dominated by a relatively small number –
a few tens to a few hundred – oligarchs (Kokubo and Ida
1998, 2000;Thommes et al.2003).

Oligarchic growth is the result of the self-limiting nature
of runaway growth and orbital repulsion of planetary em-
bryos. The formation of similar-sized planetary embryos is
due to a slow-down of runaway growth (Lissauer1987;Ida
and Makino1993;Ormel et al.2010). When the mass of a
planetary embryoM exceeds about 100 times that of the av-
erage planetesimal, the embryo increases the random veloc-
ity of neighboring planetesimals to bev ∝ M1/3 (but note
that this depends on the planetesimal size;Ida and Makino
1993;Rafikov2004;Chambers2006). The relative growth
rate (from Eq.5) becomes

1

M

dM

dt
∝ ΣdustM

−1/3. (7)

Σdust decreases through accretion of planetesimals by
the embryo asM increases (Lissauer 1987). The rel-
ative growth rate is a decreasing function ofM , which
changes the growth mode to orderly. Neighboring embryos
grow while maintaining similar masses. During this stage,
the mass ratio of an embryo to its neighboring planetesi-
mals increases because for the planetesimals with massm,
(1/m)dm/dt ∝ Σdustm

1/3M−2/3, such that

(1/M)dM/dt

(1/m)dm/dt
∝

(

M

m

)1/3

. (8)

The relative growth rate of the embryo is by a factor of
(M/m)1/3 larger than the planetesimals’. A bi-modal
embryo-planetesimal system is formed. While the planetary
embryos grow, a process called orbital repulsion keeps their
orbital separations at roughly 10 mutual Hill radiiRH,m,

where RH,m = 1/2 (a1 + a2) [(M1 + M2)/(3M⋆)]
1/3;

here subscripts 1 and 2 refer to adjacent embryos. Orbital
repulsion is a coupling effect of gravitational scattering
between planetary embryos that increases their orbital sep-
aration and eccentricities and dynamical friction from small
planetesimals that decreases the eccentricities (Kokubo and
Ida 1995). Essentially, if two embryos come too close to
each other their eccentricities are increased by gravitational
perturbations. Dynamical friction from the planetesimals
re-circularizes their orbits at a wider separation.

An example of oligarchic growth is shown in Figure 2
(Kokubo and Ida2002). About 10 embryos form with
masses comparable to Mars’ (M ≈ 0.1 M⊕) on nearly cir-
cular non-inclined orbits with characteristic orbital separa-
tions of10RH,m . At largea the planetary embryos are still
growing at the end of the simulation.

Although oligarchic growth describes the accretion of
embryos from planetesimals, it implies giant collisions be-
tween embryos that happen relatively early and are fol-
lowed by a phase of planetesimal accretion. Consider the
last pairwise accretion of a system of oligarchs on their
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Fig. 2.— Oligarchic growth of planetary embryos. Snap-
shots of the planetesimal system on thea-e plane are shown
for t = 0, 105, 2 × 105, and4 × 105 years. The circles
represent planetesimals with radii proportional to their true
values. The initial planetesimal system consists of 10000
equal-mass (m = 2.5 × 10−4 M⊕) bodies. In this simula-
tion, a 6-fold increase in the planetesimal radius was used to
accelerate accretion. In4×105 years, the number of bodies
decreases to 333. FromKokubo and Ida(2002).

way to becoming planetary embryos. The oligarchs have
massesMolig and are spaced byN mutual Hill radiiRH,m,
whereN ≈ 10 is the rough stability limit for such a sys-
tem. The final system of embryos will likewise be sep-
arated byN RH,m, but with larger massesMemb. The
embryos grow by accreting material within an annulus de-
fined by the inter-embryo separation. Assuming pairwise
collisions between equal-mass oligarchs to form a sys-
tem of equal-mass embryos, the following simple relation
should hold: NRH,m(M) = 2 N RH,m(Memb). Given
that RH,m(M) ∼ (2M)1/3, this implies thatMemb =
8Molig. After the collision between a pair of oligarchs, each
embryo must therefore accrete the remaining three quarters
of its mass from planetesimals.

We can estimate the dynamical properties of a system of
embryos formed by oligarchic growth. We introduce a pro-
toplanetary disk with surface density of dust and gasΣdust

andΣgas defined as:

Σdust = ficeΣ1

( a

1 AU

)−x

gcm−2

Σgas = fgasΣ1

( a

1 AU

)−x

gcm−2, (9)

whereΣ1 is simply a reference surface density in solids at
1 AU andx is the radial exponent.fice andfgas are factors
that enhance the surface density of ice and gas with respect
to dust. In practicefice is generally taken to be 2-4 (see
Kokubo and Ida2002; Lodders2003) andfgas ≈ 100.
Given an orbital separationb of embryos, the isolation (fi-
nal) mass of a planetary embryo at orbital radiusa is esti-
mated as (Kokubo and Ida2002):

Miso ≃ 2πabΣdust = 0.16
(

b
10rH

)3/2 (

ficeΣ1

10

)3/2

(

a
1AU

)(3/2)(2−x)
(

M⋆

M⊙

)−1/2

M⊕, (10)

whereM⋆ is the stellar mass. The time evolution of an oli-
garchic body is (Thommes et al.2003;Chambers2006):

M(t) = Miso tanh3

(

t

τgrow

)

. (11)

The growth timescaleτgrow is estimated as

τgrow = 1.1 × 106f
−1/2
ice

(

fgas

240

)−2/5 (

Σ1

10

)−9/10

(

b

10rH

)1/10
( a

1 AU

)8/5+9x/10
(

M⋆

M⊙

)−8/15

(

ρp

2 gcm−3

)11/15
( rp

100 km

)2/5

yr, (12)

whererp andρp are the physical radius and internal density
of planetesimals. Eq. (11) indicates that the embryo gains
44%, 90%, and 99% of its final mass during 1τgrow, 2τgrow,
and 3τgrow.

For the standard disk model defined above,Miso ∼
0.1 M⊕ in the terrestrial planet region. This suggests that
if they formed by oligarchic growth, Mercury and Mars
may simply represent leftover planetary embryos. A short
growth timescale (τgrow < 2 Myr) of Mars estimated by the
Hf-W chronology (Dauphas and Pourmand2011) would
suggest that Mars accreted from a massive disk of small
planetesimals (Kobayashi and Dauphas2013;Morishima
et al. 2013). Alternately, accretion of larger planetesimals
might have been truncated as proposed by the Grand Tack
model (see§6.3). Unlike Mars and Mercury, further accre-
tion of planetary embryos is necessary to complete Venus
and Earth. This next, final stage is called late-stage accre-
tion (see Section 4).

3.2 Embryo formation by pebble accretion

Lambrechts and Johansen(2012), hereafter LJ12, pro-
posed a new model of growth for planetary embryos and
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giant planet cores. They argued that if the disk’s mass
is dominated by pebbles of a few decimeters in size, the
largest planetesimals accrete pebbles very efficiently and
can rapidly grow to several Earth masses (see alsoJohansen
and Lacerda2010;Ormel and Klahr2010;Murray-Clay
et al. 2011). This model builds on a recent planetesimal
formation model in which large planetesimals (with sizes
from∼ 100 up to∼1,000km) form by the collapse of a self-
gravitating clump of pebbles, concentrated to high densities
by disk turbulence and the streaming instability (Youdin and
Goodman2005;Johansen et al.2006, 2007, 2009, see also
chapter by Johansen et al). The pebble accretion scenario
essentially describes how large planetesimals continue to
accrete. There is observational evidence for the existenceof
pebble-sized objects in protoplanetary disks (Wilner et al.
2005; Rodmann et al.2006; Lommen et al.2007; Pérez
et al.2012), although their abundance relative to larger ob-
jects (planetesimals) is unconstrained.

Pebbles are strongly coupled with the gas so they en-
counter the already-formed planetesimals with a velocity
∆v that is equal to the difference between the Keplerian
velocity and the orbital velocity of the gas, which is slightly
sub-Keplerian due to the outward pressure gradient. LJ12
define the planetesimalBondi radius as the distance at
which the planetesimal exerts a deflection of one radian on
a particle approaching with a velocity∆v:

RB =
GM

∆v2
(13)

whereG is the gravitational constant andM is the plan-
etesimal mass (the deflection is larger if the particle passes
closer thanRB). LJ12 showed that all pebbles with a stop-
ping time tf smaller than the Bondi timetB = RB/∆v
that pass within a distanceR = (tf/tB)1/2RB spiral down
towards the planetesimal and are accreted by it. Thus, the
growth rate of the planetesimal is:

dM/dt = πρR2∆v (14)

whereρ is the volume density of the pebbles in the disk.
BecauseR ∝ M , the accretion ratedM/dt ∝ M2. Thus,
pebble accretion is at the start a super-runaway process that
is faster than the runaway accretion scenario (see Sec 3.1)
in whichdM/dt ∝ M4/3. According to LJ12, this implies
that in practice, only planetesimals more massive than∼
10−4 M⊕ (comparable to Ceres’ mass) undergo significant
pebble accretion and can become embryos/cores.

The super-runaway phase cannot last very long. When
the Bondi radius exceeds the scale height of the pebble
layer, the accretion rate becomes

dM/dt = 2RΣ∆v (15)

whereΣ is the surface density of the pebbles. This rate is
proportional toM , at the boundary between runaway and
orderly (oligarchic) growth.

Moreover, when the Bondi radius exceeds the Hill radius
RH = a [M/(3M⋆)]

1/3, the accretion rate becomes

dM/dt = 2RHΣvH (16)

−4 −2 0 2 4
x/rB

4

2

0

−2

−4

y/
r B
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Fig. 3.— Trajectories of particles in the vicinity of a grow-
ing embryo. The black curves represent particles strongly
coupled to the gas and the gray curves particles that are
weakly coupled, as measured by the ratio of the stopping
time tf to the Bondi timetB. The orbits of weakly-coupled
particles are deflected by the embryo’s gravity, but the
strongly coupled particles spiral inward and are quickly ac-
creted onto the embryo. FromLambrechts and Johansen
(2012).

wherevH is the Hill velocity (i.e. the difference in Kep-
lerian velocities between two circular orbits separated by
RH ). HeredM/dt ∝ M2/3 and pebble accretion enters an
oligarchic regime.

For a given surface density of solidsΣ the growth of
an embryo is much faster if the solids are pebble-sized
than planetesimal sized. This is the main advantage of
the pebble-accretion model. However, pebble accretion
ends when the gas disappears from the protoplanetary disk,
whereas runaway/oligarchic accretion of planetesimals can
continue. Also, the ratio betweenΣplanetesimals/Σpebbles

remains to be quantified, and ultimately it is this ratio that
determines which accretion mechanism is dominant.

An important problem in Solar System formation is that
the planetary embryos in the inner solar system are thought
to have grown only up to at most a Mars-mass, whereas in
the outer solar system some of them reached many Earth
masses, enough to capture a primitive atmosphere and be-
come giant planets. The difference between these masses
can probably be better understood in the framework of the
pebble-accretion model than in the planetesimal-accretion
model.

The dichotomy in embryo mass in the inner/outer Solar
System might have been caused by radial drift of pebbles.
We consider a disk with a “pressure bump” (Johansen et al.
2009) at a given radiusRbump. At this location the gas’
azimuthal velocityvθ is larger than the Kepler velocityvK .
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Pebbles cannot drift from beyondRbumpto within Rbump

because they are too strongly coupled to the gas. Em-
bryos growing interior toRbump are thus “starved” in the
sense that they can only accrete pebbles withinRbump, and
are not in contact with the presumably much larger pebble
reservoir beyondRbump. Of course, embryos growing ex-
terior toRbump would not be starved and could grow much
faster and achieve much larger masses within the gaseous
disk’s lifetime. On the contrary, the planetesimal accretion
model does not seem to present a sharp radial boundary for
slow/fast accretion and so it is harder to understand the di-
chotomy of embryo masses in that framework.

