Sternentstehung - Star Formation Winter term 2022/2023 Henrik Beuther, Thomas Henning & Jonathan Henshaw 18.10 Today: Introduction & Overview (Beuther) 25.10 Physical processes I (Beuther) 08.11 Physcial processes II (Beuther) (Henshaw) 15.11 Molecular clouds as birth places of stars 22.11 Molecular clouds (cont.), Jeans Analysis (Henshaw) 29.11 Collapse models I (Beuther) 06.12 Collapse models II (Henning) 13.12 Protostellar evolution (Beuther) 20.12 Pre-main sequence evolution & outflows/jets (Beuther) (Henning) 10.01 Accretion disks I (Henning) 17.01 Accretion disks II 24.01 High-mass star formation, clusters and the IMF (Henshaw) 31.01 Extragalactic star formation (Henning) 07.02 Planetarium@HdA, outlook, questions 13.02 Examination week, no star formation lecture Book: Stahler & Palla: The Formation of Stars, Wileys

More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws2223.html beuther@mpia.de, henning@mpia.de , henshaw@mpia.de

Topics today

- The ISM, molecules and depletion

- Heating and cooling

Radiation transfer and column density determination

The cosmic cycle

http://www.astro.uni-koeln.de

Properties of Molecular Clouds

Туре	n [cm ⁻³]	Size [pc]	Т [K]	Mass [M _{sun}]
Giant Molecular Cloud	10 ²	50	15	10 ⁵
Dark Cloud Complex	5x10 ²	10	10	104
Individual Dark Cloud	10 ³	2	10	30
Dense low-mass cores	104	0.1	10	10
Dense high-mass cores	>105	0.1-1	10-30	100-10000

Neutral and ionized medium

atomic hydrogen

http://adc.gsfc.nasa.gov

S. LANG A.

radio continuum (2.5 GHz)

Stars form in the dense molecular gas and dust cores

Most important astrophysical tools:

Spectral lines emitted by various molecules

Absorption and thermal emission from dust

The Interstellar Medium I

Atomic Hydrogen

<u>21cm line:</u> electron spin S flip from parallel (F=1) to antiparallel (F=0) compared to the Proton spin I.

atomic hydrogen

http://adc.gsfc.nasa.gov

 $\Delta E = 5.9 \times 10^{-5} \, eV$

The Interstellar Medium I

Energy, E

The Ionized gas

Ionized gas

http://adc.gsfc.nasa.gov

radio continuum (2.5 GHz)

- Hydrogen recombination lines from optical to cm wavelengths
- Emission lines from heavier elements --> derive atomic abundances

He/H

C/H

N/H

- Free-free emission between e⁻ and H⁺

0.1

3.4x10⁻⁴

6.8x10⁻⁵

The Molecular ISM

Molecular Hydrogen

http://adc.gsfc.nasa.gov

Formaldehyde H₂CO

Cyanoacetyline HC₃N

molecular hydrogen

Excitation mechanisms:

- Rotation
- Vibration
- Electronic transitions

--> usually cm and (sub)mm wavelengths

- --> usually submm to FIR wavelengths
- --> usually MIR to optical wavelengths

Molecular ISM Basics

History:

- Late 1930s: Detection of CH, CH⁺ and CN in diffuse clouds by absorption of optical light from background stars
- 1960s: Detection of OH, NH₃ and H₂O at radio wavelength
- 1970: CO

Formation of molecules is an energy problem: Two atoms approach each other with positive total energy → rebound if no energy can be given away

Possibilities:

- Simultaneous collision with 3rd atom carrying away energy
 --> unlikely at the given low densities
- Form a molecule in excited state, and then radiating away energy
 --> probalility of such radiative association low as well

Molecular ISM Basics

- Ion-molecule or ion-atom reactions can solve energy problem
- Neutral-neutral reactions on dust grain surfaces (catalytic) important
- Ion induces dipole moment in atom or molecule
 --> creates electrostatic attraction between the two.
 --> effective cross section increases over geometric values
- At low temperatures such reactions account for large fraction of molecules.
- However, not enough ions to account for large H_2 abundances --> grain surface chemistry important

Simple molecules like CO or CS → ion-molecule chemistry,
 More complex molecules → grain surface chemistry important

Molecular ISM Basics

- However, not enough ions to account for large H₂ abundances --> grain surface chemistry important

