Sternentstehung - Star Formation Winter term 2015/2016

Henrik Beuther & Thomas Henning

13.10 Today: Introduction & Overview	(H.B.)
20.10 Physical processes I	(H.B.)
27.10 Physcial processes II	(H.B.)
03.11	
10.11 Molecular clouds as birth places of stars	(H.B.)
17.11 Molecular clouds (cont.), Jeans Analysis	(T.H.)
24.11 Collapse models I	(T.H.)
01.12 Collapse models II	(T.H.)
08.12 Protostellar evolution	(H.B.)
15.12 Pre-main sequence evolution & outflows/jets	(H.B.)
22.12 Accretion disks I	(T.H.)
12.01 Accretion disks II	(T.H.)
19.01 Planet formation	(R.v.B.)
26.01 High-mass star formation, clusters and the IMF	(H.B.)
02.02 Examination week, no star formation lecture	

More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws1516.html beuther@mpia.de, henning@mpia.de

Topics today

- Infall signatures

- The first core and accretion luminosity

- The protostellar envelope structure

- Protostellar evolution

Infall signatures I

- 1. Rising T_{ex} along line of sight
- 2. Velocity gradient
- 3. Line optically thick
- 4. An additional optically thin line peaks at center

Infall signatures II

Spectra and fits

(Myers et al. 1996)

L1251B

CS 2-1

 $\times 0.5$

 $N_{A}H^{\dagger}$

2.0

4.0

0.0

101 - 112

Models

In model with two uniform regions along the line of sight, with velocity dispersion σ and peak optical depth $\tau_0 \rightarrow$ infall velocity v_{in} :

 $v_{in} \approx \sigma^2/(v_{red}-v_{blue}) * \ln((1+\exp(T_{BD}/T_D))/(1+\exp(T_{RD}/T_D)))$

Low-mass regions $\rightarrow v_{in}$ usually of the order 0.1 km/s. High-mass regions $\rightarrow V_{in}$ can exceed 1km/s \rightarrow hence supersonic.

Topics today

- Infall signatures

- The first core and accretion luminosity

- The protostellar envelope structure

- Protostellar evolution

The first core I

- Contraction of core via ambipolar diffusion initially slow.
- Σ /B reaches critical threshold \rightarrow contraction speeds up, high density \rightarrow core becomes opaque \rightarrow cooling less efficient \rightarrow T & P rise.
- Interior still mainly molecular hydrogen \rightarrow important for final collapse

The first core II

- Temperature estimate based on viral theorem:

2T + 2U + W + M = 0

W = -2U(kinetic & magnetic energy appr. as 0)

 $= -Gm^2/R = -3mRT/\mu$

 $=> T = \mu Gm/(3R R)$

 $= 850K (m/0.05M_{sun}) (R/5AU)^{-1}$

 \rightarrow significantly warmer than original core

- Addition of mass and further shrinking:
 - \rightarrow soon 2000K reached
 - \rightarrow collisional dissociation of H₂ starts.

The first core III

 However: thermal energy per molecule at 2000K
 ~ 0.74eV compared to dissociation energy of H₂ of ~ 4.48eV

 → Even modest increase of dissociated H₂ absorbs most grav. collapse energy
 → marginal increase in T & P

- Region of atomic H spreads outward

Without significant T & P increase, the first core cannot keep equilibrium
 → Entire core becomes unstable → collapses and forms protostar
 → significant T & ρ increase → collisionally ionize most hydrogen
 → emerging protostar is now dynamically stable.

- A protostar of 0.1M $_{sun}$ has radius of several R $_{sun}$, T~10 $^{5}{\rm K}$ and ρ ~10 $^{-2}{\rm g}$ cm $^{-3}$

Accretion shock and Accretion luminosity

- Grav. energy released during accretion approx. by the grav. pot. GM_*/R_* -> accretion luminosity of protostar: energy multiplied by accretion rate:

> $L_{acc} = GM_*/R_* (dM/dt)$ $= 61L_{sun} ((dM/dt)/10^{-5}M_{sun}/yr) (M_*/1M_{sun}) (R_*/5R_{sun})^{-1}$

- Additional luminosity from contraction and early nuclear fusion are negligable compare to L_{acc} for low- to intermediate-mass stars.

