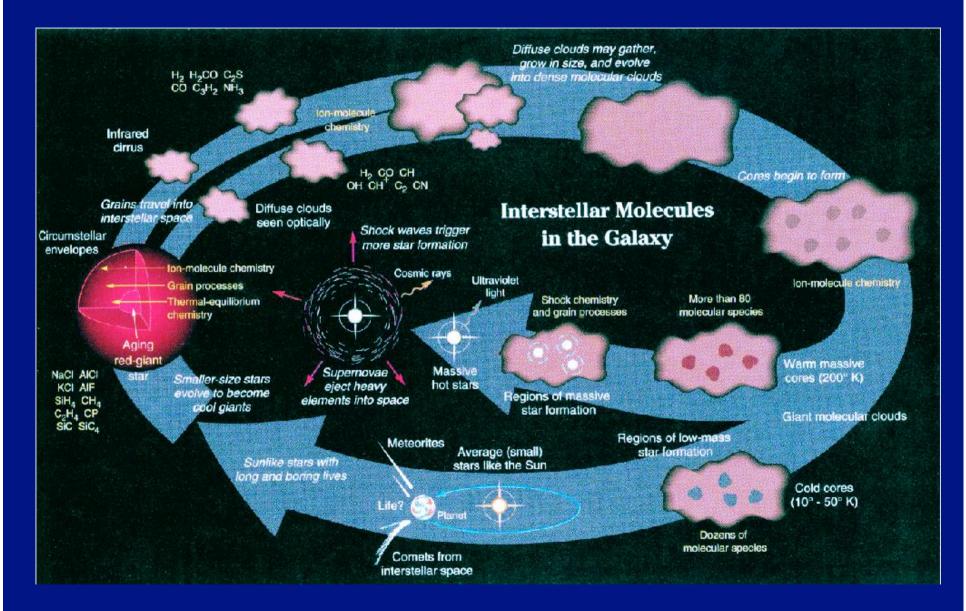
Sternentstehung - Star Formation Winter term 2017/2018 Henrik Beuther & Thomas Henning

17.10 Today: Introduction & Overview (H.B.) 24.10 Physical processes I (H.B.) 31.10 no lecture – Reformationstag 07.11 Physcial processes II (H.B.) 14.11 Molecular clouds as birth places of stars (H.L.) 21.11 Molecular clouds (cont.), Jeans Analysis (H.B.) 28.11 Collapse models I (H.B.) (T.H.) 05.12 Collapse models II 12.12 Protostellar evolution (T.H.) 19.12 Pre-main sequence evolution & outflows/jets (T.H.) 09.01 Accretion disks I (T.H.) (T.H.) 16.01 Accretion disks II 23.01 High-mass star formation, clusters and the IMF (H.B.) 30.01 Planet formation (T.H.) 06.02 Examination week, no star formation lecture Book: Stahler & Palla: The Formation of Stars, Wileys

More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws1718.html beuther@mpia.de, henning@mpia.de


Topics today

- The ISM, molecules and depletion

- Heating and cooling

- Radiation transfer and column density determination

The cosmic cycle

Properties of Molecular Clouds

Туре	n [cm ⁻³]	Size [pc]	Т [K]	Mass [M _{sun}]
Giant Molecular Cloud	10 ²	50	15	10 ⁵
Dark Cloud Complex	5x10 ²	10	10	104
Individual Dark Cloud	10 ³	2	10	30
Dense low-mass cores	104	0.1	10	10
Dense high-mass cores	>10 ⁵	0.1-1	10-30	100-10000

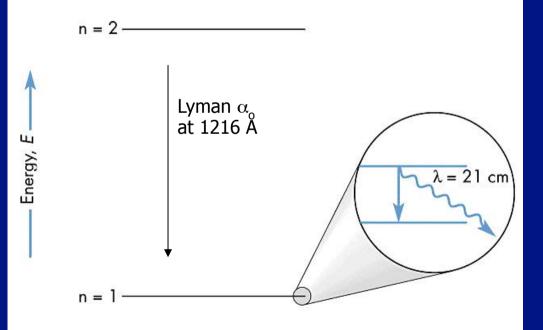
Neutral and ionized medium

atomic hydrogen

radio continuum (2.5 GHz)