Ida and Lin(2008) argued that a pressure bump could be
located at the snow line. If this is true, then we can speculate
that giant planet cores should form in the icy part of the disk
and sub-Mars-mass planetary embryos in the rocky part of
the disk. This seems to be consistent with the structure of
the Solar System.

4. FROM PLANETARY EMBRYOS TO TERRES-
TRIAL PLANETS

The final accumulation of terrestrial planets – sometimes
called late-stage accretion – is a chaotic phase characterized
by giant embryo-embryo collisions. It is during this phase
that the main characteristics of the planetary system are set:
the planets’ masses and orbital architecture, the planets’
feeding zones and thus their bulk compositions, and their
spin rates and obliquities (although their spins may be al-
tered by other processes on long timescales – see e.g.,Cor-
reia and Laskar2009).

Whether embryos form by accreting planetesimals or
pebbles, the late evolution of a system of embryos is likely
in the oligarchic regime. The transition from oligarchic
growth to late-stage accretion happens when there is insuf-
ficient damping of random velocities by gas drag and dy-
namical friction from planetesimals (Kenyon and Bromley
2006). The timescale of the orbital instability of an embryo
system has been numerically calculated byN -body simula-
tions to be

log tinst ≃ c1

(

bini

rH

)

+ c2, (17)

wherebini is the initial orbital separation of adjacent em-
bryos andc1 andc2 are functions of the initial〈e2〉1/2 and
〈i2〉1/2 of the system (Chambers et al.1996; Yoshinaga
et al.1999).

The most important quantity in determining the out-
come of accretion is the level of eccentricity excitation of
the embryos. This is determined by a number of parame-
ters including forcing from any giant planets that exist in
the system (Chambers and Cassen2002;Levison and Ag-
nor 2003;Raymond et al.2004). Although giant planets
are far larger than terrestrials, they are thought to form far
faster and strongly influence late-stage terrestrial accretion.
The lifetimes of gaseous protoplanetary disks are just a few
Myr (Haisch et al.2001) whereas geochemical constraints
indicate that Earth took 50-100 Myr to complete its forma-

tion (Touboul et al.2007;Kleine et al.2009;König et al.
2011). The dynamics described in this section are assumed
to occur in a gas-free environment (we consider the effects
of gas in other sections).

We first describe the dynamics of accretion and radial
mixing (§4.1), then the effect of accretion on the final plan-
ets’ spins (§4.2) and the effect of embryo and disk param-
eters on accretion (§4.3). We explain the consequences of
taking into account imperfect accretion (§4.4) and the effect
of giant planets on terrestrial accretion (§4.5).

4.1 Timescales and Radial Mixing

Figure 4 shows the evolution of a simulation of late-stage
accretion fromRaymond et al.(2006b) that included a sin-
gle Jupiter-mass giant planet on a circular orbit at 5.5 AU.
The population of embryos is excited from the inside-out
by mutual scattering among bodies and from the outside-in
by secular and resonant excitation by the giant planet. Ac-
cretion is faster closer-in and proceeds as a wave sweeping
outward in time. At 10 Myr the disk inside 1 AU is domi-
nated by 4 large embryos with masses close to Earth’s. The
population of close-in (red) planetesimals has been strongly
depleted, mainly by accretion but also by some scattering to
larger orbital radii. Over the rest of the simulation the wave
of accretion sweeps outward across the entire system. Small
bodies are scattered onto highly-eccentric orbits and either
collide with growing embryos or venture too close to the gi-
ant planet and are ejected from the system. Embryos main-
tain modest eccentricities by dynamical friction from the
planetesimals. Nonetheless, strong embryo-embryo grav-
itational scattering events spread out the planets and lead
to giant impacts such as the one thought to be responsible
for creating Earth’s Moon (́Cuk and Stewart2012;Canup
2012).

After 200 Myr three terrestrial planets remain in the
system with masses of 1.54, 2.04, and0.95 M⊕ (inner to
outer). Although modestly more massive, the orbits of the
two inner planets are decent analogs for Earth and Venus.
The outer planet does a poor job of reproducing Mars: it
is nine times too massive and too far from the star. This
underscores thesmall Marsproblem: simulations that do
not invoke strong external excitation of the embryo swarm
systematically produce Mars analogs that are far too mas-
sive (Wetherill1991;Raymond et al.2009). We will return
to this problem in§6.

A large reservoir of water-rich material is delivered to
the terrestrial planets in the simulation from Fig. 4. By 10
Myr four large embryos have formed inside 1 AU but they
remain dry because to this point their feeding zones have
been restricted to the inner planetary system. Over the fol-
lowing 20 Myr planetesimals and embryos from the outer
planetary system are scattered inward by repeated gravi-
tational encounters with growing embryos. These bodies
sometimes collide with the growing terrestrial planets. This
effectively widens the feeding zones of the terrestrial plan-
ets to include objects that condensed at different tempera-
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Fig. 4.— Six snapshots of a simulation of terrestrial planet for-
mation (adapted fromRaymond et al.2006b). The simulation
started from 1885 self-gravitating sub-lunar-mass bodiesspread
from 0.5 to 5 AU following anr

−3/2 surface density profile,
comprising a total of9.9 M⊕. The large black circle represents
a Jupiter-mass planet. The size of each body is proportionalto
its mass1/3. The color represents each body’s water content (see
color bar).

tures and therefore have different initial compositions (see
alsoBond et al.2010;Carter-Bond et al.2012;Elser et al.
2012). The compositions of the terrestrial planets become
mixtures of the compositions of their constituent embryos
and planetesimals. The planets’ feeding zones represent
those constituents. When objects from past 2.5 AU are ac-
creted, water-rich material is delivered to the planet in the
form of hydrated embryos and planetesimals. In the simu-
lations, from 30-200 Myr the terrestrial planets accrete ob-
jects from a wide range of initial locations and are delivered
more water.

Given that the water delivered to the planets in this sim-
ulation originated in the region between 2.5 and 4 AU, its
composition should be represented by carbonaceous chon-
drites, which provide a very good match to Earth’s wa-
ter (Morbidelli et al. 2000;Marty and Yokochi2006). The
planets are delivered a volume of water that may be too
large. For example, the Earth analog’s final water content
by mass was8× 10−3, roughly 8-20 times the actual value.
However, water loss during giant impacts was not taken into
account in the simulation (see, e.g.,Genda and Abe2005).

4.2 Planetary spins

Giant impacts impart large amounts of spin angular mo-
mentum on the terrestrial planets (e.g.,Safronov1969;Lis-
sauer and Kary1991;Dones and Tremaine1993). The last

few giant impacts tend to dominate the spin angular mo-
mentum (Agnor et al.1999;Kokubo and Ida2007;Kokubo
and Genda2010). Using a “realistic” accretion condition of
planetary embryos (Genda et al.2012, see§4.4)),Kokubo
and Genda(2010) found that the spin angular velocity of
accreted terrestrial planets follows a Gaussian distribution
with a nearly mass-independent average value of about 70%
of the critical angular velocity for rotational breakup

ωcr =

(

GM

R3

)1/2

, (18)

whereM andR are the mass and radius of a planet. This
appears to be a natural outcome of embryo-embryo impacts
at speeds slightly larger than escape velocity. At later times,
during the late veneer phase, the terrestrial planets’ spins
are further affected by impacts with planetesimals (Ray-
mond et al.2013).

The obliquity of accreted planets ranges from 0◦ to 180◦

and follows an isotropic distribution (Agnor et al.1999;
Kokubo and Ida2007; Kokubo and Genda2010). Both
prograde and retrograde spins are equally probable. The
isotropic distribution ofε is a natural outcome of giant im-
pacts. During the giant impact stage, the thickness of a
planetary embryo system is∼ a〈i2〉1/2 ∼ 10rH, far larger
than the radiusR of planetary embryosR ∼ 10−2rH, where
a, i, andrH are the semimajor axis, inclination and Hill ra-
dius of planetary embryos. Thus, collisions are fully three-
dimensional and isotropic, which leads to isotropic spin an-
gular momentum. This result clearly shows that prograde
spin with small obliquity, which is common to the terres-
trial planets in the solar system except for Venus, is not
a common feature for planets assembled by giant impacts.
Note that the initial obliquity of a planet determined by gi-
ant impacts can be modified substantially by stellar tide if
the planet is close to the star and by satellite tide if the planet
has a large satellite.

4.3 Effect of disk and embryo parameters

The properties of a system of terrestrial planets are
shaped in large part by the total mass and mass distribution
within the disk, and the physical and orbital properties of
planetary embryos and planetesimals within the disk. How-
ever, while certain parameters have a strong impact on the
outcome, others have little to no effect.

Kokubo et al.(2006) performed a suite of simulations of
accretion of populations of planetary embryos to test the im-
portance of the embryo density, mass, spacing and number.
They found that the bulk density of the embryos had little to
no effect on the accretion within the range that they tested,
ρ = 3.0 − 5.5g cm−3. One can imagine that the dynam-
ics could be affected for extremely high values ofρ, if the
escape speed from embryos were to approach a significant
fraction of the escape speed from the planetary system (Gol-
dreich et al.2004). In practice this is unlikely to occur in
the terrestrial planet forming region because it would re-
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quire unphysically-large densities. The initial spacing like-
wise had no meaningful impact on the outcome, at least
when planetary embryos were spaced by 6-12 mutual Hill
radii (Kokubo et al.2006). Likewise, for a fixed total mass
in embryos, the embryo mass was not important.

The total mass in embryos does affect the outcome.
A more massive disk of embryos and planetesimals pro-
duces fewer, more massive planets than a less massive
disk (Kokubo et al.2006; Raymond et al.2007a). Em-
bryos’ eccentricities are excited more strongly in massive
disks by encounters with massive embryos. With larger
mean eccentricities, the planets’ feeding zones are wider
than if the embryos’ eccentricities were small, simply be-
cause any given embryos crosses a wider range of orbital
radii. The scaling between the mean accreted planet mass
and the disk mass is therefore slightly steeper than linear:
the mean planet massMp scales with the local surface den-
sity Σ0 asMp ∝ Σ1.1

0 (Kokubo et al.2006). It is interesting
to note that this scaling is somewhat shallower than theΣ1.5

0

scaling of embryo mass with the disk mass (Kokubo and Ida
2000). Accretion also proceeds faster in high-mass disks, as
the timescale for interaction drops.

Terrestrial planets that grow from a disk of planetesimals
and planetary embryos retain a memory of the surface den-
sity profile of their parent disk. In addition, the dynamics is
influenced by which part of the disk contains the most mass.
In disks with steep density profiles – i.e., if the surface den-
sity scales with orbital radius asΣ ∝ r−x, disks with large
values ofx – more mass is concentrated in the inner parts of
the disk, where the accretion times are faster and protoplan-
ets are dry. Compared with disks with shallower density
profiles (with smallx), in disks with steep profiles the ter-
restrial planets tend to be more massive, form more quickly,
form closer-in, and contain less water (Raymond et al.2005;
Kokubo et al.2006).

4.4 Effect of imperfect accretion

As planetesimals eccentricities are excited by growing
embryos, they undergo considerable collisional grinding.
Collisional disruption can be divided into two types: catas-
trophic disruption due to high-energy impacts and crater-
ing due to low-energy impacts.Kobayashi and Tanaka
(2010a) found that cratering collisions are much more ef-
fective in collisional grinding than collisions causing catas-
trophic disruption, simply because the former impacts occur
much more frequently than the latter ones. Small fragments
are easily accreted by embryos in the presence of nebu-
lar gas (Wetherill and Stewart1993), although they rapidly
drift inward due to strong gas drag, leading to small embryo
masses (Chambers2008;Kobayashi and Tanaka2010b).