 Conventional definition of (low-mass) protostar: "Mass-gaining star deriving most of its luminosity from accretion." (However, caution for massive stars.)

Topics today

- Infall signatures

- The first core and accretion luminosity

- The protostellar envelope structure

- Protostellar evolution

Protostellar envelope I

- Outer envelope optically thin.

- Infalling gas compressed
 - → protostellar rad. trapped by high dust opacities.
 - \rightarrow Dust reradiates at FIR
- → Dust photosphere (a few AU for typical low-mass star) is effective warm radiating surface observable at MIR wavelengths

- Rapid T increase in dust envelope \rightarrow dust sublimation at T~1500K.
- Inside dust destruction front greatly reduced opacity \rightarrow infalling gas transparent to protostellar radiation \rightarrow opacity gap.
- Immediately outside the accretion shock, gas collisonally ionized \rightarrow opacity increases again \rightarrow so-called radiative precursor

Protostellar envelope II

- Difference in radiation from shocked "radiative precursor" and far-infrared radiation from dust photosphere
- In shock region gas approaches protostar ~ at free-fall speed:

$$\begin{split} \mathsf{E}_{\mathsf{kin}} &= 1/2m v_{\mathsf{ff}}^{\ 2} = \mathsf{E}_{\mathsf{grav}} = \mathsf{GM}_*\mathsf{m}/\mathsf{R}_* \\ &= > v_{\mathsf{ff}} = \sqrt{2}\mathsf{GM}_*/\mathsf{R}_* \\ &= 280 \ \mathsf{km/s} \ (\mathsf{M}_*/\mathsf{1M}_{\mathsf{sun}})^{1/2} \ (\mathsf{R}_*/\mathsf{5R}_{\mathsf{sun}})^{-1/2} \end{split}$$

→ Immediate postshock temperature >10⁶K, UV and X-ray regime
 → Postshock settling region opaque, quick temperature decrease
 → The surface of precursor radiates as ~ blackbody: Stephan-Boltzmann:

$$\begin{split} \mathsf{L}_{acc} &\sim 4 \pi R_*^2 \sigma_{\mathsf{B}} \mathsf{T}_{\mathsf{eff}}{}^4 \quad \mathsf{Substituting } \mathsf{L}_{acc} \quad => \mathsf{T}_{\mathsf{eff}} \sim (\mathsf{GM}_*(\mathsf{dM}/\mathsf{dt})/4 \pi R_*{}^3 \sigma_{\mathsf{B}})^{1/4} \\ &=> \mathsf{T}_{\mathsf{eff}} \sim 7300 \mathsf{K} \left((\mathsf{dM}/\mathsf{dt})/1 \mathsf{e}{}{}^{-5} \mathsf{M}_{\mathsf{sun}} \mathsf{yr}^{-1} \right) \left(\mathsf{M}_*/1 \mathsf{M}_{\mathsf{sun}} \right)^{1/4} \left(\mathsf{R}_*/5 \mathsf{R}_{\mathsf{sun}} \right)^{-3/4} \end{split}$$

→ Opacity gap is bathed in "optical emission" similar to main-sequence star. Very different to observable dust photosphere.

Temperatures and dimensions of envelope

- Temperature profile in optically thick dust envelope $T(r) \sim r^{-0.8}$
- Temperature profile in optically thin outer envelope $T(r) \sim r^{-0.4}$

Topics today

- Infall signatures

- The first core and accretion luminosity

- The protostellar envelope structure

- Protostellar evolution

Protostellar evolution/Stellar Structure equations

- The protostellar evolution can be analyzed numerical similarly to stars.