- Simple molecules like CO or CS \rightarrow ion-molecule chemistry,

- More complex molecules \rightarrow grain surface chemistry important

Molecules in Space

2	3	4	5	6	7	8	9	10	11	12	13 atoms
H2 AIF AICI C2 CH + CN CO C9 CSi HCI NO NS NaCI OH NS S0 S0 SiS SS HF FeO(?)	C3 C2H C2O C2S CH2 HCN HCO HCO+ HCO+ HCS+ HOC+ H2O H2S HNC HNO MgNC N2H+ N2O NaCN OCS SO2 c-SiC2 CO2 NH2 H3+ SiCN AINC	c-C3H I-C3H C3N C3O C3S C2H2 CH2D+? HCCN HCNH+ HNCO HNCS HOCO+ H2CO H2CN H2CS H3O+ NH3 SiC3 C4	C5 C4H C4Si I-C3H2 c-C3H2 CH2CN CH4 HC3N HC2NC HCOOH H2CHN H2C2O H2NCN HNC3 SiH4 H2COH+	C5H I-H2C4 C2H4 CH3CN CH3NC CH3OH CH3SH HC3NH+ HC2CHO NH2CHO C5N HC4N	C6H CH2CHCN CH3C2H HC5N HCOCH3 NH2CH3 c-C2H4O CH2CHOH	CH3C3N HCOOCH3 CH3COOH? C7H H2C6 CH2OHCHO CH2CHCHO	СН3С4Н СН3СН2СN (СН3)2О СН3СН2ОН НС7N С8Н	CH3C5N? (CH3)2CO NH2CH2COOH? CH3CH2CHO	HC9N	CH3OC2H5	HC11N

About 270 detected interstellar molecules as of October 2022 (<u>www.cdms.de</u>). 73 molecular detection in extragalactic systems.

A few important molecules

Mol.	Trans. /	Abund.	Crit. dens. [cm ⁻³]	Comments
H ₂	1-0 S(1)	1	8x10 ⁷	Shock tracer
CO	J=1-0	8x10 ⁻⁵	3x10 ³	Low-density probe
OH	² ∏ _{3/2} ;J=3/2	3x10 ⁻⁷	1x10 ⁰	Magnetic field probe (Zeeman)
NH ₃	J,K=1,1	2x10 ⁻⁸	2x10 ⁴	Temperature probe
CS	J=2-1	1x10 ⁻⁸	4x10 ⁵	High-density probe
SiO	J=2-1		6x10 ⁵	Outflow shock tracer
H_2O	6 ₁₆ -5 ₂₃		1x10 ³	Maser
$H_2^{-}O$	$1_{10} - 1_{11}$	<7x10 ⁻⁸	2x10 ⁷	Warm gas probe
CH ₃ OH	7-6	1x10 ⁻⁷	1×10 ⁵	Dense gas/temperature probe
CH ₃ CN	19-18	2x10 ⁻⁸	2x10 ⁷	Temperature probe in Hot Cores

Crit. Dens.: $n_{crit} \sim A/\gamma$

Basics IV

Depletion of molecules on dust grains

In molecule's ref. frame, grains are moving at v_{therm} relative to molecules

 $E = 1/2 \text{ mv}_{\text{therm}}^2 = 3/2 \text{ k}_{\text{b}} \text{T} => \text{v}_{\text{therm}} = (3\text{k}_{\text{b}}\text{T/m})^{1/2}$

n grains sweeps out cylindrical volume in time Δt of $n(\pi a^2)v_{therm}\Delta t$ (a: grain radius)

Probability of molecule in volume V to be struck by grain in time $\Delta t P(\Delta t) = n(\pi a^2)v_{therm}\Delta t /V$

For example CS: $v_{therm} \sim 5x10^3$ cm s⁻¹ at 10K, $n_H \sim 10^4$ cm⁻³, $\Sigma \sim 10^{21}$ cm² $t_{coll} \sim 6x10^5$ yr

Depletion time-scale very short --> mechanisms for re-injecting molecules from grains important

Depletion example

1.2 mm Dust Continuum

C¹⁸O

Possible mechanisms working against depletion:

- UV radiation (not working in dense cores)
- In small grain, heat from chemical grain surface reactions could raise temperature
- Kelvin-Helmholtz contraction and energy
- Ignited central protostar
- Shocks

Molecular Hydrogen (H₂)

- H_2 consists of 2 identical atoms \rightarrow no electric dipole moment

- Rotationally excited H₂ has allowed quadrupole transitions $\Delta J = 2$ \rightarrow lowest rotational transition J=2-0 has energy change of 510 K