molecular hydroge

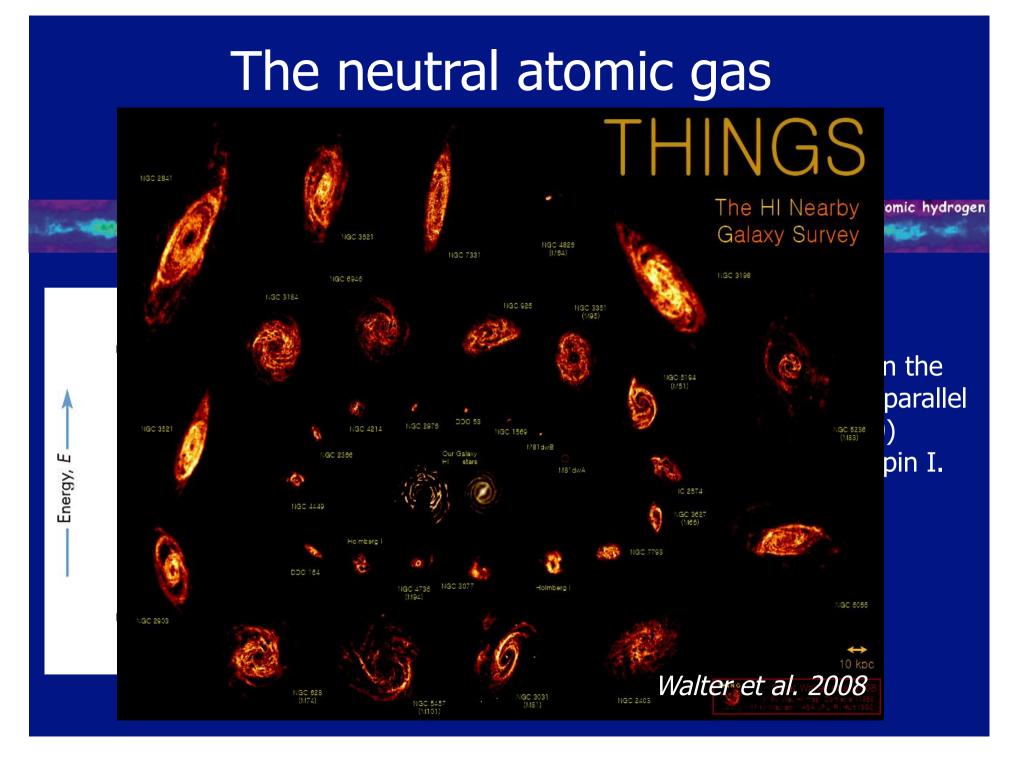
Stars form in the dense molecular gas and dust cores


Most important astrophysical tools:

Spectral lines emitted by various molecules

Absorption and thermal emission from dust

The neutral atomic gas


Atomic Hydrogen

The 21cm line arises when the electron spin S flips from parallel (F=1) to antiparallel (F=0) compared to the Proton spin I.

atomic hydrogen

 $\Delta E = 5.9 \times 10^{-5} \, eV$

The Ionized gas

Ionized gas

radio continuum (2.5 GHz)

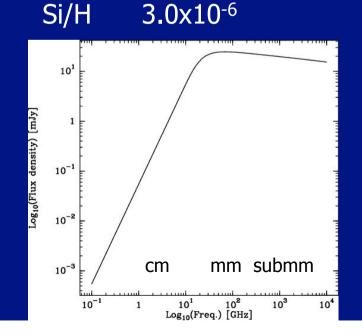
- Hydrogen recombination lines from optical to cm wavelengths
- Emission lines from heavier elements --> derive atomic abundances

He/H

C/H

N/H

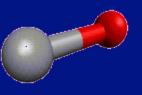
O/H

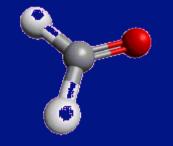

0.1

3.4x10⁻⁴

6.8x10⁻⁵

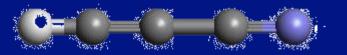
3.8x10⁻⁴


- Free-free emission between e⁻ and H⁺


The Molecular ISM

Molecular Hydrogen

Carbon monoxide CO



Formaldehyde H₂CO

Cyanoacetyline HC₃N

molecular hydrogen

Excitation mechanisms:

- Rotation
- Vibration
- Electronic transitions
- --> usually cm and (sub)mm wavelengths
- --> usually submm to FIR wavelengths
- --> usually MIR to optical wavelengths

Molecular ISM Basics

History:

- Late 1930s: Detection of CH, CH⁺ and CN in diffuse clouds by absorption of optical light by background stars
- 1960s: Detection of OH, NH_3 and H_2O at radio wavelength, 1970 CO

Formation of molecules is an energy problem: Two atoms approach each other with positive total energy → rebound if no energy can be given away

Possibilities:

