Outflows and Jets: Theory and Observations Summer term 2011 Henrik Beuther & Christian Fendt

- 15.04 Today: Introduction & Overview (H.B. & C.F.)
- 29.04 Definitions, parameters, basic observations (H.B.)
- 06.05 Basic theoretical concepts & models (C.F.)
- 13.05 Basic MHD and plasma physics; applications (C.F.)
- 20.05 Radiation processes (H.B.)
- 27.05 Observational properties of accretion disks (H.B.)
- 03.06 Accretion disk theory and jet launching (C.F.)
- 10.06 Outflow interactions: Entrainment, instabilities, shocks (C.F.)
- 17.06 Outflow-disk connection, outflow entrainment (H.B.)
- 24.06 Outflow-ISM interaction, outflow chemistry (H.B.)
- 01.07 Outflows from massive star-forming regions (H.B.)
- 08.07 Observations of extragalactic jets (C.F.)
- 15.07 Theory of relativistic jets (C.F.)

More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ss11.html beuther@mpia.de, fendt@mpia.de

- General introduction and blackbody radiation

The different phases of the ISM, heating and cooling processes

Radiation from a few selected important molecules

- Masers

- Forbidden lines

Planck's Black Body

$$B_{\nu}(T) = \frac{2h\nu}{c^2} \frac{1}{e^{h\nu/kT-1}}$$

Wien's Law

 $\lambda_{max} = 2.9/T [mm]$

Examples:

The Sun Humans

 $\begin{array}{c} T \sim 6000 \text{ K} \Rightarrow \lambda_{max} = 480 \text{ nm (optical)} \\ T \sim 310 \text{ K} \Rightarrow \lambda_{max} = 9.4 \text{ }\mu\text{m (MIR)} \end{array}$

General introduction and blackbody radiation

The different phases of the ISM, heating and cooling processes

Radiation from a few selected important molecules

- Masers

- Forbidden line

The Interstellar Medium II

Molecular Component

Carbon monoxide CO

Formaldehyde H₂CO

Cyanoacetyline HC₃N

molecular hydroge

Excitation mechanisms:

- Rotation
- Vibration
- Electronic transitions
- --> usually cm and (sub)mm wavelengths
- --> usually submm to FIR wavelengths
- --> usually MIR to optical wavelengths

The Interstellar Medium III

Ionized gas

radio continuum (2.5 GHz)

- H₂ recombination lines from optical to cm wavelengths
- Emission lines from heavier elements --> derive atomic abundances

He/H

C/H

0.1

3.4x10⁻⁴

- Free-free emission between e⁻ and H⁺

to the states

Heating processes

- Energy injection from outflows/jets
- Energy injection from supernovae
- UV radiation from stars
- Cosmic rays interaction with HI and H_2 (consist mainly of relativistic protons accelerated within magnetized shocks produced by supernova-remnant--molecular cloud interactions) $p^+ + H_2 -> H_2^+ + e^- + p^+$ (dissociation: ions also important for ionmolecule chemistry)
- Interstellar radiation (diffuse field permeating interstellar space) Mainly dissociates carbon (lower ionization potential than H_2).
 - $C + h_V -> C^+ + e^-$ The electron then disperses energy to surrounding atoms by collisions.
- Photoelectric heating: Heats grains which re-radiate in infrared regime.
 - UV photons eject e⁻ from dust and these e⁻ heat surrounding gas via collisions.

Cooling processes

Major constituents H & H₂ have no dipole moment and hence cannot effectively cool in quiescent molecular cloud. Other coolants required.
--> Hydrogen collides with ambient atoms/molecules/grains exciting them. The cooling is then done by these secondary constituents. O + H --> O + H + hv collisional excitation (FIR) C⁺ + H --> C⁺ + H + hv fine structure excitation (FIR) CO + H₂ --> CO + H₂ + hv rotational excitation (radio/(sub)mm) The low-J CO lines are mostly optically thick, the energy diffuses from region to region and escapes from cloud surface. Higher J lines cool directly. CO is the most effective coolant in molecular clouds.

 Collisions with gas atoms/molecules cause lattice vibrations on grain surfaces, that decay through the emission of infrared photons (since grains are also heated by radiation gas and dust temperature are usually not equal).