→ Stellar Structure equations

- The used spatial variable is M_r , the mass within shells of radius r

 $M_r = {}_0 \int^r 4 \pi r^2 \rho dr$

$$\Rightarrow \frac{\partial r}{\partial M_r} = \frac{1}{(4\pi r^2 \rho)}$$
(1)

Hydrostatic equilibrium: $-1/\rho \operatorname{grad}(P) - \operatorname{grad}(\Phi_g) = 0$ => $\partial P/\partial r = -G\rho M_r/r^2$ (2)

> Combining (1) in (2), one gets => $\partial P/\partial M_r = -GM_r/(4\pi r^4)$ (3)

Pressure obeys ideal gas equation: $P = \rho/\mu RT$ (4) (mean molecular weight μ depends on state of ionization and is function of T and ρ)

Protostellar evolution/Stellar Structure equations

- Thermal structure of opaque interior is described by diffusion equation

 $T^{3} \partial T / \partial M_{r} = - 3\kappa L_{int} / (256 \Pi^{2} \sigma_{B} r^{4})$ (5) (mean opacity κ is again function of T and ρ)

- Spatial variation of internal luminosity L_{int} follows heat equation:

 $\frac{\partial L_{int}}{\partial M_r} = \epsilon(\rho,T) - T \frac{\partial s}{\partial t}$ (6) (\varepsilon(\varphi,T)) rate of nuclear energy release; s(\varphi,T) is the entropy)

(For a mono-atomic gas, the entropy is: $s(\rho,T) = R/\mu \ln(T^{3/2}/\rho)$)

- Using adequate boundary conditions, one can now follow numerically the protostellar evolution.

Mass-radius relation

- Initial size unknown \rightarrow quickly converges

Initially large → low infall vel. → low L_{acc}
→ low s(M_r) → initial decrease of R_{*}
Opposite effect for very small initial state.

Adding additional infalling mass shells
 → protostar can be described by entropy profile s(M_r) (reflects conditions at accretion shock)

- s represents heat content of each added mass shell \rightarrow increase of s(M_R) causes a swelling of the protostar.

- In the absence of nuclear burning, an increasing $s(M_r)$ arises naturally because with rising M_* , the velocity of the infalling gas and hence the accretion shock and L_{acc} increases.

 \rightarrow Protostellar radius increases with time.

Convection I

- Displace parcel outward. P_{ext} decreases. \rightarrow parcel expands and $(\rho_{int})_1 < (\rho_{int})_0$

- Question:

- If (ρ_{int})₁ < (ρ_{ext})₁ parcel gets buoyant
 → convection starts and becomes important for heat transfer.
- If $(\rho_{int})_1 > (\rho_{ext})_1$ parcel sinks back down \rightarrow star remains radiatively stable.
- If parcel displacement very quick \rightarrow heat loss is negligable
 - \rightarrow its specific entropy s stays the same.
- In the absence of nuclear burning protostar has rising entropy profile $s(M_r)$ with $\partial s/\partial M_r > 0$ \rightarrow $(s_{int})_0 = (s_{int})_1 < (s_{ext})_1$
- However, $(P_{int})_1 = (P_{ext})_1$ and for ordinary gases $(\partial \rho / \partial s)_P < 0$,
 - i.e. \rightarrow density falls with increasing entropy at constant pressure.
 - \rightarrow (ρ_{int})₁ > (ρ_{ext})₁ for a rising entropy profile.
 - $\rightarrow \partial s/\partial M_r > 0$ implies radiative stability.

- However, M_*/R_* rises fast \rightarrow interior T increase \rightarrow Nuclear reactions start (at ~0.3 M_{sun} deuterium burning at ~10⁶K).
 - → entropy profile turns $\partial s / \partial M_r < 0$
 - \rightarrow too much energy for radiative transport in opaque interior
 - \rightarrow convection starts
- $\partial s/\partial M_r < 0 \rightarrow$ parcels are underdense ((ρ_{int})₁ < (ρ_{ext})₁) and hot.
 - \rightarrow heat transfer to surrounding \rightarrow denser/cooler parcels travel down again.
 - → Protostellar interior is well mixed and provides its own deuterium to center for further fusion processes.
- Convection is local phenomenon, some regions can be convective whereas others remain radiatively stable.