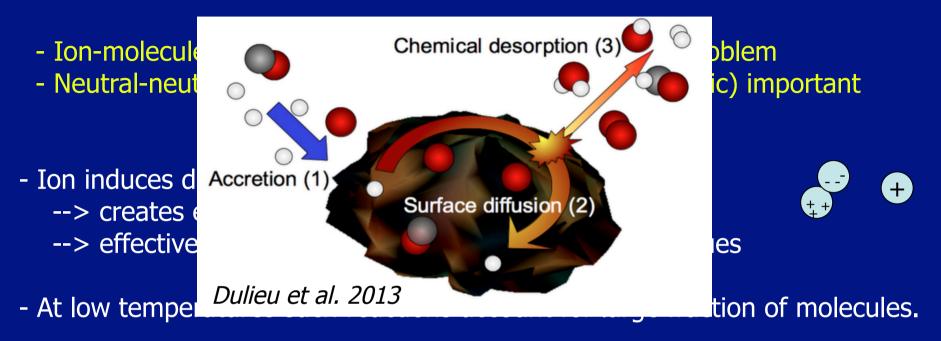
Simultaneous collision with 3rd atom carrying away energy
 --> unlikely at the given low densities

Form a molecule in excited state, and then radiating away energy
 --> probablility of such radiative association low as well

Molecular ISM Basics

- Ion-molecule or ion-atom reactions can solve energy problem

- Neutral-neutral reactions on dust grain surfaces (catalytic) important
- Ion induces dipole moment in atom or molecule
 --> creates electrostatic attraction between the two.
 --> effective cross section increases over geometric values



- At low temperatures such reactions account for large fraction of molecules.

However, not enough ions to account for large H₂ abundances
 --> grain surface chemistry important

- Simple molecules like CO or CS \rightarrow ion-molecule chemistry,
- More complex molecules \rightarrow grain surface chemistry important

Molecular ISM Basics

- However, not enough ions to account for large H₂ abundances --> grain surface chemistry important

- Simple molecules like CO or CS \rightarrow ion-molecule chemistry,

- More complex molecules \rightarrow grain surface chemistry important

Molecules in Space

2	3	4	5	6	7	8	9	10	11	12	13 atoms
H2 AIF AICI C2 CH + CN CO CO F CSi HCI NH NO NS CO H NO NS CI NH NO NS CI NH NO SO SO SIS SIS SIS SIS SH F EO(?)	C3 C2H C2O C2S CH2 HCN HCO+ HCO+ HCS+ HNC HNO MgCN MgNC N2H+ N2O NaCN OCS SO2 c-SiC2 CO2 NH2 H3+ SiCN AINC SiNC	c-C3H I-C3H C3N C3O C3S C2H2 CH2D+? HCCN HCNH+ HNCO HNCS HOCO+ H2CN H2CN H2CN H3O+ NH3 SiC3 C4	CH2CN CH4 HC3N HC2NC HCOOH H2CHN	CH3NC CH3OH CH3SH HC3NH+ HC2CHO NH2CHO C5N HC4N		CH3C3N HCOOCH3 CH3COOH? C7H H2C6 CH2OHCHO CH2CHCHO CH2CHCHO	СН3С4Н СН3СН2СN (СН3)2О СН3СН2ОН НС7N С8Н	CH3C5N? (CH3)2CO NH2CH2COOH? CH3CH2CHO	HC9N	CH3OC2H5	HC11N

About 200 detected interstellar molecules as of October 2017 (<u>www.cdms.de</u>). 61 molecular detection in extragalactic systems.

A few important molecules

Mol.	Trans.	Abund.	Crit. Dens. [cm ⁻³]	Comments
H₂ CO OH	1-0 S(1) J=1-0 $^{2}\Pi_{3/2}$;J=3/2	1 8x10 ⁻⁵ 3x10 ⁻⁷	8x10 ⁷ 3x10 ³ 1x10 ⁰	Shock tracer Low-density probe Magnetic field probe (Zeeman)
NH ₃ CS SiO	J,K=1,1 J=2-1 J=2-1	2x10 ⁻⁸ 1x10 ⁻⁸	2x10 ⁴ 4x10 ⁵ 6x10 ⁵	Temperature probe High-density probe Outflow shock tracer
H_2O H_2O CH_3OH CH_3CN	$ \begin{array}{c} J=2-1 \\ 6_{16}-5_{23} \\ 1_{10}-1_{11} \\ 7-6 \\ 19-18 \end{array} $	<7x10 ⁻⁸ 1x10 ⁻⁷ 2x10 ⁻⁸	1x10 ³ 2x10 ⁷ 1x10 ⁵ 2x10 ⁷	Maser Warm gas probe Dense gas/temperature probe Temperature probe in Hot Cores