Giant impacts between planetary embryos often do not
result in net accretion. Rather, there exists a diversity of
collisional outcomes. These include near-perfect merging
at low impact speeds and near head-on configurations, par-
tial accretion at somewhat higher impact speeds and angles,
“hit and run” collisions at near-grazing angles, and even net

erosion for high-speed, near head-on collisions (Agnor and
Asphaug2004;Asphaug et al.2006;Asphaug2010). Two
recent studies used large suites of SPH simulations to map
out the conditions required for accretion in the parameter
space of large impacts (Genda et al.2012;Leinhardt and
Stewart2012). However, mostN -body simulations of ter-
restrial planet formation to date have assumed perfect ac-
cretion in which all collisions lead to accretion.

About half of the embryo-embryo impacts in a typi-
cal simulation of late-stage accretion do not lead to net
growth (Agnor and Asphaug2004; Kokubo and Genda
2010). Rather, the outcomes are dominated by partially ac-
creting collision, hit-and-run impacts, and graze-and-merge
events in which two embryos dissipate sufficient energy
during a grazing impact to become gravitationally bound
and collide (Leinhardt and Stewart2012).

Taking into account only the accretion condition for
embryo-embryo impacts, the final number, mass, orbital el-
ements, and even growth timescale of planets are barely
affected (Kokubo and Genda2010;Alexander and Agnor
1998). This is because even though collisions do not lead to
accretion, the colliding bodies stay on the colliding orbits
after the collision and thus the system is unstable and the
next collision occurs shortly.

However, by allowing non-accretionary impacts to both
erode the target embryo and to produce debris particles,
Chambers(2013) found that fragmentation does have a
noted effect on accretion. The final stages of accretion are
lengthened by the sweep up of collisional fragments. The
planets that formed in simulations with fragmentation had
smaller masses and smaller eccentricities than their coun-
terparts in simulations without fragmentation.

Imperfect accretion also affects the planets’ spin rates.
Kokubo and Genda(2010) found that the spin angular mo-
mentum of accreted planets was 30% smaller than in simu-
lations with perfect accretion. This is because grazing col-
lisions that have high angular momentum are likely to re-
sult in a hit-and-run, while nearly head-on collisions that
have small angular momentum lead to accretion. The pro-
duction of unbound collisional fragments with high angu-
lar momentum could further reduce the spin angular veloc-
ity. The effect of non-accretionary impacts on the planetary
spins has yet to be carefully studied.

A final consequence of fragmentation is on the core mass
fraction. Giant impacts lead to an increase in the core mass
fraction because the mantle is preferentially lost during im-
perfect merging events (Benz et al.2007;Stewart and Lein-
hardt 2012;Genda et al.2012). However, the sweep-up
of these collisional fragments on 100 Myr timescales re-
balances the composition of planets to roughly the initial
embryo composition (Chambers2013). We speculate that a
net increase in core mass fraction should be retained if the
rocky fragments are allowed to collisionally evolve and lose
mass.

4.5 Effect of outer giant planets
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We now consider the effect of giant planets on terrestrial
accretion. We restrict ourselves to systems with giant plan-
ets similar to our own Jupiter and Saturn. That is, systems
with non-migrating giant planets on stable orbits exteriorto
the terrestrial planet-forming region. In§5.2 we will con-
sider the effects of giant planet migration and planet-planet
scattering.

The most important effect of giant planets on terrestrial
accretion is the excitation of the eccentricities of plane-
tary embryos. This generally occurs by the giant planet-
embryo gravitational eccentricity forcing followed by the
transmission of that forcing by embryo-embryo or embryo-
planetesimal forcing. The giant planet forcing typically
occurs via mean motion or secular resonances, or secu-
lar dynamical forcing. Giant planet-embryo excitation is
particularly sensitive to the giant planets’ orbital architec-
ture (Chambers and Cassen2002;Levison and Agnor2003;
Raymond2006). Figure 5 shows the eccentricities of test
particles excited for 1 Myr by two different configurations
of Jupiter and Saturn (Raymond et al.2009), both of which
are consistent with the present-day Solar System (see§6).
The spikes in eccentricity seen in Fig. 5 come from specific
resonances: in theJSRESconfiguration (for “Jupiter and
Saturn in RESonance”), theν5 secular resonance at 1.3 AU
and the 2:1 mean motion resonance with Jupiter at 3.4 AU;
and in theEEJSconfiguration (for “Extra-Eccentric Jupiter
and Saturn”) theν5 andν6 secular resonances at 0.7 and
2.1 AU, and a hint of the 2:1 mean motion resonance with
Jupiter at 3.3 AU. The “background” level of excitation seen
in Fig. 5 comes from secular forcing, following a smooth
function of the orbital radius.

The eccentricity excitation of terrestrial embryos is sig-
nificant even for modest values of the giant planets’ ec-
centricity. In Fig. 5, Jupiter and Saturn have eccentricities
of 0.01-0.02 in theJSRESconfiguration and of 0.1 in the
EEJSconfiguration. The test particles in theJSRESsys-
tem are barely excited by the giant planets interior to 3 AU;
the magnitude of the spike at 1.3 AU is far smaller than
the secular forcing anywhere in theEEJSsimulation. Note
also that this figure represents just the first link in the chain.
The eccentricities imparted to embryos are systematically
transmitted to the entire embryo swarm, and it is the mean
eccentricity of the embryo swarm that dictates the outcome
of accretion.

In a population of embryos with near-circular orbits, the
communication zone – the radial distance across which a
given embryo has gravitational contact with its neighbors –
is very narrow. Embryos grow by collisions with their im-
mediate neighbors. The planets that form are thus limited in
mass by the mass in their immediate vicinity. In contrast, in
a population of embryos with significant eccentricities, the
communication zone of embryos is wider. Each embryo’s
orbit crosses the orbits of multiple other bodies and, by sec-
ular forcing, gravitationally affects the orbits of even more.
This of course does not imply any imminent collisions, but
it does mean that the planets that form will sample a wider
radial range of the disk than in the case of very low embryo

eccentricities. This naturally produces a smaller number of
more massive planets. Given that collisions preferentially
occur at pericenter, the terrestrial planets that form tendto
also be located closer-in when the mean embryo eccentric-
ity is larger (Levison and Agnor2003).

In systems with one or more giant planets on orbits ex-
terior to the terrestrial planet-forming region, the amplitude
of excitation of the eccentricities of terrestrial embryosis
larger when the giant planets’ orbits are eccentric or closer-
in. The timescale for excitation is shorter when the giant
planets are more massive. Thus, the strongest perturbations
come from massive eccentric gas giants.

Simulations have indeed shown that systems with mas-
sive or eccentric outer gas giants systematically produce
fewer, more massive terrestrial planets (Chambers and
Cassen2002; Levison and Agnor2003; Raymond et al.
2004). However, the efficiency of terrestrial accretion is
smaller in the presence of a massive or eccentric gas giant
because a fraction of embryos and planetesimals are excited
onto orbits that are unstable and are thus removed from the
system. The most common mechanism for the removal of
such bodies is by having their eccentricities increased to
the point where their orbits cross those of a giant planet,
then being ejected entirely from the system into interstellar
space.

The strong outside-in perturbations produced by massive
or eccentric outer gas giants also act to accelerate terres-
trial planet formation. This happens for two reasons. First,
when embryos have significant mean eccentricities the typ-
ical time between encounters decreases, as long as eccen-
tricities are more strongly perturbed than inclinations. Sec-
ond, accretion is slower in the outer parts of planetary sys-
tems because of the longer orbital and encounter timescales,
and it is these slow-growing regions that are most efficiently
cleared by the giant planets’ perturbations.

Given their outside-in influence, outer gas giants also
play a key role in water delivery to terrestrial planets. It
should be noted up front that the gas giants’ role in water
delivery is purely detrimental, at least in the context of outer
giant planets on static orbits. Stimulating the eccentricities
of water-rich embryos at a few AU can in theory cause some
embryos to be scattered inward and deliver water to the ter-
restrial planets. In practice, a much larger fraction of bod-
ies is scattered outward, encounters the giant planets and is
ejected from the system than is scattered inward to deliver
water (Raymond et al.2006b).

Finally, simulations with setups similar to the one from
Fig. 4 confirm that the presence of one or more giant planets
strongly anti-correlates with the water content of the terres-
trial planets in those systems (Chambers and Cassen2002;
Raymond et al.2004, 2006b, 2007b, 2009;O’Brien et al.
2006). There is a critical orbital radius beyond which a gi-
ant planet must lie for terrestrial planets to accrete and sur-
vive in a star’s liquid water habitable zone (Raymond2006).
This limit is eccentricity dependent: a zero-eccentricity
(single) giant planet must lie beyond 2.5 AU to allow a ter-
restrial planet to form between 0.8 and 1.5 AU whereas a
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Fig. 5.— Excitation of test particles by two configurations of Jupiter and Saturn. Each panel shows the eccentricities of massless
test particles after 1 Myr (giant planets not shown). Note the difference in the y-axis scale between the two panels. Eachscenario is
consistent with the present-day Solar System (see discussion in§6). Jupiter and Saturn are in 3:2 mean motion resonance with semimajor
axes of 5.4 and 7.2 AU and low eccentricities in theJSRESconfiguration. The gas giants are at their current semimajoraxes of 5.2 and
9.5 AU with eccentricities of 0.1 in theEEJSconfiguration. FromRaymond et al.(2009).

giant planet with an eccentricity of 0.3 must lie beyond 4.2
AU. For water to be delivered to the terrestrial planets from
a presumed source at 2-4 AU (as in Fig. 4) the giant planet
must be farther still (Raymond2006).

5. TERRESTRIAL ACCRETION IN EXTRA-SOLAR
PLANETARY SYSTEMS

Extra-solar planetary systems do not typically look like
the Solar System. To extrapolate to extra-solar planetary
systems is therefore not trivial. Additional mechanisms
must be taken into account, in particular orbital migration
both of planetary embryos (Type 1 migration) and of gas
giant planets (Type 2 migration) and dynamical instabilities
in systems of multiple gas giant planets.

There exists ample evidence that accretion does indeed
occur around other stars. Not only has an abundance of
low-mass planets been detected (Mayor et al.2011;Batalha
et al. 2013), but the dust produced during terrestrial planet
formation (Kenyon and Bromley2004) has also been de-
tected (e.g.Meyer et al.2008;Lisse et al.2008), includ-
ing the potential debris from giant embryo-embryo im-
pacts (Lisse et al.2009).

In this section we first address the issue of the forma-
tion of hot Super Earths. Then we discuss how the dynam-
ics shaping the known systems of giant planets may have
sculpted unseen terrestrial planets in those systems.

5.1 Hot Super Earths

Hot Super Earths are extremely common. Roughly one
third to one half of Sun-like (FGK) stars host at least one
planet with a mass less than10 M⊕ and a period of less
than50−100 days (Howard et al.2010;Mayor et al.2011).
The frequency of Hot Super Earths is at least as high around
M stars as around FGK stars and possibly higher (Howard
et al. 2012;Bonfils et al.2013;Fressin et al.2013). Hot
Super Earths are typically found in systems of many planets

on compact but non-resonant orbits (e.g.Udry et al.2007;
Lovis et al.2011;Lissauer et al.2011).