- General introduction and blackbody radiation

The different phases of the ISM, heating and cooling processes

Radiation from a few selected important molecules

- Masers

- Forbidden lines

Molecules in Space

2	3	4	5	6	7	8	9	10	11	12	13 atoms
H2	C3	c-C3H	C5	C5H	C6H	CH3C3N	CH3C4H	CH3C5N?	HC9N	CH3OC2H5	HC11N
AIF	C2H	I-C3H	C4H	I-H2C4	CH2CHCN	HCOOCH3	CH3CH2CN	(CH3)2CO			
AICI	C20	C3N	C4Si	C2H4	CH3C2H	CH3COOH?	(CH3)2O	NH2CH2COOH?			
C2	C2S	C30	I-C3H2	CH3CN	HC5N	C7H	CH3CH2OH	CH3CH2CHO			
CH	CH2	C3S	c-C3H2	CH3NC	HCOCH3	H2C6	HC7N				
CH+	HCN	C2H2	CH2CN	CH3OH	NH2CH3	CH2OHCHO	C8H				
CN	HCO	CH2D+?	CH4	CH3SH	c-C2H4O	CH2CHCHO					
CO	HCO+	HCCN	HC3N	HC3NH+	CH2CHOH						
CO+	HCS+	HCNH+	HC2NC	HC2CHO)						
CP	HOC+	HNCO	HCOOH	NH2CHC)						
CSi	H2O	HNCS	H2CHN	C5N							
HCI	H2S	HOCO+	H2C2O	HC4N							
KCI	HNC	H2CO	H2NCN								
NH	HNO	H2CN	HNC3								
NO	MgCN	H2CS	SiH4								
NS	MgNC	H3O+	H2COH+								
NaCl	N2H+	NH3									
OH	N2O	SiC3									
PN	NaCN	C4									
SO	OCS										
SO+	SO2										
SiN	c-SiC2										
SiO	CO2										
SiS	NH2										
ĊS	H3+										
HF	SiCN										
SH	AINC										
FeO(?)	SiNC										

About 160 detected interstellar molecules as of May 2011 (<u>www.cdms.de</u>). 38 (+1 tentative) molecular detection in extragalactic systems.

A few important molecules

Mol.	Trans. A	bund.	Crit. Dens. [cm ⁻³]	Comments
H ₂	1-0 S(1)	1	8x10 ⁷	Shock tracer
CŌ	J=1-0	8x10 ⁻⁵	3x10 ³	Low-density probe
OH	² ∏ _{3/2} ;J=3/2	3x10 ⁻⁷	1x10 ⁰	Magnetic field probe (Zeeman)
NH ₃	J,K=1,1	2x10 ⁻⁸	2x10 ⁴	Temperature probe
CS	J=2-1	1x10 ⁻⁸	4x10 ⁵	High-density probe
SiO	J=2-1		6x10 ⁵	Outflow shock tracer
H_2O	6 ₁₆ -5 ₂₃		1x10 ³	Maser
H_2O	$1_{10}^{10} - 1_{11}^{11}$	<7x10 ⁻⁸	2x10 ⁷	Warm gas probe
CH ₃ OH	7-6	1x10 ⁻⁷	1x10 ⁵	Dense gas/temperature probe
CH ₃ CN	19-18	2x10 ⁻⁸	2x10 ⁷	Temperature probe in Hot Cores

Molecular Hydrogen (H₂)

- Since H_2 consists of 2 identical atoms, it has no electric dipol moment and rotationally excited H_2 has to radiate via energetically higher quadrupole transitions with excitation temperatures > 500 K.
 - --> cold clouds have to be observed other ways, e.g., CO
- H_2 can be detected in hot environment. Rotational energy: <u>Classical mechanics:</u> $E_{rot} = J^2/2I$
 - (J: Angular momentum; I: Moment of inertia)
 - Quantum-mechanical counterpart: $E_{rot} = h^2/2I \times J(J+1)$

= BhI x J(J+1)

(J: rotational quantum number; B: rotational constant)
 Small moment of inertia --> large spread of energy levels
 Allowed quadrupole transitions ΔJ = 2
 --> lowest rotational transition J=2-0 has energy change of 510 K

Carbon monxide (CO)

- Forms through gas phase reactions similar to H_2 .
- Strong binding energy of 11.1 eV helps to prevent much further destruction (self-shielding).
- Has permanent dipole moment --> strong emission at (sub)mm wavelengths.
- Larger moment of inertia than H₂.
 --> more closely spaced rotational ladder, J=1 level at 4.8x10⁻⁴eV or 5.5K above ground
- In molecular clouds excitation mainly via collisions with H₂.
- Critical density for thermodynamic equilibrium with $H_2 n_{crit} = A/\gamma \sim 3x10^3 cm^{-3}$. (A: Einstein A coefficient; γ : collision rate with H_2)
- The level population follows a Boltzmann-law:

 $n_{J+1}/n_J = g_{J+1}/g_J \exp(-\Delta E/k_B T_{ex})$ (for CO, the statistical weights $g_J = 2J + 1$) The excitation temperature T_{ex} is a measure for the level populations and equals the kinetic temperature T_{kin} if the densities are > n_{crit} .