Basics IV

<u>Depletion of molecules on dust grains</u> In molecule's ref. frame, grains are moving at v_{therm} relative to molecules

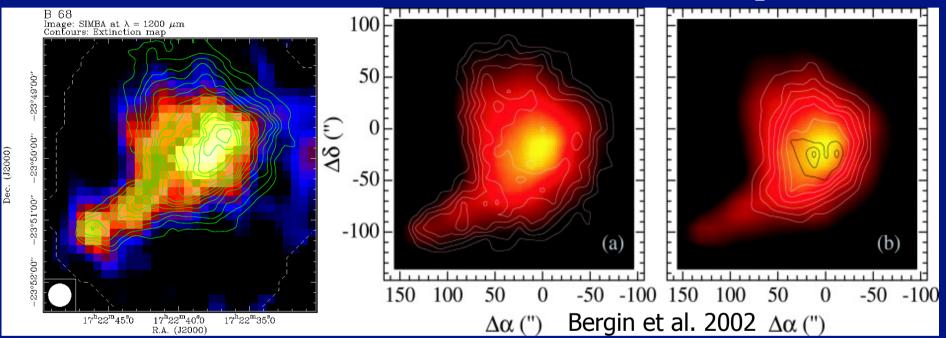
$$E = 1/2 \text{ mv}_{\text{therm}}^2 = 3/2 \text{ k}_{\text{b}}^2 \text{T} => \text{v}_{\text{therm}}^2 = (3\text{k}_{\text{b}}^2 \text{T}/\text{m})^{1/2}$$

n grains sweeps out cylindrical volume in time Δt of $n(\pi a^2)v_{therm}\Delta t$ (a: grain radius)

Probability of molecule in volume V to be struck by grain in time $\Delta t P(\Delta t) = n(\pi a^2)v_{therm}\Delta t /V$

Hence the collision time t_{coll} (for $P(\Delta t)V = 1$) $t_{coll} = 1/(n(\pi a^2)v_{therm}) = 1/(n_H \Sigma v_{therm})$ (n_H: density; Σ : cross section)

For example CS: $v_{therm} \sim 5x10^3$ cm s⁻¹ at 10K, and $n_H \sim 10^4$ cm⁻³ $t_{coll} \sim 6x10^5$ yr


Depletion time-scale very short --> mechanisms for reinjecting molecules from grains important

Depletion example

C¹⁸O

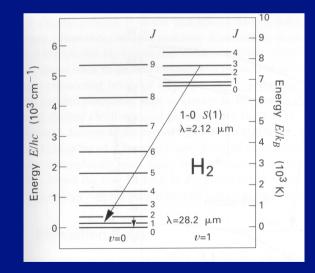
 N_2H^+

1.2 mm Dust Continuum

Possible mechanisms working against depletion:

- UV radiation (not working in dense cores)
- In small grain, heat from chemical grain surface reactions could raise temperature
- Kelvin-Helmholtz contraction and energy
- Ignited central protostar
- Shocks
- •••

Molecular Hydrogen (H₂)

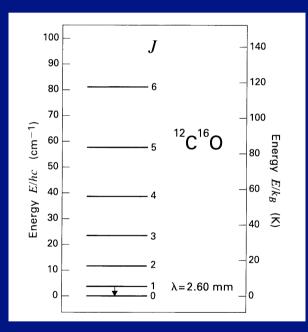

- H_2 consists of 2 identical atoms \rightarrow no electric dipol moment

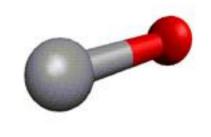
- Rotationally excited H_2 has allowed quadrupole transitions $\Delta J = 2$ \rightarrow lowest rotational transition J=2-0 has energy change of 510 K

- Rotational energy for H_2 : Classical mechanics: $E_{rot} = J^2/2I$ (J: Angular momentum; I: Moment of inertia)

 \rightarrow Small moment of inertia

 \rightarrow large spread of energy levels




 \rightarrow Cold clouds have to be observed other ways, e.g., CO

Carbon monxide (CO)

- Forms through gas phase reactions.
- Strong binding energy of 11.1 eV
 - \rightarrow prevents much further destruction (self-shielding).
- Permanent dipole moment \rightarrow strong emission at (sub)mm wavelengths.
- Larger moment of inertia than H₂.
 → more closely spaced rotational ladder, J=1 level at 4.8x10⁻⁴eV or 5.5K above ground
- In molecular clouds excitation mainly via collisions with H₂.
- Critical density for thermodynamic equilibrium with H₂ $n_{crit} = A/\gamma \sim 3 \times 10^3 \text{cm}^3$. (A: Einstein A coefficient; γ : collision rate with H₂)
- The level population follows a Boltzmann-law:

 $n_{J+1}/n_J = g_{J+1}/g_J \exp(-\Delta E/k_B T_{ex})$ (for CO, the statistical weights $g_J = 2J + 1$) Excitation temperature T_{ex} is a measure for the level populations and equals the kinetic temperature T_{kin} if the densities are > n_{crit} .

