Sternentstehung - Star Formation Winter term 2024/2025 Henrik Beuther, Thomas Henning & Caroline Gieser 15.10 Today: Introduction & Overview (Beuther) **22.10 Physical processes I (Beuther)**

29.10 -- 05.11 Physcial processes II (Beuther) 12.11 Molecular clouds as birth places of stars (Beuther) 19.11 Molecular clouds (cont.), Jeans Analysis (Henning) 26.11 Collapse models I (Beuther) 03.12 Collapse models II (Beuther) 10.12 Protostellar evolution (Gieser) 17.12 Pre-main sequence evolution & outflows/jets (Henning) 07.01 Accretion disks I (Henning) 14.01 Accretion disks II (Henning) 21.01 High-mass star formation, clusters and the IMF (Gieser) 28.01 Extragalactic star formation (Henning) 04.02 Planetarium@HdA, outlook, questions 11.02 Examination week, no star formation lecture (Beuther, Gieser, Henning) Book: Stahler & Palla: The Formation of Stars, Wileys More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws2425.html [beuther@m](mailto:beuther@mpia.de)[pia.de, henning@m](mailto:henning@mpia.de)pia.de [, gieser@m](mailto:suri@mpia.de)pia.de

Topics today

- The ISM, molecules and depletion

- Heating and cooling

- Radiation transfer and column density determination

The cosmic cycle

http://www.astro.uni-koeln.de

Properties of Molecular Clouds

Neutral and ionized medium

atomic hydrogen

http://adc.gsfc.nasa.gov

radio continuum (2.5 GHz)

Stars form in the dense molecular gas and dust cores

Most important astrophysical tools:

Spectral lines emitted by various molecules

Absorption and thermal emission from dust

The Interstellar Medium I

Atomic Hydrogen

21cm line: electron spin S flip from parallel $(F=1)$ to antiparallel $(F=0)$ compared to the Proton spin I.

http://adc.gsfc.nasa.gov

atomic hydrogen

 $\Delta E = 5.9x10^{-5}$ eV

The Interstellar Medium I

The Ionized gas

Ionized gas

http://adc.gsfc.nasa.gov

radio continuum (2.5 GHz)

- Hydrogen recombination lines from optical to cm wavelengths
- Emission lines from heavier elements --> derive atomic abundances

- Free-free emission between e^- and H^+

The Molecular ISM

Molecular Hydrogen

http://adc.gsfc.nasa.gov

Carbon monoxide CO F ormaldehyde H₂CO Cyanoacetyline HC₃N

molecular hydrog

Excitation mechanisms:

-
-
-
- Rotation **-->** usually cm and (sub)mm wavelengths
- Vibration **-->** usually submm to FIR wavelengths
- Electronic transitions --> usually MIR to optical wavelengths

Molecular ISM Basics

History:

- Late 1930s: Detection of CH, CH+ and CN in diffuse clouds by ab sorption of optical light from background stars
- 1960s: Detection of OH, NH₃ and H₂O at radio wavelength
- 1970: CO

Formation of molecules is an energy problem: Two atoms approach each other with positive total energy \rightarrow rebound if no energy can be given away

Possibilities:

- Simultaneous collision with 3rd atom carrying away energy --> unlikely at the given low densities
- Form a molecule in excited state, and then radiating away energy --> probalility of such radiative association low as well

Molecular ISM Basics

- Ion-molecule or ion-atom reactions can solve energy problem
- Neutral-neutral reactions on dust grain surfaces (catalytic) important
- Ion induces dipole moment in atom or molecule --> creates electrostatic attraction between the two. --> effective cross section increases over geometric values
- At low temperatures such reactions account for large fraction of molecules.

 $+$ $-$

 $+$ + +

- However, not enough ions to account for large $H₂$ abundances --> grain surface chemistry important

- Simple molecules like CO or $CS \rightarrow$ ion-molecule chemistry,
- More complex molecules \rightarrow grain surface chemistry important

Molecular ISM Basics

- However, not enough ions to account for large H_2 abundances --> grain surface chemistry important

- Simple molecules like CO or $CS \rightarrow$ ion-molecule chemistry,

- More complex molecules \rightarrow grain surface chemistry important

Molecules in Space

Molecules in the Interstellar Medium or Circumstellar Shells (as of 09/2024)

More than 320 detected interstellar molecules as of October [2024 \(www.cdm](http://www.cdms.de)s.de). 74 molecular detection in extragalactic systems.