- General introduction and blackbody radiation

The different phases of the ISM, heating and cooling processes

Radiation from a few selected important molecules

Masers

Forbidden lines

- In the Rayleigh-Jeans limit, brightness temperature T and intensity I relate like $T = c^2/2kv^2I$ with $I=F/\Omega$ (Ω : solid angle). With the small spot diameters (of the order some AU), this implies brightness temperatures as high as 10^{15} K, far in excess of any thermal temperature --> no thermal equilibrium and no Boltzmann distribution.

- Narrow line-width

- Potential broad velocity distribution.
- They allow to study proper motions.

Molecular Masers II

- The excitation temperature is defined as: $n_u/n_l = g_u/g_l \exp(-h_v/kT_{ex})$.

- For maser activity, population inversion is required, i.e., $n_u/g_u > n_l/g_l$. --> This implies negative excitation temperatures for maser activity.
- In thermal conditions at a few 100K, for typical microwave lines $E_{\text{line}} = \frac{h_V}{k} < T_{\text{kin}} \sim T_{\text{ex}} \xrightarrow{-->} n_u/g_u \sim n_l/g_l$
 - --> Only a relatively small shift is required in get population inversion

 $T_{ex}/E_{line} = -1/ln(n_ug_l/n_lg_u)$

With rising T_{ex} the level populations are approaching each other, and then one has only to "overcome the border".

Different proposed pumping mechanisms, e.g.:

 Collisional pumping in J- and C-shocks of protostellar jets for H₂O masers.
 Radiative pumping at shock fronts between UCHII regions and ambient clouds. In both cases, very high densities and temperatures are required.

- General introduction and blackbody radiation

- The different phases of the ISM, heating and cooling processes

- Radiation from a few selected important molecules

- Masers

- Forbidden lines

Forbidden lines I

Protostellar jets discovered in optical forbidden emission lines Examples: DG Tau (Mundt & Fried 1983), HH34 (Bührke et al. 1988)

Associated to / interrelated with **HH objects:**

- = nebulous (narrow) emission line regions (Herbig and Haro in the 40ies), see online catalogue by Bo Reipurth, http://casa.colorado.edu /hhcat/)
- = shock-excited emission in dilute gas (Schwartz 1975, Raymond 1979)

Forbidden lines II

Why forbidden?

- radiative transition to certain atomic energy state "not allowed" (probability is very very low) by selection rules
- In lab collisional de-excitation, only at low densities in space possible
- (electric) dipole selection rules for many electron atom:

 $\begin{array}{l} \mathsf{DS}=0 \ (\text{spin}) \\ \mathsf{DL}=0,\,+1,\,-1 \ (\text{orbital angular momentum}) \\ \mathsf{DJ}=0,\,+1,\,-1 \ (\text{total angular momentum}) \\ \mathsf{Dm}=0,\,+1,\,-1 \ \text{polarized light (magnetic quantum number m)} \end{array}$

- higher order transitions if electric dipole transition "forbidden":

2nd order electric dipole, magnetic dipole

- transition rates / radiative life times

E1: 10e8 .. 10e9 /s - 1-10 ns E2 / M1: 10e3 .. 10e6 /s - 1ms - 1s

-> transition rates of higher order transtions much lower, life times much larger

Forbidden lines III

FEL intensity ratio as tracer for temperature & density

e.g. [OI] 557.7nm (solid), [SII] 673.1nm (dash-dotted) & [SII] (406.9+407.6nm) (dashed) as function of electron density Ne & temperature T,

all optically thin (Kwan & Tademaru 95)

- strength of [SII] (406.9+407.6nm) to constrain T for [OI] 557.7nm emission regions
- for Ne > 10e6: [SII] 407.6/406.9 ~0.22 ~const.
 - -> [SII] (406.9+407.6) have critical densities for collisional de-excitation
- comparion to observations:
 [OI] 557.7/630.0 ~ 0.1 ... 1.0
 for low velocity component of wind/jet

-> lower limit on Ne = $3x10^{6}$ /cm³ at T = 10^{4} K

to Ne = $2x10^8$ /cm^3 at T = $4.5x10^3$ K

Summary

- Different wavelengths trace different physical processes and temperatures.
- For example, atomic component via HI spin-flip transitions, molecular component via rotational, vibrational and electronic transitions and ionized via recombination lines or free-free emission.
- Discussed several different heating and cooling mechanisms.
- Radiation of selected molecules.
- Maser and forbidden line emission.
- Basic radiation transfer, column density determination and CO \rightarrow H₂ conv..