Deuterium burning

- ^{2}H + $^{1}H \rightarrow ^{3}He + \Delta E$ with $\Delta E \sim 5.5$ MeV, important from $10^{6}K$
- Protostellar size depends also on accretion but D-burning more important.
- The deuterium burning is very temperature sensitive:
 Increase of T → more deuterium burning → more heat
 - → increase of protostellar radius (L_{acc} = G(dM/dt)M_{*}/R_{*}) → lower T again
 → Deuterium burning acts as kind of thermostat keeping protostellar core at that evolutionary stage at about 10⁶K.

- Steady supply by new Deuterium from infalling gas via convection necessary to maintain thermostat.

Radiative stability again

What happens for Protostars gaining more than 1-2M_{sun} of mass?

The critical luminosity L_{crit} is the maximum value to be carried by radiative diffusion. It depends on opacity of gas/plasma.
 Continuum opacity from free-free emission (Kramers-law opacity) scales
 _{Kff} ∝ ρT^{-7/2} → strong decrease with T

- And one finds: $L_{crit} \propto M_*^{11/2}R_*^{-1/2}$

 \rightarrow For growing protostars, L_{crit} rises sharply surpassing interior luminosity.

 \rightarrow Convection then disappears and protostar gets radiative barrier.

Deuterium shell burning I

- Radiative barrier \rightarrow no new deuterium to center & deut. consumed rapidly.
- Interior luminosity L_{int} declines below L_{crit} \rightarrow convection disappears in whole interior volume.
- Deuterium accumulates in mantle outside radiative barrier.
- No internal fuel \rightarrow R_{*} does not change much anymore \rightarrow M_{*}/R_{*} rises more quickly, and temperatures increase rapidly.
- Base of deuterium shell reaches 10⁶K, deuterium shell burning starts and convection occurs in this shell structure.

- The shell burning injects heat and rises the entropy s of the outer layers. \rightarrow further swelling of the protostellar radius
- Adding even more mass, the inevitable rise of L_{crit} drives the radiative barrier and the associated burning layer and convection zone outward.
 - \rightarrow The protostar (>~2M_{sun}) is then almost fully radiatively stable.
- The previous scaling relation for L_{crit} should now apply to interior luminosity, and one finds: $L_{int} \sim 1L_{sun} (M_*/1M_{sun})^{11/2} (R_*/1R_{sun})^{-1/2}$

Summary

- The "first core" contracts until temperatures are able to dissociate H_2 to H.

- H-region spreads outward, T and P not high enough to maintain equilibrium, further collapse until H gets collisionally ionized. The dynamically stable protostar has formed.
- Accretion luminosity. Definition of low-mass protostar can be "mass-gaining object where the luminosity is dominated by accretion".
- Structure of the protostellar envelope.
- Stellar structure equations: follow numerically the protostellar and then later the pre-main sequence evolution.
- Convection and deuterium burning.

Sternentstehung - Star Formation Winter term 2015/2016

Henrik Beuther & Thomas Henning

13.10 Today: Introduction & Overview	(H.B.)	
20.10 Physical processes I	(H.B.)	
27.10 Physcial processes II	(H.B.)	
03.11		
10.11 Molecular clouds as birth places of stars	(H.B.)	
17.11 Molecular clouds (cont.), Jeans Analysis	(T.H.)	
24.11 Collapse models I	(T.H.)	
01.12 Collapse models II	(T.H.)	
08.12 Protostellar evolution	(H.B.)	
15.12 Pre-main sequence evolution & outflows/	jets	(H.B.)
22.12 Accretion disks I	(T.H.)	
12.01 Accretion disks II	(T.H.)	
19.01 Planet formation	(R.v.B.)	
26.01 High-mass star formation, clusters and the IMF	(H.B.)	
02.02 Examination week, no star formation lecture		

More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws1516.html beuther@mpia.de, henning@mpia.de