A few important molecules

Crit. Dens.: $n_{crit} \sim A/\gamma$

Basics IV

Depletion of molecules on dust grains

In molecule's ref. frame, grains are moving at v_{therm} relative to molecules

 $E = 1/2$ mv²_{therm} = 3/2 k_bT => v_{therm} = $(3k_bT/m)^{1/2}$

n grains sweeps out cylindrical volume in time Δt of $n(\pi a^2)v_{\text{therm}}\Delta t$ (a: grain radius)

Probability of molecule in volume V to be struck by grain in time Δt $P(\Delta t) = n(\pi a^2) v_{\text{therm}} \Delta t /V$

Hence the collision time t_{coll} (for $P(\Delta t)V = 1$) $t_{\text{coll}} = 1/(n(\pi a^2) v_{\text{therm}}) = 1/(n_H \Sigma v_{\text{therm}})$ (n_H: density; Σ : grain cross section)

For example CS: $v_{\text{therm}} \sim 5 \times 10^3$ cm s⁻¹ at 10K, n_H ~ 10⁴cm⁻³, $\Sigma \sim 10^{-21}$ cm² $t_{coll} \sim 6x10^5$ yr

Depletion time-scale very short --> mechanisms for re-injecting molecules from grains important

Depletion example

1.2 mm Dust Continuum C¹⁸O N₂H⁺

Possible mechanisms working against depletion:

- UV radiation (not working in dense cores)
- In small grain, heat from chemical grain surface reactions could raise temperature
- Kelvin-Helmholtz contraction and energy
- Ignited central protostar
- Shocks

Molecular Hydrogen (H₂)

- H₂ consists of 2 identical atoms \rightarrow no dipole moment

- Rotationally excited H₂ has allowed quadrupole transitions $\Delta J = 2$ \rightarrow lowest rotational transition J=2-0 has energy change of 510 K

- Rotational energy for H_2 : Classical mechanics: $E_{rot} = J^2/2I$ (J: Angular momentum; I: Moment of inertia)
	- \rightarrow Small moment of inertia (I=mr²) \rightarrow large spread of energy levels

 \rightarrow Cold clouds have to be observed other ways, e.g., CO

Carbon monxide (CO)

- Forms through gas phase reactions.
- Strong binding energy of 11.1 eV
	- \rightarrow prevents much further destruction (self-shielding).
- Permanent dipole moment \rightarrow strong emission at (sub)mm wavelengths.
- Larger moment of inertia than H_2 . \rightarrow more closely spaced rotational ladder, $J=1$ level at 4.8x10⁻⁴eV or 5.5K above ground
- In molecular clouds excitation mainly via collisions with H_2 .
- Critical density for thermodynamic equilibrium with H₂ $n_{crit} = A/\gamma \sim 3x10^3$ cm⁻³.
(A: Einstein A coefficient; γ : collision rate with H₂)
- The level population follows a Boltzmann-law: $n_{1+1}/n_1 = g_{1+1}/g_1 \exp(-\Delta E / k_B T_{ex})$ (for CO, the statistical weights $g_1 = 2J + 1$) Excitation temperature T_{ex} measure for the level populations and equals the kinetic temperature T_{kin} if densities are $> n_{crit}$.

http://www.cdms.de

Topics today

- The ISM, molecules and depletion

- Heating and cooling

- Radiation transfer and column density determination

Heating processes

UV radiation from stars

Energy injection from supernovae

Energy injection from outflows/jets

- Cosmic rays interact with HI and H_2 (mainly relativistic protons accelerated within magnetized shocks produced by supernova-remnant--molecular cloud interactions)

 $p^+ + H_2 \rightarrow H_2^+ + e^- + p^+$ (dissociation \rightarrow ion-molecule chemistry)

- Interstellar radiation (diffuse field permeating interstellar space) Mainly dissociates carbon (lower ionization potential than H_2)

 $C + hv \rightarrow C^+ + e^-$ Electron disperses energy to ISM by collisions.

- Photoelectric heating: - Heats grains that re-radiate in infrared regime - UV photons eject e from dust \rightarrow e- heat surrounding gas via collisions

Cooling processes

- H & H₂ no dipole moment \rightarrow no efficient coolant in cold molecular cloud \rightarrow other coolants needed

 --> Hydrogen collides with ambient atoms/molecules/grains \rightarrow Cooling via these secondary constituents.