Outflows and Jets: Theory and Observations Summer term 2011 Henrik Beuther & Christian Fendt

- 15.04 Today: Introduction & Overview (H.B. & C.F.)
- 29.04 Definitions, parameters, basic observations (H.B.)
- 06.05 Basic theoretical concepts & models (C.F.)
- 13.05 Basic MHD and plasma physics; applications (C.F.)
- 20.05 Radiation processes (H.B.)
- 27.05 Observational properties of accretion disks (H.B.)
- 03.06 Accretion disk theory and jet launching (C.F.)
- 10.06 Outflow interactions: Entrainment, instabilities, shocks (C.F.)
- 17.06 Outflow-disk connection, outflow entrainment (H.B.)
- 24.06 Outflow-ISM interaction, outflow chemistry (H.B.)
- 01.07 Outflows from massive star-forming regions (H.B.)
- 08.07 Observations of extragalactic jets (C.F.)
- 15.07 Theory of relativistic jets (C.F.)

More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ss11.html beuther@mpia.de, fendt@mpia.de

- General introduction and blackbody radiation

- The different phases of the ISM, heating and cooling processes

- Radiation from a few selected important molecules

- Masers

- Forbidden lines

Radiation transfer I

 $dI_v = -\kappa_v I_v ds + \varepsilon_v ds$

with the opacity $d\tau_v = -\kappa_v ds$

and the source function $S_v = \epsilon_v / \kappa_v$

 $\Rightarrow dI_{\rm v}/~d\tau_{\rm v} = I_{\rm v} - S_{\rm v}$

Assuming a spatially constant source function \rightarrow radiation transfer equation $\Rightarrow I_v = S_v (1 - e^{-\tau v}) + I_{v,0}e^{-\tau v}$

Radiation transfer II

The excitation temperature T_{ex} is defined via a Boltzmann distribution as $n_1/n_{1-1} = g_1/g_{1-1} \exp(-h_V/kT_{ex})$ with n_1 and g_1 the number density and statistical weights. In case of rotational transitions $g_1 = 2J + 1$ In thermal equilibrium $T_{ev} = T_{kin}$ In a uniform molecular cloud the source function S, equals Planck function $S_v = B_v (T_{ex}) = 2hv^3/c^2 (exp(hv/kT_{ex}) - 1)^{-1}$ And the radiation transfer equation $\Rightarrow I_{v} = B_{v} (T_{ev}) (1 - e^{-\tau v}) + I_{v} e^{-\tau v}$ In the Rayleigh-Jeans limits ($h_V < < kT$) B equals $B = 2kv^2/c^2T$ (def. $\rightarrow T = c^2/(2kv^2) I_{u}$) And the radiation transfer equation using now the radiation temperature is $T_r = J_v (T_{ex}) (1 - e^{-\tau v}) + J_{v,0} (T_{ba}) e^{-\tau v}$ With $J_{v} = hv/k (exp(hv/kT) - 1)^{-1}$ Subtracting further the background radiation $T_r = (J_v(T_{ex}) - J_{v,0}(T_{ba})) (1 - e^{-\tau v})$

Molecular column densities

Conversion from CO to H₂ column densities

One classical way to derive conversion factors from CO to H_2 column densities and gas masses essentially relies on three steps:

- Derive ratio between colour excess E_{B-V} and optical extinction $A_v = 3.1 E_{B-V}$ (Savage and Mathis, 1979)
- The ratio $N(H_2)/E_{B-V}$: One can measure the H₂ column density, e.g., directly from UV Absorption lines.
- The ratio N(CO)/A_v: In regions of molecular gas emission, one can estimate A_v by star counts in the Infrared regime
- ⇒ Combining these three ratios, the CO observations can directly be converted to H_2 column densities. Assumptions about the 3D cloud geometry allow further estimates about the cloud masses and average densities.