Several mechanisms have been proposed to explain the
origin of Hot Super Earths (seeRaymond et al.2008): 1)
In situ accretion from massive disks of planetary embryos
and planetesimals; 2) Accretion during inward type 1 mi-
gration of planetary embryos; 3) Shepherding in interior
mean motion resonances with inward-migrating gas giant
planets; 4) Shepherding by inward-migrating secular res-
onances driven by dissipation of the gaseous disk; 5) Cir-
cularization of planets on highly-eccentric orbits by star-
planet tidal interactions; 6) Photo-evaporation of close-in
gas giant planets.

Theoretical and observational constraints effectively rule
out mechanisms 3-6. The shepherding of embryos by
migrating resonances (mechanisms 3 and 4) can robustly
transport material inward (Zhou et al.2005;Fogg and Nel-
son2005, 2007;Raymond et al.2006a;Mandell et al.2007;
Gaidos et al.2007). An embryo that finds itself in reso-
nance with a migrating giant planet will have its eccentricity
simultaneously excited by the giant planet and damped by
tidal interactions with the gaseous disk (Tanaka and Ward
2004; Cresswell et al.2007). As the tidal damping pro-
cess is non-conservative, the embryo’s orbit loses energy
and shrinks, removing the embryo from the resonance. The
migrating resonance catches up to the embryo and the pro-
cess repeats itself, moving the embryo inward, potentially
across large distances. This mechanism is powered by the
migration of a strong resonance. This requires a connec-
tion between Hot Super Earths and giant planets. If a giant
planet migrated inward, and the shepherd was a mean mo-
tion resonance (likely the 3:2, 2:1 or 3:1 resonance) then
hot Super Earths should be found just interior to close-in
giant planets, which is not observed. If a strong secular
resonance migrated inward then at least one giant planet
on an eccentric orbit must exist exterior to the hot Super
Earth, and there should only be a small number of Hot Su-
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per Earths. This is also not observed.
Tidal circularization of highly-eccentric Hot Super

Earths (mechanism 5) is physically possible but requires
extreme conditions (Raymond et al.2008). Star-planet tidal
friction of planets on short-pericenter orbits can rapidly
dissipate energy, thereby shrinking and re-circularizingthe
planets’ orbits. This process has been proposed to explain
the origin of hot Jupiters (Ford and Rasio2006;Fabrycky
and Tremaine2007;Beauǵe and Nesvorńy 2012), and the
same mechanism could operate for low-mass planets. Very
close pericenter passages – within 0.02 AU – are required
for significant radial migration (Raymond et al.2008). Al-
though such orbits are plausible, another implication of the
model is that, given their large prior eccentricities, hot Su-
per Earths should be found in single systems with no other
planets nearby. This is not observed.

The atmospheres of very close-in giant planets can be
removed by photo-evaporation from the host star (mech-
anism 6;Lammer et al.2003;Baraffe et al.2004, 2006;
Yelle2004;Erkaev et al.2007;Hubbard et al.2007a;Ray-
mond et al.2008;Murray-Clay et al.2009;Lopez and Fort-
ney2013). The process is driven by UV heating from the
central star. Mass loss is most efficient for planets with
low surface gravities extremely close to UV-bright stars.
Within ∼ 0.02 AU, planets as large as Saturn can be photo-
evaporated down to their cores on Gyr timescales. Since
both the photoevaporation rate and the rate of tidal evolution
depend on the planet mass, a very close-in rocky planet like
Corot-7b(Léger et al.2009) could have started as a Saturn-
mass planet on a much wider orbit (Jackson et al.2010).
Although photo-evaporation may cause mass loss in some
very close-in planets, it cannot explain the systems of hot
Super Earths.Hubbard et al.(2007b) showed that the mass
distributions of very highly-irradiated planets within 0.07
AU was statistically indistinguishable from the mass distri-
bution of planets at larger distances. In addition, given the
very strong radial dependence of photo-evaporative mass
loss, the mechanism is likely to produce systems with a sin-
gle hot Super Earth as the closest-in planet rather than mul-
tiple systems of hot Super Earths.

Given the current constraints from Kepler and radial ve-
locity observations, mechanisms 1 and 2 – in situ accretion
and type 1 migration – are the leading candidates to explain
the formation of the observed Hot Super Earths. Of course,
we cannot rule out additional mechanisms that have yet to
come to light.

For systems of hot Super Earths to have accreted in situ
from massive populations of planetesimals and planetary
embryos, their protoplanetary disks must have been very
massive (Raymond et al.2008;Hansen and Murray2012,
2013; Chiang and Laughlin2013; Raymond and Cossou
2014). The observed systems of hot Super Earths often con-
tain20−40 M⊕ in planets within a fraction of an AU of the
star (Batalha et al.2013). Let us put this in the context of
simplified power-law disks:

Σ = Σ0

( r

1AU

)−x

. (19)

The minimum-mass Solar Nebula (MMSN) model (Wei-
denschilling1977;Hayashi et al.1985) hasx = 3/2, al-
though modified versions havex = 1/2 (Davis2005) and
x ≈ 2 (Desch2007).Chiang and Laughlin(2013) created a
minimum-massextrasolarnebula using the Kepler sample
of hot Super Earths and found a best fit forx = 1.6 − 1.7
with a mass normalization roughly ten times higher than
the MMSN. However,Raymond and Cossou(2014) showed
that minimum-mass disks based on Kepler multiple-planet
systems actually cover a broad range in surface density
slopes and are inconsistent with a universal underlying disk
profile.

Only steep power-law disks allow for a significant
amount of mass inside 1 AU. Consider a disk with a mass
of 0.05M⊙ extending from zero to 50 AU with an as-
sumed dust-to-gas ratio of 1%. This disk contains a total
of 150 M⊕ in solids. If the disk follows anr−1/2 profile
(i.e., with x = 1/2) then it only contains0.4 M⊕ in solids
inside 1 AU. If the disk hasx = 1 then it contains3 M⊕

inside 1 AU. If the disk hasx = 1.5 − 1.7 then it con-
tains 21 − 46 M⊕ inside 1 AU. Sub-mm observations of
cold dust in the outer parts of nearby protoplanetary disks
generally find values ofx between1/2 and 1 (Mundy et al.
2000;Looney et al.2003;Andrews and Williams2007b).
However, the inner parts of disks have yet to be adequately
measured.

The dynamics of in situ accretion of hot Super Earths
would presumably be similar to the well-studied dynam-
ics of accretion presented in sections 3 and 4. Accretion
would proceed faster than at 1 AU due to the shorter rele-
vant timescales, but would consist of embryo-embryo and
embryo-planetesimal impacts (Raymond et al.2008). How-
ever, even if Super Earths accrete modest gaseous envelopes
from the disk, these envelopes are expected be lost during
the dispersal of the protoplanetary disk under most condi-
tions (Ikoma and Hori2012). This loss process is most ef-
ficient at high temperatures, making it hard to explain the
large radii of some detected Super Earths. Nonetheless, Su-
per Earths that form by in situ accretion appear to match
several other features of the observed population, including
their low mutual inclination orbits and the distributions of
eccentricity and orbital spacing (Hansen and Murray2013).

Alternately, the formation of hot Super Earths may
involve long-range orbital migration (Terquem and Pa-
paloizou2007). Once they reach∼ 0.1 M⊕, embryos are
susceptible to type 1 migration (Goldreich and Tremaine
1980;Ward 1986). Type 1 migration may be directed in-
ward or outward depending on the local disk properties
and the planet mass (Paardekooper et al.2010;Masset and
Casoli 2010; Kretke and Lin2012). In most disks out-
ward migration is only possible for embryos larger than a
few Earth masses. All embryos therefore migrate inward
when they are small. If they grow quickly enough during
the migration then in some regions they can activate their
corotation torque and migrate outward.

A population of inward-migrating embryos naturally
forms a resonant chain. Migration is stopped at the in-

13



0.1

1

10
S
e
m

i-
m

a
jo

r 
a
x
is

 [
A

U
]

0 0.5 1.0 1.5
Time [million years]

0
2
4
6
8

10
12
14
16

m
a
s
s
 [

E
a
rt

h
s
]

Most massive

2nd most massive

3rd most massive

0 0.5 1.0 1.5
Time [million years]

Collisions

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

a [AU]

0

Kepler-11

Simulation

4:3 4:33:2

Fig. 6.— Formation of a system of hot Super Earths by type
1 migration. The top panel shows the evolution of the embryos’
orbital radii and the bottom panel shows the mass growth. Thered,
green and blue curves represent embryos that coagulated into the
three most massive planets. All other bodies are in black. Only the
most massive (red) planet grew large enough to trigger outward
migration before crossing into a zone of pure inward migration.
FromCossou et al.(2013).

ner edge of the disk (Masset et al.2006) and the resonant
chain piles up against the edge (Ogihara and Ida2009).
If the resonant chain gets too long, cumulative perturba-
tions from the embryos act to destabilize the chain, lead-
ing to accretionary collisions and a new shorter resonant
chain (Morbidelli et al.2008;Cresswell and Nelson2008).
This process can continue throughout the lifetime of the
gaseous disk and include multiple generations of inward-
migrating embryos or populations of embryos.

Figure 6 shows the formation of a system of hot Super
Earths by type 1 migration fromCossou et al.(2013). In
this simulation60 M⊕ in embryos with masses of0.1 −
2 M⊕ started from 2-15 AU. The embryos accreted as they
migrated inward in successive waves. One embryo (shown
in red in Fig. 6) grew large enough to trigger outward migra-
tion and stabilized at a zero-torque zone in the outer disk,
presumably to become giant planet core. The system of
hot Super Earths that formed is similar in mass and spacing
to the Kepler-11 system (Lissauer et al.2011). The four
outer super Earths are in a resonant chain but the inner one
was pushed interior to the inner edge of the gas disk and
removed from resonance.

It was proposed byRaymond et al.(2008) that transit
measurements of hot Super Earths could differentiate be-
tween the in situ accretion and type 1 migration models.

They argued that planets formed in situ should be naked
high-density rocks whereas migrated planets are more
likely to be dominated by low-density material such as ice.
It has been claimed that planets that accrete in situ can have
thick gaseous envelopes and thus inflated radii (Hansen and
Murray 2012;Chiang and Laughlin2013). However, de-
tailed atmospheric calculations byIkoma and Hori(2012)
suggest that it is likely that low-mass planets generally lose
their atmospheres during disk dispersal. This is a key point.
If these planets can indeed retain thick atmospheres then
simple measurements of the bulk density of Super Earths
wold not provide a mechanism for differentiation between
the models. However, if hot Super Earths cannot retain
thick atmospheres after forming in situ, then low density
planets must have formed at larger orbital distances and
migrated inward.

It is possible that migration and in situ accretion both
operate to reproduce the observed hot Super Earths. The
main shortcoming of in situ accretion model is that the req-
uisite inner disk masses are extremely large and do not fit
the surface density profiles measured in the outskirts of pro-
toplanetary disks. Type 1 migration of planetary embryos
provides a natural way to concentrate solids in the inner
parts of protoplanetary disks. One can envision a scenario
that proceeds as follows. Embryos start to accrete locally
throughout the disk. Any embryo that grows larger than
roughly a Mars mass type 1 migrates inward. Most em-
bryos migrate all the way to the inner edge of the disk, or at
least to the pileup of embryos bordering on the inner edge.
There are frequent close encounters and impacts between
embryos. The embryos form long resonant chains that are
successively broken by perturbations from other embryos
or by stochastic forcing from disk turbulence (Terquem and
Papaloizou2007;Pierens and Raymond2011). As the disk
dissipates the resonant chain can be broken, leading to a last
phase of collisions that effectively mimics the in situ accre-
tion model. There remains sufficient gas and collisional de-
bris to damp the inclinations of the surviving Super Earths
to values small enough to be consistent with observations.
However, that it is possible that many Super Earths actually
remain in resonant orbits but with period ratios altered by
tidal dissipation (Batygin and Morbidelli2013).