 $O + H$ --> $O + H + hv$ collisional excitation (FIR) $C^+ + H \longrightarrow C^+ + H + hv$ fine structure excitation (FIR) $CO + H₂$ --> $CO + H₂ + hv$ rotational excitation (radio/(sub)mm) At higher densities other molecules come into play, e.g., H_2O .

 \rightarrow CO the most effective coolant in molecular clouds.

- Collisions with gas atoms/molecules cause lattice vibrations on grain surfaces, that decay through the emission of infrared photons.

 \rightarrow dust very efficient coolant

Cooling processes

Topics today

- The ISM, molecules and depletion

- Heating and cooling

- Radiation transfer and column density determination

Radiation transfer I

 $dI_v = -\kappa_v I_{v,0} ds + \varepsilon_v ds$

with the opacity $d\tau_v = -\kappa_v ds$

k: absorption coef. e: emission coef.

and the source function $S_v = \varepsilon_v / \kappa_v$ \Rightarrow dI_v/ d_{τ_v} = I_{v0} - S_v

Assuming a spatially constant source function \rightarrow radiation transfer equation

 \Rightarrow ${\rm I}_{\rm v}$ $=$ ${\rm S}_{\rm v}$ $\left(1$ - ${\rm e}^{\scriptscriptstyle -\tau({\rm v})}\right)$ + ${\rm I}_{{\rm v},0}$ ${\rm e}^{\scriptscriptstyle -\tau({\rm v})}$

Radiation transfer II

The excitation temperature T_{ex} is defined via a Boltzmann distribution as

 $n_1/n_{1-1} = g_1/g_{1-1} \exp(-hv/kT_{ex})$

with n_1 and q_1 the number density and statistical weights.

In case of rotational transitions

 $q_1 = 2J + 1$

J: rot. quantum number

In thermal equilibrium

 $T_{ex} = T_{kin}$

In a uniform molecular cloud the source function S_{v} equals Planck function

 $S_v = B_v$ (T_{ex}) = 2hv³/c² (exp(hv/kT_{ex}) - 1)⁻¹

Radiation transfer III

Then the radiation transfer equation

 \Rightarrow ${\rm I}_{\rm v}$ = ${\rm B}_{\rm v}$ (T_{ex}) (1 - e^{-τ(v)}) + ${\rm I}_{\rm v,0}$ e^{-τ(v)}

In the Rayleigh-Jeans limits (hv << kT) B equals

 $B = (2kv^2/c^2)T$ (def. $\rightarrow T = c^2/(2kv^2) I_v$)

And the radiation transfer equation using now the radiation temperature is

$$
T_r = J_v(T_{ex}) (1 - e^{-\tau(v)}) + J_{v,0}(T_{bg})e^{-\tau(v)}
$$

with

 $J_v = h v / k$ (exp(hv/kT) - 1)⁻¹

Molecular column densities I

To derive molecular column densities, 3 quantities are important:

1) Intensity T of the line

2) Optical depth τ of the line (observe isotopologues or hyperfine structure)

3) Partition function Q

The optical depth τ of a molecular transition can be expressed like

 $\tau = c^2/8\pi v^2$ A_{ul}N_u (exp(hv/kT) -1) ϕ

with the Einstein A_{ul} coefficient

 $A_{\text{ul}} = 64\pi^4 v^3/(3c^3 h)$ μ^2 J_u $(2J_{\text{ul}}-1)$

and the line form function ϕ

 $\phi = c/v$ 2sqrt(ln2)/(sqrt(π) Δv)

Molecular column densities II

Using furthermore the radiation transfer eq. ignoring the background

 $T = J_{\nu} (T_{\text{ex}}) \tau (1 - e^{-\tau})/\tau$

And solving τ -equation for N_u, one gets

 $N_{\mu} = 3k/8\pi^3v \frac{1}{\mu^2} (2J_{\mu} - 1)/J_{\mu} \tau/(1 - e^{-\tau})$ (T Δv sqrt $(\pi)/(2$ sqrt $(ln2))$)

The last expression equals the integral ∫ T dv.

 \rightarrow N_u ~ τ /(1 - e^{-t}) ∫ T dv

The column density in the upper level N_{u} relates to the total column density N_{tot}

 $N_{\text{tot}} = N_{\text{u}}/g_{\text{u}} \exp(E_{\text{u}}/kT)$ Q

For linear molecule like CO, partition function Q approximated: $Q = kT/hB$.
(B: rotational constant)

However, for more complex molecules Q can become very complicated.