 Rotational energy for H₂: Classical mechanics: E_{rot} = J²/2I (J: Angular momentum; I: Moment of inertia)

→ Small moment of inertia (I=mr²)
→ large spread of energy levels

 \rightarrow Cold clouds have to be observed other ways, e.g., CO

Carbon monxide (CO)

- Forms through gas phase reactions.
- Strong binding energy of 11.1 eV
 - \rightarrow prevents much further destruction (self-shielding).
- Permanent dipole moment \rightarrow strong emission at (sub)mm wavelengths.
- Larger moment of inertia than H₂.
 → more closely spaced rotational ladder, J=1 level at 4.8x10⁻⁴eV or 5.5K above ground
- In molecular clouds excitation mainly via collisions with H₂.
- Critical density for thermodynamic equilibrium with H₂ n_{crit} = A/γ ~ 3x10³cm⁻³. (A: Einstein A coefficient; γ: collision rate with H₂)

http://www.cdms.de

Topics today

- The ISM, molecules and depletion

- Heating and cooling

Radiation transfer and column density determination

Heating processes

UV radiation from stars

Energy injection from supernovae

Energy injection from outflows/jets

 Cosmic rays interact with HI and H₂ (consist mainly of relativistic protons accelerated within magnetized shocks produced by supernova-remnant--molecular cloud interactions)

 $p^+ + H_2 \rightarrow H_2^+ + e^- + p^+$ (dissociation \rightarrow ion-molecule chemistry)

 Interstellar radiation (diffuse field permeating interstellar space) Mainly dissociates carbon (lower ionization potential than H₂)

 $C + hv \rightarrow C^+ + e^-$ Electron disperses energy to ISM by collisions.

Photoelectric heating: - Heats grains which re-radiate in infrared regime
 UV photons eject e⁻ from dust and these e⁻ heat surrounding gas via collisions

Cooling processes

- H & H₂ no dipole moment \rightarrow no efficient coolant in cold molecular cloud \rightarrow other coolants needed

--> Hydrogen collides with ambient atoms/molecules/grains \rightarrow Cooling via these secondary constituents.

O + H --> O + H + hv collisional excitation (FIR) $C^+ + H \rightarrow C^+ + H + hv$ fine structure excitation (FIR) $CO + H_2 --> CO + H_2 + h_V$ rotational excitation (radio/(sub)mm) At higher densities other molecules come into play, e.g., H_2O .

 \rightarrow CO the most effective coolant in molecular clouds.

- Collisions with gas atoms/molecules cause lattice vibrations on grain surfaces, that decay through the emission of infrared photons.

 \rightarrow dust very efficient coolant

Cooling processes

Topics today

- The ISM, molecules and depletion

- Heating and cooling

Radiation transfer and column density determination

Radiation transfer I

 $dI_{v} = -\kappa_{v}I_{v,0}ds + \varepsilon_{v}ds$

with the opacity $d\tau_v = -\kappa_v ds$

κ: absorption coef.ε: emission coef.

and the source function $S_v = \epsilon_v / \kappa_v$

 $\Rightarrow dI_{\rm v} / \ d\tau_{\rm v} = I_{\rm v,0} - S_{\rm v}$

Assuming a spatially constant source function \rightarrow radiation transfer equation

 $\Rightarrow I_{v} = S_{v} (1 - e^{-\tau(v)}) + I_{v,0} e^{-\tau(v)}$

Radiation transfer II

The excitation temperature T_{ex} is defined via a Boltzmann distribution as

 $n_{\rm J}/n_{\rm J-1} = g_{\rm J}/g_{\rm J-1} \exp(-h_{\rm V}/kT_{\rm ex})$

with n_{J} and g_{J} the number density and statistical weights.

In case of rotational transitions

 $g_{J} = 2J + 1$

J: rot. quantum number

In thermal equilibrium

 $T_{ex} = T_{kin}$

In a uniform molecular cloud the source function S_v equals Planck function

 $S_v = B_v (T_{ex}) = 2hv^3/c^2 (exp(hv/kT_{ex}) - 1)^{-1}$

Radiation transfer III

Then the radiation transfer equation

 $\Rightarrow I_{v} = \mathsf{B}_{v} (\mathsf{T}_{ex}) (1 - e^{-\tau(v)}) + I_{v,0} e^{-\tau(v)}$

In the Rayleigh-Jeans limits (hv < < kT) B equals

 $B = (2kv^2/c^2)T$ (def. $\rightarrow T = c^2/(2kv^2)I_v$)