5.2 Sculpting by giant planets: type 2 migration and dy-
namical instabilities

The orbital distribution of giant exoplanets is thought to
have been sculpted by two dynamical processes: type 2 mi-
gration and planet-planet scattering (Moorhead and Adams
2005;Armitage2007). These processes each involve long-
range radial shifts in giant planets’ orbits and have strong
consequences for terrestrial planet formation in those sys-
tems. In fact, each of these processes has been proposed to
explain the origin of hot Jupiters (Lin et al.1996;Nagasawa
et al. 2008), so differences in the populations of terrestrial
planets, once observed, could help resolve the question of
the origin of hot Jupiters.
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Only a fraction of planetary systems contain giant plan-
ets. About 14% of Sun-like stars host a gas giant with pe-
riod shorter than 1000 days (Mayor et al.2011), although
the fraction of stars with more distant giant planets could be
significantly higher (Gould et al.2010).

When a giant planet becomes massive enough to open
a gap in the protoplanetary disk, its orbital evolution be-
comes linked to the radial viscous evolution of the gas.
This is called Type 2 migration (Lin and Papaloizou1986;
Ward1997). As a giant planet migrates inward it encounters
other small bodies in various stages of accretion. Given the
strong damping of eccentricities by the gaseous disk, a sig-
nificant fraction of the material interior to the giant planet’s
initial orbit is shepherded inward by strong resonances as
explained in§5.1 (Zhou et al.2005;Fogg and Nelson2005,
2007, 2009;Raymond et al.2006a;Mandell et al.2007). In-
deed, the simulation from the left panel of Figure 7 formed
two hot Super Earth planets, one just interior to the 2:1 and
3:1 resonance. The orbits of the two planets became desta-
bilized after several Myr, collided and fused into a single
4 M⊕ hot Super Earth. There also exists a population of
very close-in planetesimals in the simulation from Fig. 7;
these were produced by the same shepherding mechanism
as the hot Super Earths but, because the dissipative forces
from gas drag were so much stronger for these objects than
the damping due to disk-planet tidal interactions felt by the
embryos (Adachi et al.1976; Ida et al. 2008), they were
shepherded by a much higher-order resonance, here the 8:1.

Planetesimals or embryos that come too close to the mi-
grating giant are scattered outward onto eccentric orbits.
These orbits are slowly re-circularized by gas drag and dy-
namical friction. On 10-100 Myr or longer timescales a
second generation of terrestrial planets can form from this
scattered material (Raymond et al.2006a;Mandell et al.
2007). The building blocks of this new generation of plan-
ets are significantly different than the original ones. This
new distribution is comprised of two components: bodies
that originated across the inner planetary system that were
scattered outward by the migrating gas giant, and bodies
that originated exterior to the gas giant. When taking into
account the original location of these protoplanets, the ef-
fective feeding zone of the new terrestrial planets essen-
tially spans the entire planetary system. This new gener-
ation of terrestrial planets therefore inevitably contains ma-
terial that condensed at a wide range of orbital distances.
Their volatile contents are huge. Indeed, the water content
of the 3 M⊕ planet that formed at 0.9 AU (in the shaded
habitable zone) in Fig. 7 is roughly 10% by mass. Even if
90% of the water were lost during accretion, that still corre-
sponds to ten times Earth’s water content (by mass), mean-
ing that this planet is likely to be covered in global oceans.

The simulation from Fig. 7 showed the simple case of a
single giant planet on a low-eccentricity (e ≈ 0.05) migrat-
ing through a disk of growing planetesimals and embryos.
Migration would be more destructive to planet formation
under certain circumstances. For example, if migration oc-
curs very late in the evolution of the disk then less gas re-

mains to damp the eccentricities of scattered bodies. This
is probably more of an issue for the formation of hot Su-
per Earths than for scattered embryos: since the viscous
timescale is shorter closer-in, much of the inner disk may in
fact drain onto the star during type 2 migration (Thommes
et al. 2008) and reduce the efficiency of the shepherding
mechanism. In addition, multiple giant planets may often
migrate inward together. In that case the giant planets’ ec-
centricities would likely be excited to modest values, and
any embryo scattered outward would likely encounter an-
other giant planet, increasing the probability of very strong
scattering events onto unbound orbits.

Although type 2 migration certainly does not provide a
comfortable environment for terrestrial accretion, planet-
planet scattering is far more disruptive. The broad eccen-
tricity distribution of observed giant exoplanets is natu-
rally reproduced if at least 75% of the observed planets are
the survivors of violent dynamical instabilities (Chatterjee
et al.2008;Jurić and Tremaine2008;Raymond et al.2010).
It is thought that giant planets form in multiple systems
on near-circular orbits but in time, perturbations destabi-
lize these systems and lead to a phase of close gravitational
encounters. Repeated planet-planet scattering usually leads
to the ejection of one or more giant planets (Rasio and Ford
1996;Weidenschilling and Marzari1996, ; see chapter by
Davies et al). The large eccentricities of the observed plan-
ets are essentially the scars of past instabilities.

Instabilities are also destructive for terrestrial planets or
their building blocks. The timing of instabilities is poorly-
constrained, although it is thought that many instabilities
may be triggered by either migration in systems of mul-
tiple gas giants (Adams and Laughlin2003;Moorhead and
Adams2005) or by the removal of damping during the dissi-
pation of the gaseous disk (Moeckel et al.2008;Matsumura
et al. 2010; Moeckel and Armitage2012). On the other
hand, systems of planets on more widely-spaced orbits or
systems with wide binary companions may naturally ex-
perience instabilities on Gyr timescales (Marzari and Wei-
denschilling2002;Kaib et al. 2013). Although early in-
stabilities may allow for additional sources of damping via
gas drag from remaining gas and dynamical friction from
abundant planetesimals, in practice the timing of the insta-
bility makes little difference for the survival of terrestrial
bodies (Raymond et al.2012).

Instabilities between Jupiter-sized planets typically only
last for∼ 105 years. When a giant planet is scattered onto a
highly-eccentric orbit, even if it only lasts for a relatively
short time, very strong secular forcing can drive the or-
bits of inner terrestrial bodies to very high eccentricities.
The outcome of the perturbation is extremely sensitive to
the proximity of the giant planet to the terrestrial planet
zone: giant planets whose pericenter distances come within
a given separation act so strongly that terrestrial planetsor
embryos are driven entirely into the central star (Veras and
Armitage2005, 2006;Raymond et al.2011, 2012). The
giant planet instabilities that are the least disruptive tothe
terrestrial planets are those that are very short in duration,
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Fig. 7.—The effect of giant planet migration (left panel) and dynamical instabilities (right panel) on terrestrial planet formation. In
each panel large black circles represents roughly Jupiter-mass gas giant planets and the smaller circles each represent a planetary embryo
or planetesimal. Colors correspond to water contents (see color bars), and the relative size of each particle (giant planets excepted) refers
to their mass1/3. Adapted from simulations byRaymond et al.(2006a) (left) andRaymond et al.(2012) (right).

that are confined to the outer parts of the planetary system,
or that result in a collision between giant planets.

The right panel of Figure 7 shows a simulation in which
all terrestrial bodies were removed from the system by an
instability between three∼Jupiter-mass giant planets that
occurred after 42 Myr. During the first 42 Myr of the sim-
ulation, accretion in the inner disk proceeded in the same
manner as in Fig. 4. Once the instability was triggered after
42.8 Myr, the inner disk of planets – including two plan-
ets that had grown to nearly an Earth mass – were driven
into the central star. The entire outer disk of planetesimals
was ejected by repeated giant planet-planetesimal scattering
over the next few Myr (Raymond et al.2012).

Instabilities systematically perturb both the terrestrial
planet-forming region and outer disks of planetesimals. The
dynamics of gas giant planets thus creates a natural cor-
relation between terrestrial planets and outer planetesimal
disks. On Gyr timescales planetesimal disks collisionally
grind down and produce cold dust that is observable at
wavelengths as debris disks (Wyatt2008;Krivov 2010). On
dynamical grounds,Raymond et al.(2011, 2012) predicted
a correlation between debris disks and systems of low-mass
planets, as each of these forms naturally in dynamically
calm environments, i.e. in systems with giant planets on
stable orbits or in systems with no gas giants.

6. FORMATION OF THE SOLAR SYSTEM’S TER-
RESTRIAL PLANETS

A longstanding goal of planet formation studies has been
to reproduce the Solar System using numerical simulations.
Although that goal has not yet been achieved, substantial

progress has been made.
Jupiter and Saturn are key players in this story. Their

large masses help shape the final stages of terrestrial accre-
tion (§4.5). However, there exist few constraints on their
orbits during late-stage terrestrial accretion, and theseare
model-dependent.

The Nice model (e.g.,Tsiganis et al.2005;Morbidelli
et al. 2007) proposes that theLate Heavy Bombardment
(LHB) – a spike in the impact rate on multiple Solar Sys-
tem bodies that lasted from roughly 400 until 700 Myr after
the start of planet formation (Tera et al.1974;Cohen et al.
2000;Chapman et al.2007) – was triggered by an instabil-
ity in the giant planets’ orbits. The instability was triggered
by gravitational interactions between the giant planets and a
disk of planetesimals exterior to the planets’ orbits compris-
ing perhaps30−50 M⊕. Before the Nice model instability,
the giant planets’ orbits would have been in a more compact
configuration, with Jupiter and Saturn interior to the 2:1
resonance and perhaps lodged in 3:2 resonance. Although
there is no direct constraint, hydrodynamical simulations
indicate that the gas giants’ eccentricities were likely lower
than their current values, probably around 0.01-0.02 (Mor-
bidelli et al.2007).

An alternate but still self-consistent assumption is that
the gas giants were already at their current orbital radii dur-
ing terrestrial accretion. In that case, Jupiter and Saturn
must have had slightly higher eccentricities than their cur-
rent ones because scattering of embryos during accretion
tends to modestly decrease eccentricities (e.g.Chambers
and Cassen2002). In this scenario, an alternate explana-
tion for the LHB is needed.

In this section we first consider “classical” models that
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assume that the orbits of the giant planets were stationary
(§6.1). Based on the above arguments we consider two rea-
sonable cases. In the first case, Jupiter and Saturn were
trapped in 3:2 mean motion resonance at 5.4 and 7.2 AU
with low eccentricities (egiants ≈ 0.01 − 0.02). In the sec-
ond, Jupiter and Saturn were at their current orbital radii but
with higher eccentricities (egiants = 0.07 − 0.1).

Of course, Jupiter and Saturn’s orbits need not have been
stationary at this time. It is well-known that giant planets’
orbits can migrate long distances, inward or outward, driven
by exchanges with the gaseous protoplanetary disk (e.g.Lin
and Papaloizou1986;Veras and Armitage2004) or a disk
of planetesimals (e.g.Fernandez and Ip1984;Murray et al.
1998). Although the last phases of accretion are constrained
by Hf-W measurements of Earth samples to occur after the
dissipation of the typical gas disk, giant planet migrationat
early times can sculpt the population of embryos and thus
affect the “initial conditions” for late-stage growth.

While the Nice model relies on a delayed planetesimal-
driven instability, earlier planetesimal-driven migration of
the giant planets has recently been invoked (Agnor and
Lin 2012). In§6.2 we consider the effect of this migra-
tion, which must occur on a timescale shorter than Mars’
measured few Myr accretion time (Dauphas and Pourmand
2011) to have an effect. Finally, in§6.3 we describe a new
model called theGrand Tack(Walsh et al.2011) that in-
vokes early gas-driven migration of Jupiter and Saturn.