Conversion from CO to $H₂$ column densities

Classical way to derive conversion factors from CO to $H₂$ column densities:

- 1) Derive ratio between colour excess E_{B-V} and optical extinction A_{V} $A_v = 3.1 E_{B-V}$ (Savage and Mathis, 1979)
- 2) The ratio $N(H_2)/E_{B-V}$: One can measure the H₂ column density, e.g., directly from UV Absorption lines.
- 3) The ratio $N(CO)/A$ ^t: In regions of molecular gas emission, one can estimate A_{v} by star counts in the Infrared regime
- \Rightarrow Combining these three ratios: CO \rightarrow H₂ column densities.

Summary

- Main tools: Spectral line emission and thermal emission and extinction from dust (more on dust next week)

- Molecules interesting for themselves and chemistry
- However, also extremely useful to trace physical processes.
- Molecules deplete on grains at low temperatures
- Discussed main cooling and heating processes
- Discussed basic line radiation transfer and column density determination

Sternentstehung - Star Formation

Winter term 2024/2025

Henrik Beuther, Thomas Henning & Caroline Gieser

[beuther@m](mailto:beuther@mpia.de)[pia.de, henning@m](mailto:henning@mpia.de)pia.de [, gieser@m](mailto:suri@mpia.de)pia.de

15.10 Today: Introduction & Overview (Beuther) 22.10 Physical processes I (Beuther) $29.10 -$

05.11 Physcial processes II (Beuther)

12.11 Molecular clouds as birth places of stars (Beuther) 19.11 Molecular clouds (cont.), Jeans Analysis (Henning) 26.11 Collapse models I (Beuther) 03.12 Collapse models II (Beuther) 10.12 Protostellar evolution (Gieser) 17.12 Pre-main sequence evolution & outflows/jets (Henning) 07.01 Accretion disks I (Henning) 14.01 Accretion disks II (Henning) 21.01 High-mass star formation, clusters and the IMF (Gieser) 28.01 Extragalactic star formation (Henning) 04.02 Planetarium@HdA, outlook, questions 11.02 Examination week, no star formation lecture (Beuther, Gieser, Henning) Book: Stahler & Palla: The Formation of Stars, Wileys More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws2425.html

Heidelberg Joint Astronomical Colloquium Winter Semester 2024/25 Tuesday October 22nd Main Lecture Theatre, Philosophenweg 12, 16:30 CEST

leftover emission from jet activity

> galaxy centre with black hole

jet launched from black hole

Leah Morabito (University of Durham):

> The highest resolution at the lowest frequencies: what LOFAR can tell us about active galactic nucleii

https://www.physik.uni-heidelberg.de/hephysto/ Host: Eduardo Banados (banados@mpia.de) Image Credit: L.K. Morabito; LOFAR Legacy Survey

- *Chemical Enrichments in the Milky Way and it's Accreted Dwarf Galaxies*
- 3 Dec Daniele Huppenkothen (SRON, Utrecht) *To be announced*
- 10 Dec Barbara Ercolano (Universitäts-Sternwarte München) *The atmospheres of discs and planets*
- 17 Dec Aurora Simionescu (Leiden Observatory) *The beating hearts of galaxies: supermassive black hole feedback probed by X-ray spectroscopy*
- 7 Jan Ilse De Looze (University of Ghent)

 To be announced

- 14 Jan Caroline Heneka (Institut für Theoretische Physik, Heidelberg) *The Universe in multi-color: Astronomy at the dawn of intensity mapping and AI*
- 21 Jan Sylvia Ekstroem (University of Geneva) *To be announced*
- 28 Jan Martin Pessah (Niels Bohr Institute, Copenhagen) *To be announced*
- 4 Feb Amelie Saintonge (UC London / MPI für Radioastronomie, Bonn) *To be announced*

https://www.physik.uni-heidelberg.de/hephysto/index.php?s=event@id=1

Caption: JWST-NIRCam image of the SNR Cassiopeia A with filters color coded as F162M: Blue F356W: Green F444W: Red NASA, ESA, CSA, STScI, Danny Milisavljevic (Purdue University), Ilse De Looze (UGent), Tea Temim (Princeton University)