And the radiation transfer equation using now the radiation temperature is

$$T_{r} = J_{v} (T_{ex}) (1 - e^{-\tau(v)}) + J_{v,0} (T_{bg}) e^{-\tau(v)}$$

with

 $J_v = hv/k (exp(hv/kT) - 1)^{-1}$

Molecular column densities I

To derive molecular column densities, 3 quantities are important:

1) Intensity T of the line

2) Optical depth τ of the line (observe isotopologues or hyperfine structure)

3) Partition function Q

The optical depth $\boldsymbol{\tau}$ of a molecular transition can be expressed like

 $\tau = c^2/8\pi v^2 A_{ul}N_u (exp(hv/kT) - 1) \phi$

with the Einstein A_{ul} coefficient

 $A_{ul} = 64\pi^4 v^3 / (3c^3h) \mu^2 J_u / (2J_u-1)$

and the line form function $\boldsymbol{\phi}$

 $\phi = c/v 2 \operatorname{sqrt}(\ln 2) / (\operatorname{sqrt}(\pi) \Delta v)$

Molecular column densities II

Using furthermore the radiation transfer eq. ignoring the background

 $T = J_{v} (T_{ex}) \tau (1 - e^{-\tau})/\tau$

And solving τ -equation for N_u, one gets

 $N_{u} = \frac{3k}{8\pi^{3}\nu} \frac{1}{\mu^{2}} (2J_{u}-1)/J_{u} \tau / (1 - e^{-\tau}) (T\Delta\nu \operatorname{sqrt}(\pi)/(2\operatorname{sqrt}(\ln 2)))$

The last expression equals the integral $\int T dv$.

 $\rightarrow N_u \sim \tau / (1 - e^{-\tau}) \int T dv$

The column density in the upper level N_u relates to the total column density N_{tot}

 $N_{tot} = N_u/g_u \exp(E_u/kT) Q$

For linear molecule like CO, partition function Q approximated: Q = kT/hB. (B: rotational constant)

However, for more complex molecules Q can become very complicated.

Conversion from CO to H₂ column densities

Classical way to derive conversion factors from CO to H₂ column densities:

- 1) Derive ratio between colour excess E_{B-V} and optical extinction $A_v = 3.1 E_{B-V}$ (Savage and Mathis, 1979)
- 2) The ratio $N(H_2)/E_{B-V}$: One can measure the H₂ column density, e.g., directly from UV Absorption lines.
- 3) The ratio $N(CO)/A_v$: In regions of molecular gas emission, one can estimate A_v by star counts in the Infrared regime
- \Rightarrow Combining these three ratios: CO \rightarrow H₂ column densities.

Summary

- Main tools: Spectral line emission and thermal emission and extinction from dust (more on dust next week)
- Molecules interesting for themselves and chemistry
- However, also extremely useful to trace physical processes.
- Molecules deplete on grains at low temperatures
- Discussed main cooling and heating processes
- Discussed basic line radiation transfer and column density determination

Sternentstehung - Star Formation Winter term 2022/2023

Henrik Beuther, Thomas Henning & Jonathan Henshaw

beuther@mpia.de, henning@mpia.de , henshaw@mpia.de

18.10 Today: Introduction & Overview 25.10 Physical processes I 08.11 Physcial processes II

15.11 Molecular clouds as birth places of stars 22.11 Molecular clouds (cont.), Jeans Analysis 29.11 Collapse models I 06.12 Collapse models II 13.12 Protostellar evolution 20.12 Pre-main sequence evolution & outflows/jets 10.01 Accretion disks I 17.01 Accretion disks II 24.01 High-mass star formation, clusters and the IMF 31.01 Extragalactic star formation 07.02 Planetarium@HdA, outlook, questions 13.02 Examination week, no star formation lecture Book: Stahler & Palla: The Formation of Stars, Wileys More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws2223.html

(Beuther) (Beuther) (Beuther) (Henshaw) (Henshaw) (Beuther) (Henning) (Beuther) (Beuther) (Henning) (Henning) (Henshaw) (Henning)

Heidelberg Joint Astronomical Colloquium Winter Semester 2022 — Tuesday October 25th, 16:00 Main Lecture Theatre, Philosophenweg 12 Sarbani Basu (Yale University, USA): The Sun as a variable Star

Those unable to attend the colloquium in person are invited to participate online through Zoom. More information is given on HePhySTO: <u>https://www.physik.uni-heidelberg.de/hephysto/</u>