It is possible that disks are not radially smooth, or at
least that planetesimals do not form in a radially-uniform
way (e.g.Johansen et al.2007;Chambers2010).Jin et al.
(2008) proposed that a discontinuity in viscosity regimes at
∼2 AU could decrease the local surface density and thus
form a small Mars. However, the dip produced is too nar-
row to cut off Mars’ accretion (Raymond et al.2009). It
has also been known for decades that an embryo distribu-
tion with an abrupt radial edge naturally forms large planets
within the disk but small planets beyond the edge (Wetherill
1978). This “edge effect” can explain the large Earth/Mars
mass ratio (see below).

Table 2 summarizes the ability of various models to re-
produce the observational constraints discussed in§2.

6.1 Classical models with stationary gas giants

Fig. 5 shows how the giant planets excite the eccen-
tricities of test particles for each assumption (Raymond
et al. 2009). In the left panel (labeled JSRES for “Jupiter
and Saturn in RESonance”) the giant planets are in a low-
eccentricity compact configuration consistent with the Nice
model whereas in the right panel (labeled EEJS for “Extra-
Eccentric Jupiter and Saturn”) the giant planets have signif-
icant eccentricities and are located at their current orbital
radii. The much stronger eccentricity excitation imparted
by eccentric gas giants and the presence of strong reso-
nances such as theν6 resonance seen at 2.1 AU in the right
panel of Fig. 5 have a direct influence on terrestrial planet
formation.

Simulations with Jupiter and Saturn on circular orbits re-
produce several aspects of the terrestrial planets (Wether-
ill 1978, 1996, 1985;Chambers and Wetherill1998;Mor-
bidelli et al. 2000;Chambers2001;Raymond et al.2004,
2006b, 2007b, 2009;O’Brien et al.2006;Morishima et al.
2010). Simulations typically form about the right number
(3-5) of terrestrial planets with masses comparable to their
actual masses. Earth analogs tend to complete their accre-
tion on 50-100 Myr timescales, consistent with geochemi-
cal constraints. Simulations include late giant impacts be-
tween embryos with similar characteristics to the one that is
thought to have formed the Moon (Ćuk and Stewart2012;
Canup2012). Embryos originating at 2.5-4 AU, presumed
to be represented by carbonaceous chondrites and therefore
to be volatile-rich, naturally deliver water to Earth during
accretion (see Fig. 4).

There are three problems. First and most importantly,
simulations with Jupiter and Saturn on circular orbits are
unable to form good Mars analogs. Rather, planets at Mars’
orbital distance are an order of magnitude too massive, a
situation called thesmall Mars problem(Wetherill 1991;
Raymond et al.2009). Second, the terrestrial planet sys-
tems that form tend to be far too spread out radially. Their
radial mass concentrationRMC (see Eq. 2) are far smaller
than the Solar System’s value of 89.9 (see Table 1). Third,
large (∼Mars-sized) embryos are often stranded in the as-
teroid belt. All three of these problems are related: the large
RMC in these systems is a consequence of too much mass
existing beyond 1 AU. This mass is in the form of large
Mars analogs and embryos in the asteroid belt.

Simulations starting with Jupiter and Saturn at their cur-
rent orbital radii but with larger initial eccentricities (e =
0.07 − 0.1) reproduce many of the same terrestrial planet
constraints (Raymond et al.2009;Morishima et al.2010).
Simulations tend to again form the same number of terres-
trial planets with masses comparable to the actual planets’.
Moon-forming impacts also occur. Beyond this the accreted
planets contrast with those that accrete in simulations with
circular gas giants. With eccentric Jupiter and Saturn, the
terrestrial planets accrete faster, in modest agreement with
Earth’s geochemical constraints. The delivery of water to
Earth is much less efficient. But Mars analogs form with
about the right mass!

In these simulations, a strong secular resonance with Sat-
urn – theν6 at 2.1 AU – acts to clear out the material in
the inner asteroid belt and in Mars’ vicinity. The reso-
nance is so strong that bodies that are injected into it are
driven to very high eccentricities and collide with the Sun
within a few Myr (Gladman et al.1997). Any embryo from
the inner planetary system that is scattered out near theν6

is quickly removed from the system. The Mars region is
quickly drained and a small Mars forms. Theν6 acts as
a firm outer edge such that the terrestrial planet systems
form in more compact configurations, withRMC values
that approach the Solar System’s (but still remain roughly a
factor of two too small; see Fig.8). TheAMD of the terres-
trial planets are systematically higher than the Solar System
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TABLE 2

SUCCESS OF DIFFERENT MODELS IN MATCHING INNERSOLAR SYSTEM CONSTRAINTS1

Model AMD RMC MMars Tform Ast. Belt WMF⊕ Comments
Resonant Jup, Sat X × × X × X Consistent with Nice model
Eccentric Jup, Sat ∼ ∼ X X X × Not consistent with Nice model
Grand Tack X X X ∼ X X Requires tack at 1.5 AU
Planetesimal-driven X × × X × X Requires other source of LHB
migration
1A check (“X”) represents success in reproducing a given constraint, a cross (“×”) represents a failure to reproduce the constraint, and a twiddle sign

(“∼”) represents a “maybe”, meaning success in reproducing theconstraints in a fraction of cases. The constraints are, in order, the terrestrial planets’
angular momentum deficitAMD and radial mass concentrationRMC (see also Fig. 8), Mars’ mass, Earth’s formation timescale,the large-scale structure
of the asteroid belt, and the delivery of water to Earth (represented by Earth’s water mass fractionWMF⊕).

value because the planetesimals that could provide damp-
ing at late times are too efficiently depleted. The terrestrial
planet forming region is effectively cut off from the aster-
oid belt by the resonance, and water delivery is inefficient.
If the gravitational potential from the dissipating gas disk
is accounted for, theν5 andν6 resonances sweep inward
and can perhaps shepherd water-rich embryos in to Earth’s
feeding zone by the same mechanism presented in Sec
5.2 (Thommes et al.2008;Morishima et al.2010). How-
ever, hydrodynamical simulations suggest that Jupiter and
Saturn’s eccentricities are unlikely to remain high enough
during the gaseous disk phase for this to occur (e.g.Mor-
bidelli et al.2007;Pierens and Raymond2011).

The early orbits of Jupiter and Saturn sculpt dramatically
different terrestrial planet systems. Systems with gas giants
on circular orbits form Mars analogs that are far too large
and strand embryos in the asteroid belt. Systems with gas
giants on eccentric orbits do not deliver water to Earth and
have eccentricities that are too large. To date, no other con-
figuration of Jupiter and Saturn with static orbits has been
shown to satisfy all constraints simultaneously.

To quantify the failings of the classical model, Fig-
ure 8 shows the angular momentum deficitAMD and ra-
dial mass concentrationRMC statistics for simulated ter-
restrial planets under the two assumptions considered here.
The accreted planets are far too radially spread out (have
smallRMC values). In many cases their orbits are also too
excited, with largerAMD values than the actual terrestrial
planets’.

6.2 Accretion with planetesimal-driven migration of
Jupiter and Saturn

If Jupiter and Saturn formed in a more compact orbital
configuration, then the migration to their current configu-
ration may have perturbed the terrestrial planets, or even
the building blocks of the terrestrial planets if their forma-
tion was not complete.Brasser et al.(2009, 2013) andAg-
nor and Lin(2012) simulated the influence of planetesimal-
driven migration of the giant planets on the terrestrial plan-
ets assuming that the migration occurred late, after the
terrestrial planets were fully-formed. They found that if
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Fig. 8.— Orbital statistics of the terrestrial planet systems
formed in different models. The configuration of each sys-
tem is represented by its angular momentum deficit and ra-
dial mass concentration values; see section 2.1 for the def-
inition of these terms. The simulations with eccentric and
resonant gas giants are fromRaymond et al.(2009), those
including planetesimal-driven migration of the gas giants
are fromLykawka and Ito(2013), and the Grand Tack sim-
ulations are fromO’Brien et al.(2013).

Jupiter and Saturn migrated with eccentricities compara-
ble to their present-day values, a smooth migration with an
exponential timescale characteristic of planetesimal-driven
migration (τ ∼ 5-10 Myr) would have perturbed the ec-
centricities of the terrestrial planets to values far in excess
of the observed ones. To resolve this issue,Brasser et al.
(2009, 2013) suggested a jumping Jupiter in which encoun-
ters between an ice giant and Jupiter caused Jupiter and Sat-
urn’s orbits to spread much faster than if migration were
driven solely by encounters with planetesimals (see also
Morbidelli et al.2010). On the other hand,Agnor and Lin
(2012) suggested that the bulk of any giant planet migration
occurred during accretion of terrestrial planets.

Whenever the migration occurred, the degree of eccen-
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tricity excitation of Jupiter and Saturn is constrained by the
dynamics of resonance crossing. Jupiter and Saturn are
naturally excited toegiants ∼ 0.05 but cannot reach the
higher eccentricities invoked by the eccentric Jupiter and
Saturn model described above (Tsiganis et al.2005). Given
that the eccentricity excitation is the key difference between
this model and those with stationary giant planets discussed
above, the only free parameter is the timing of the eccen-
tricity excitation.

Two recent papers simulated the effect of planetesimal-
driven migration of Jupiter and Saturn’s orbits on terrestrial
planet formation (Walsh and Morbidelli2011;Lykawka and
Ito 2013). In both studies terrestrial planets accrete from a
disk of material which stretches from∼0.5 AU to 4.0 AU.
In Walsh and Morbidelli(2011), Jupiter and Saturn are ini-
tially at 5.4 and 8.7 AU respectively (slightly outside the
2:1 mean motion resonance), with eccentricities compara-
ble to the current ones, and migrate to 5.2 and 9.4 AU with
an e-folding time of 5 Myr. In their simulations Mars is
typically far too massive and the distribution of surviving
planetesimals in the asteroid belt is inconsistent with the
observed distribution.Lykawka and Ito(2013) performed
similar simulations but included the 2:1 resonance cross-
ing of Jupiter and Saturn, which provides a sharp increase
in the giant planets’ eccentricities and thus in the pertur-
bations felt by the terrestrial planets. They tested the tim-
ing of the giant planets’ 2:1 resonance crossing between 1
and 50 Myr. They found the expected strong excitation in
the asteroid belt once the giant planets’ eccentricities in-
creased, but the perturbations were too small to produce a
small Mars. Although they produced four Mars analogs in
their simulations, they remained significantly more massive
than the real Mars, accreted on far longer timescales than
the geochemically-constrained one, and stranded large em-
bryos in the asteroid belt. TheirAMD andRMC values
remain incompatible with the real Solar System (Fig. 8).

If another mechanism is invoked to explain the late
heavy bombardment, planetesimal-driven migration of
Jupiter and Saturn is plausible. However, it does not ap-
pear likely to have occurred as it is incapable of solving the
Mars problem.

6.3 The Grand Tack model

Prior to 2009, several studies of terrestrial accretion had
demonstrated an edge effect in terrestrial accretion. A dis-
tribution of embryos with an abrupt edge naturally pro-
duces a large mass gradient between the massive planets
that formed within the disk and the smaller planets that were
scattered beyond the disk’s edge (Wetherill 1978, 1991;
Chambers and Wetherill1998;Agnor et al.1999;Cham-
bers 2001; Kominami and Ida2004). These studies had
outer edges at 1.5-2 AU and generally considered their ini-
tial conditions a deficiency imposed by limited computa-
tional resources.

Hansen(2009) turned the tables by proposing that, rather
than a deficiency, initial conditions with edges might actu-

ally represent the true initial state of the disk. Indeed,Mor-
ishima et al.(2008) andHansen(2009) showed that most
observed constraints could be reproduced by a disk of em-
bryos spanning only from 0.7 to 1 AU. Earth and Venus are
massive because they formed within the annulus whereas
Mars and Mercury’s small masses are explained as edge
effects, embryos that were scattered exterior and interior,
respectively, to the annulus at early times, stranding and
starving them. Mars analogs consistently accrete on the
short observed timescale. The main unanswered question
in these studies was the origin of the edges of the annulus.

Fig. 9.—Evolution of the Grand Tack model (Walsh et al.2011).
The large black dots represent the four giant planets, with sizes
that correspond to their approximate masses. Red symbols indi-
cate S-class bodies and blue ones C-class bodies. There exist two
categories of C-class objects that originate between and beyond
the giant planets’ orbits. Open circles indicate planetaryembryos.
The evolution of the particles includes drag forces imparted by an
evolving gaseous disk.

Walsh et al.(2011) presented a mechanism to produce
the outer edge of the disk by invoking migration of the gi-
ant planets to dramatically sculpt the distribution of solid
material in the inner Solar System. Given that gas gi-
ant planets must form in the presence of gaseous disks
and that these disks invariably drive radial migration (Ward
1997), it is natural to presume that Jupiter and Saturn must
have migrated to some extent. A Jupiter-mass planet nat-
urally carves an annular gap in the gaseous disk and mi-
grates inward on the local viscous timescale (Lin and Pa-
paloizou1986). In contrast, a Saturn-mass planet migrates
much more quickly because of a strong gravitational feed-
back during disk clearing (Masset and Papaloizou2003).
Assuming that Jupiter underwent rapid gas accretion be-
fore Saturn, hydrodynamical simulations show that Jupiter
would have migrated inward relatively slowly. When Saturn
underwent rapid gas accreted it migrated inward quickly,
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caught up to Jupiter and became trapped in 2:3 resonance.
At this point the direction of migration was reversed and
Jupiter “tacked”, that is it changed its direction of migra-
tion (Masset and Snellgrove2001;Morbidelli et al. 2007;
Pierens and Nelson2008; Pierens and Raymond2011;
D’Angelo and Marzari2012). The outward migration of
the two gas giants slowed as the gaseous disk dissipated,
stranding Jupiter and Saturn on resonant orbits. This nat-
urally produces the initial conditions for a recently revised
version of the Nice model (Morbidelli et al.2007;Levison
et al.2011), with Jupiter at 5.4 AU and Saturn at 7.2 AU.

This model is called theGrand Tack. One cannot know
the precise migration history of the gas giantsa priori
given uncertainties in disk properties and evolution.Walsh
et al. (2011) anchored Jupiter’s migration reversal point at
1.5 AU because this truncates the inner disk of embryos and
planetesimals at 1.0 AU, creating an outer edge at the same
location as invoked byHansen(2009). Jupiter’s formation
zone was assumed to be∼ 3 − 5 AU (although a range of
values was tested byWalsh et al.2011), in the vicinity of
the snow line (e.g.Sasselov and Lecar2000;Kornet et al.
2004;Martin and Livio 2012), presumably a favorable lo-
cation for giant planet formation. The Grand Tack model
also proposes that the compositional gradient seen in the
asteroid belt can be explained by the planetesimals’ forma-
tion zones. Volatile-poor bodies (“S-class”) are primarily
located in the inner belt and volatile-rich bodies (“C-class”)
primarily in the outer belt (Gradie and Tedesco1982;De-
Meo and Carry2013). The Grand Tack scenario presumes
that S-class bodies formed interior to Jupiter’s initial orbit
and that C-class bodies formed exterior.

The evolution of the Grand Tack is illustrated in Fig-
ure 9 (Walsh et al.2011). Jupiter and Saturn’s inward
migration scattered S-class planetesimals from the inner
disk, with∼10% ending on eccentric orbits beyond the gi-
ant planets. Meanwhile a large fraction of planetesimals
and embryos were shepherded inward by the same mecha-
nism discussed in§5.2 onto orbits inside 1 AU. Following
Jupiter’s “tack” the outward-migrating gas giants first en-
countered the scattered S-class planetesimals, about 1% of
which were scattered inward onto stable orbits in the as-
teroid belt. The giant planets then encountered the disk of
C-class planetesimals that originated beyond Jupiter’s orbit.
Again, a small fraction (∼ 1%) were scattered inward and
trapped in the asteroid belt. The final position of a scattered
body depends on the orbital radius of the scattering body,
in this case Jupiter. Jupiter was closer in when it scattered
the S-class planetesimals and farther out when it scattered
the C-class planetesimals. The S-class bodies were there-
fore preferentially implanted in the inner part of the asteroid
belt and the C-class bodies preferentially in the outer part
of the belt, as in the present-day belt (Gradie and Tedesco
1982;DeMeo and Carry2013). The total mass of the as-
teroid population is set by the need to have∼ 2 M⊕ of ma-
terial remaining in the inner truncated disk of embryos and
planetesimals (to form the planets). This requirement for
the planets sets the total mass in S-class bodies implanted

into the asteroid belt as they originate from the same inner
disk. The current ratio of S-class to C-class asteroids sets
the mass in outer disk planetesimals.

The Grand Tack model reproduces many aspects of the
terrestrial planets. Planets that accrete from a truncated
disk have similar properties to those inHansen(2009)
andMorishima et al.(2008). Earth/Mars mass ratios are
close matches to the actual planets, and Mars’ accretion
timescale is a good match to Hf/W constraints. Figure 8
shows that the angular momentum deficitAMD is sys-
tematically lower than in simulations of the classical model
(§6.1) and the radial mass concentrationRMC is system-
atically higher (Walsh et al.2011;O’Brien et al.2013). In
contrast with other models, the Grand Tack simulations pro-
vide a reasonable match to the inner Solar System.

The Grand Tack delivers water-rich material to the ter-
restrial planets by a novel mechanism. As Jupiter and Sat-
urn migrate outward, they scatter about 1% of the C-class
asteroids that they encountered onto stable orbits in the as-
teroid belt. And for every implanted C-type asteroid, 10-20
C-class bodies are scattered ontounstableorbits that cross
the orbits of the terrestrial planets. These scattered C-class
planetesimals accrete with the growing terrestrial planets
and naturally deliver water. The amount of water-rich ma-
terial accreted by Earth is less than in classical simulations
with stationary giant planets like the one presented in Fig.4,
but is still significantly larger than the Earth’s current water
budget (O’Brien et al.2013). The chemical signature of the
delivered water is the same as C-type asteroids (and there-
fore carbonaceous chondrites), and thus provides a match
to the signature of Earth’s water (Marty and Yokochi2006).
Thus, in the Grand Tack model Earth was delivered water
not by C-type asteroids but by the same parent population
as for C-type asteroids.

There remain some issues with the Grand Tack model.
The accretion timescales are much faster for all of the
planets than what was typically found in previous models.
This is a consequence of the removal of embryos beyond
1 AU, where growth timescales are long. In simulations
Mars analogs typically form in less than 10 Myr (O’Brien
et al. 2013). Earth analogs form in 10-20 Myr, with giant
embryo-embryo impacts occurring after 20 Myr in only a
modest fraction (∼ 20%) of simulations. This is roughly
a factor of two faster than the Hf-W constraints (Touboul
et al. 2007;Kleine et al.2009;König et al.2011). How-
ever, new simulations show that the accretion timescale of
the terrestrial planets can be lengthened to match observa-
tions simply by increasing the total embryo-to-planetesimal
mass ratio in the annulus, which is itself an unconstrained
parameter (Jacobson et al.2013).

An open question related to the origin of Mercury’s
small mass is the origin of theinneredge of the annulus pro-
posed byHansen(2009). One possibility is that, as embryos
grow larger from the inside-out, they also become subject
to type 1 migration from the inside-out (McNeil et al.2005;
Daisaka et al.2006;Ida and Lin2008). For embryo-mass
objects migration is directed inward (Paardekooper et al.
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2010), so as each embryo forms it migrates inward. If, by
some process, inward-migrating planets are removed from
the system (presumably by colliding with the star), then an
inner edge in the distribution ofsurvivingembryos could
correspond to the outermost orbital radius at which an em-
bryo formed and was destroyed. Another possibility is that
planetesimals could only form in a narrow annulus. If a
pressure bump (Johansen et al.2009) were located in that
region it could act to concentrate small particles (Haghigh-
ipour and Boss2003;Youdin and Chiang2004) and effi-
ciently form planetesimals (see chapter by Johansen et al.).

7. DISCUSSION

7.1 Terrestrial planets vs. giant embryos

We think that Earth formed via successive collisions be-
tween planetesimals and planetary embryos, including a
protracted stage of giant impacts between embryos. But
does the formation of most terrestrial planets follow the
same blueprint as Earth?

The alternative is that terrestrial exoplanets are essen-
tially giant planetary embryos. They form from planetesi-
mals or pebbles and do not undergo a phase of giant impacts
after the dissipation of the gaseous disk. This is a wholly
reasonable possibility. Imagine a disk that only forms plan-
etesimals in a few preferred locations, perhaps at pressure
bumps. The planetesimals in each location could be ef-
ficiently swept up into a single large embryo, perhaps by
the largest planetesimal undergoing a rapid burst of super-
runaway pebble accretion. Isolated giant embryos would
evolve with no direct contact with other embryos. Only
if several embryos formed and migrated toward a common
location would embryo-embryo interactions become impor-
tant, and collisions would only occur if a critical number of
embryos was present (the critical number is about 5;Mor-
bidelli et al.2008;Pierens et al.2013).

Terrestrial planets and giant embryos should differ in
terms of their accretion timescales, their atmospheres, and
perhaps their geological evolution. The timescale for the
completion of Earth’s accretion is at least ten times longer
than the typical gas disk lifetime (see§2). Giant embryos
must form within the lifetime of the gaseous disk, while
the mechanisms to efficiently concentrate are active. How
would Earth be different if it had accreted ten times faster?
The additional heat of formation and from trapped short-
lived radionuclides could act to rapidly devolatilize the gi-
ant embryo’s interior. However, giant embryos may be able
to gravitationally capture thick envelopes of gas from the
disk, at least at cooler locations within the disk (Ikoma and
Hori 2012). The fate of giant embryos’ volatiles remain un-
studied. Nonetheless, given that only a very small amount
of H and He are needed to significantly inflate a planet’s ra-
dius (Fortney et al.2007), giant embryos would likely have
low bulk densities. Many low-density planets have indeed
been discovered (Marcy et al.2013;Weiss et al.2013), al-

though we stress that this does not indicate that these are
giant embryos.

How could we tell observationally whether late phases of
giant impacts are common? Perhaps the simplest approach
would be to search for signatures of such impacts around
stars that no longer harbor gaseous disks. The evolution
of warm dust, detected as excess emission at mid-infrared
wavelengths, has recently been measured to decline on 100
Myr timescales (Meyer et al.2008;Carpenter et al.2009;
Melis et al.2010). This dust is thought to trace the ter-
restrial planet-forming region (Kenyon and Bromley2004)
and indicates the presence of planetesimals or other large
dust-producing bodies in that region. In some cases the sig-
nature of specific minerals in the dust can indicate that it
originated in a larger body. In fact, the signature of a giant
impact was reported byLisse et al.(2009) around the∼12
Myr-old A star HD 172555. Given the 1-10 Myr interval be-
tween giant impacts in accretion simulations and the short
lifetime of dust produced (Kenyon and Bromley2005;Melis
et al. 2012), a direct measure of the frequency of systems
in which giant impacts occur will require a large sample
of young stars surveyed at mid-infrared wavelengths (e.g.,
Kennedy and Wyatt2012).

7.2 Limitations of the simulations

Despite marked advances in the last few years, simula-
tions of terrestrial planet formation remain both computa-
tionally and physically limited. Even the best numerical
integrators (Chambers1999; Duncan et al.1998; Stadel
2001) can follow the orbits of at most a few thousand par-
ticles at∼ 1 AU for the>100 Myr timescales of terrestrial
planet formation. There are 3-4 orders of magnitude in un-
certainty in the sizes of initial planetesimals, and a corre-
sponding 9-12 orders of magnitude uncertainty in the initial
number of planetesimals. It is clear that current simulations
cannot fully simulate the conditions of planet formation ex-
cept in very constrained settings (e.g.Barnes et al.2009).
Simulations thus resort to including planetesimals that are
far more massive than they should be.

There exist several processes thought to be important
in planet formation that have yet to be adequately mod-
eled. For example, the full evolution of a planetesimal
swarm including growth, dynamical excitation, and colli-
sional grinding has yet to be fully simulated (but seeBrom-
ley and Kenyon2011;Levison et al.2012). In addition to the
numerical and computational challenges, this task is com-
plicated by the fact that the initial distribution and sizesof
planetesimals, pebbles and dust remain at best modestly-
constrained by models and observations (see chapters by
Johansen et al. and Testi et al). Likewise, the masses, struc-
ture and evolution of the dominant, gaseous components of
protoplanetary disks is an issue of ongoing study.

8. SUMMARY

This chapter has flown over a broad swath of the land-
scape of terrestrial planet formation. We now summarize
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the take home messages.
1. The term “terrestrial planet” is well-defined in the

confines of our Solar System but not in extra-solar planetary
systems (§1).

2. There exist ample observed and measured constraints
on terrestrial planet formation models in the Solar System
and in extra-solar planetary systems (§2).

3. There exist two models for the growth of planetary
embryos (§3). Oligarchic growth proposes that embryos
grow from swarms of planetesimals. Pebble accretion pro-
poses that they grow directly from cm-sized pebbles.

4. Starting from systems of embryos and planetesimals,
the main factors determining the outcome of terrestrial ac-
cretion have been determined by simulations (§4). The most
important one is the level of eccentricity excitation of the
embryo swarm – by both gravitational self-stirring and per-
turbations from giant planets – as this determines the num-
ber, masses and feeding zones of terrestrial planets.

5. The observed systems of hot Super Earths probably
formed by either in-situ accretion from massive disks or in-
ward migration of embryos driven by interactions with the
gaseous disk (§5.1). The key debate in differentiating be-
tween the models is whether rocky planets that accrete in
situ could retain thick gaseous envelopes.

6. The dynamical histories of giant exoplanets are
thought to include gas-driven migration and planet-planet
scattering. An inward-migrating gas giant forms low-mass
planets interior to strong resonances and stimulates the for-
mation of outer volatile-rich planets. Dynamical instabil-
ities among giant planets can destroy terrestrial planets or
their building blocks, and this naturally produces a correla-
tion between debris disks and terrestrial planets (§5.2).

7. Historical simulations of terrestrial planet formation
could not reproduce Mars’ small mass (§6.1). This is called
thesmall Mars problem. Simulations can reproduce Mars’
small mass by invoking large initial eccentricities of Jupiter
and Saturn at their current orbital radii. Invoking early
planetesimal-driven migration of Jupiter and Saturn does
not produce a small Mars (§6.2).

8. TheGrand Tackmodel proposes that Jupiter migrated
inward to 1.5 AU then back outward due to disk torques be-
fore and after Saturn’s formation (§6.3). The inner disk was
truncated at 1 AU, producing a large Earth/Mars mass ratio.
Water was delivered to the terrestrial planets in the form of
C-class bodies scattered inward during the gas giants’ out-
ward migration.

Finally, it remains unclear whether most systems of ter-
restrial planets undergo phases of giant collisions between
embryos during their formation (§7.1).
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Jurić M. and Tremaine S. (2008)Astrophys. J., 686, 603.
Kaib N. A. et al. (2013)Nature, 493, 381.
Kennedy G. M. and Wyatt M. C. (2012)Mon. Not. R. Astron. Soc.,

426, 91.
Kenyon S. J. and Bromley B. C. (2004)Astrophys. J. Lett., 602,

L133.

Kenyon S. J. and Bromley B. C. (2005)Astron. J., 130, 269.
Kenyon S. J. and Bromley B. C. (2006)Astron. J., 131, 1837.
Kimura K. et al. (1974)Geochim. Cosmochim. Acta, 38, 683.
Kleine T. et al. (2002)Nature, 418, 952.
Kleine T. et al. (2009)Geochim. Cosmochim. Acta, 73, 5150.
Kobayashi H. and Dauphas N. (2013)Icarus, 225, 122.
Kobayashi H. and Tanaka H. (2010a)Icarus, 206, 735.
Kobayashi H. and Tanaka H. (2010b)Icarus, 206, 735.
Kokubo E. and Genda H. (2010)Astrophys. J. Lett., 714, L21.
Kokubo E. and Ida S. (1995)Icarus, 114, 247.
Kokubo E. and Ida S. (1996)Icarus, 123, 180.
Kokubo E. and Ida S. (1998)Icarus, 131, 171.
Kokubo E. and Ida S. (2000)Icarus, 143, 15.
Kokubo E. and Ida S. (2002)Astrophys. J., 581, 666.
Kokubo E. and Ida S. (2007)Astrophys. J., 671, 2082.
Kokubo E. et al. (2006)Astrophys. J., 642, 1131.
Kominami J. and Ida S. (2004)Icarus, 167, 231.
König S. et al. (2011)Geochim. Cosmochim. Acta, 75, 2119.
Kornet K. et al. (2004)Astron. Astrophys., 417, 151.
Kretke K. A. and Lin D. N. C. (2012)Astrophys. J., 755, 74.
Krivov A. V. (2010) Research in Astronomy and Astrophysics, 10,

383.
Lambrechts M. and Johansen A. (2012)Astron. Astrophys., 544,

A32.
Lammer H. et al. (2003)Astrophys. J. Lett., 598, L121.
Laskar J. (1997)Astron. Astrophys., 317, L75.
Laws C. et al. (2003)Astron. J., 125, 2664.
Lécuyer C. et al. (1998)Chem. Geol., 145, 249.
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Pérez L. M. et al. (2012)Astrophys. J. Lett., 760, L17.
Pierens A. and Nelson R. P. (2008)Astron. Astrophys., 482, 333.
Pierens A. and Raymond S. N. (2011)Astron. Astrophys., 533,

A131.
Pierens A. et al. (2013)Astron. Astrophys., 558, A105.
Rafikov R. R. (2004)Astron. J., 128, 1348.
Rasio F. A. and Ford E. B. (1996)Science, 274, 954.
Raymond S. N. (2006)Astrophys. J. Lett., 643, L131.
Raymond S. N. and Cossou C. (2014)arXiv:1401.3743.
Raymond S. N. et al. (2004)Icarus, 168, 1.
Raymond S. N. et al. (2005)Astrophys. J., 632, 670.
Raymond S. N. et al. (2006a)Science, 313, 1413.
Raymond S. N. et al. (2006b)Icarus, 183, 265.
Raymond S. N. et al. (2007a)Astrophys. J., 669, 606.
Raymond S. N. et al. (2007b)Astrobiology, 7, 66.
Raymond S. N. et al. (2008)Mon. Not. R. Astron. Soc., 384, 663.
Raymond S. N. et al. (2009)Icarus, 203, 644.
Raymond S. N. et al. (2010)Astrophys. J., 711, 772.
Raymond S. N. et al. (2011)Astron. Astrophys., 530, A62.
Raymond S. N. et al. (2012)Astron. Astrophys., 541, A11.
Raymond S. N. et al. (2013)Icarus, 226, 671.

Rodmann J. et al. (2006)Astron. Astrophys., 446, 211.
Safronov V. S. (1969)Evoliutsiia doplanetnogo oblaka.
Santos N. C. et al. (2001)Astron. Astrophys., 373, 1019.
Sasselov D. D. and Lecar M. (2000)Astrophys. J., 528, 995.
Schlichting H. E. et al. (2012)Astrophys. J., 752, 8.
Scholz A. et al. (2006)Astrophys. J., 645, 1498.
Stadel J. G. (2001)Cosmological N-body simulations and their

analysis, Ph.D. thesis, University of Washington.
Stewart S. T. and Leinhardt Z. M. (2012)Astrophys. J., 751, 32.
Sumi T. et al. (2011)Nature, 473, 349.
Tanaka H. and Ward W. R. (2004)Astrophys. J., 602, 388.
Tera F. et al. (1974)Earth and Planetary Science Letters, 22, 1.
Terquem C. and Papaloizou J. C. B. (2007)Astrophys. J., 654,

1110.
Thommes E. W. et al. (2003)Icarus, 161, 431.
Thommes E. W. et al. (2008)Science, 321, 814.
Touboul M. et al. (2007)Nature, 450, 1206.
Tsiganis K. et al. (2005)Nature, 435, 459.
Udry S. et al. (2007)Astron. Astrophys., 469, L43.
Valencia D. et al. (2007)Astrophys. J., 665, 1413.
Veras D. and Armitage P. J. (2004)Mon. Not. R. Astron. Soc., 347,

613.
Veras D. and Armitage P. J. (2005)Astrophys. J. Lett., 620, L111.
Veras D. and Armitage P. J. (2006)Astrophys. J., 645, 1509.
Walker R. J. (2009)Chemie der Erde / Geochemistry, 69, 101.
Walsh K. J. and Morbidelli A. (2011)Astron. Astrophys., 526,

A126.
Walsh K. J. et al. (2011)Nature, 475, 206.
Ward W. R. (1986)Icarus, 67, 164.
Ward W. R. (1997)Icarus, 126, 261.
Weidenschilling S. J. (1977)Astrophys. Space Sci., 51, 153.
Weidenschilling S. J. and Marzari F. (1996)Nature, 384, 619.
Weiss L. and Marcy G. W. (2013)arXiv:1312.0936.
Weiss L. M. et al. (2013)Astrophys. J., 768, 14.
Wetherill G. W. (1978) in:IAU Colloq. 52: Protostars and Plan-

ets, (edited by T. Gehrels), pp. 565–598.
Wetherill G. W. (1985)Science, 228, 877.
Wetherill G. W. (1991) in:Lunar and Planetary Institute Science

Conference Abstracts, vol. 22 of Lunar and Planetary Inst.
Technical Report, p. 1495.

Wetherill G. W. (1996)Icarus, 119, 219.
Wetherill G. W. and Stewart G. R. (1989)Icarus, 77, 330.
Wetherill G. W. and Stewart G. R. (1993)Icarus, 106, 190.
Williams J. P. and Cieza L. A. (2011)Annu. Rev. Astron. Astro-

phys., 49, 67.
Wilner D. J. et al. (2005)Astrophys. J. Lett., 626, L109.
Wright J. T. et al. (2008)Astrophys. J. Lett., 683, L63.
Wyatt M. C. (2008)Annu. Rev. Astron. Astrophys., 46, 339.
Yasui C. et al. (2009)Astrophys. J., 705, 54.
Yelle R. V. (2004)Icarus, 170, 167.
Yin Q. et al. (2002)Nature, 418, 949.
Yoshinaga K. et al. (1999)Icarus, 139, 328.
Youdin A. N. and Chiang E. I. (2004)Astrophys. J., 601, 1109.
Youdin A. N. and Goodman J. (2005)Astrophys. J., 620, 459.
Zhou J.-L. et al. (2005)Astrophys. J. Lett., 631, L85.

This 2-column preprint was prepared with the AAS LATEX macros v5.2.

24