Topics today

- The ISM, molecules and depletion

- Heating and cooling

- Radiation transfer and column density determination

Heating processes

UV radiation from stars

Energy injection from supernovae

Energy injection from outflows/jets

Cosmic rays interact with HI and H₂ (consist mainly of relativistic protons accelerated within magnetized shocks produced by supernova-remnant--molecular cloud interactions)

 $p^+ + H_2 \rightarrow H_2^+ + e^- + p^+$ (dissociation \rightarrow ion-molecule chemistry)

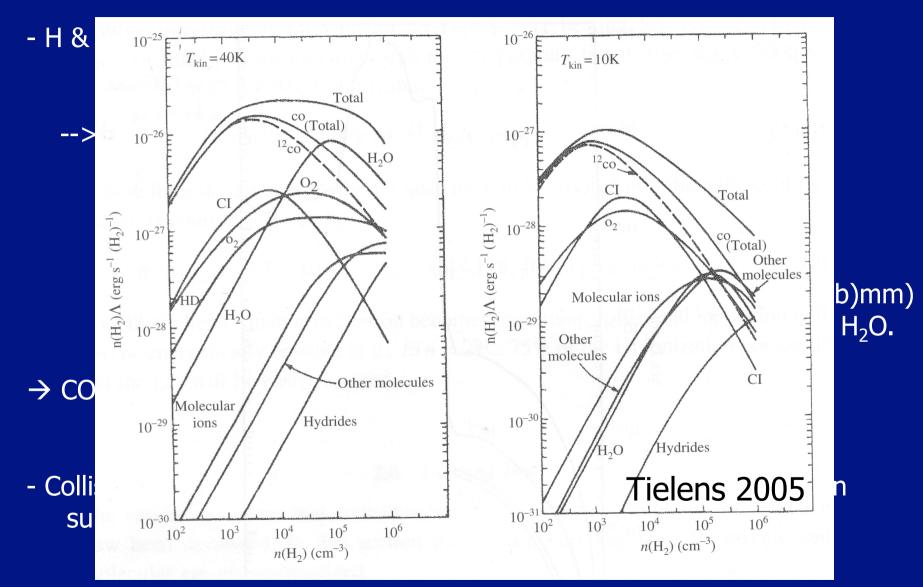
Interstellar radiation (diffuse field permeating interstellar space) Mainly dissociates carbon (lower ionization potential than H₂)

 $C + h_V -> C^+ + e^-$ Electron disperses energy to ISM by collisions.

Photoelectric heating: - Heats grains which re-radiate in infrared regime - UV photons eject e⁻ from dust and these e⁻ heat surrounding gas via collisions

Cooling processes

- H & H₂ no dipole moment \rightarrow no efficient coolant in cold mol cloud \rightarrow other coolants needed

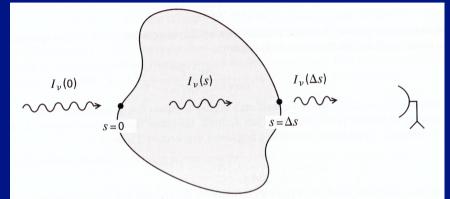

--> Hydrogen collides with ambient atoms/molecules/grains \rightarrow Cooling via these secondary constituents.

O + H --> O + H + hv collisional excitation (FIR) $\begin{array}{ll} C^+ + H & --> C^+ + H + hv \\ CO + H_2 & --> CO + H_2 + hv \end{array} fine structure excitation (FIR) \\ rotational excitation (radio/(sub)mm) \end{array}$ At higher densities other molecules come into play, e.g., H_2O .

 \rightarrow CO the most effective coolant in molecular clouds.

- Collisions with gas atoms/molecules cause lattice vibrations on grain surfaces, that decay through the emission of infrared photons.

Cooling processes


Topics today

- The ISM, molecules and depletion

- Heating and cooling

- Radiation transfer and column density determination

Radiation transfer I

 $dI_{v} = -\kappa_{v}I_{v,0}ds + \varepsilon_{v}ds$

with the opacity $d\tau_v = -\kappa_v ds$

κ: absorption coef.ε: emission coef.

and the source function $S_v = \epsilon_v / \kappa_v$

 \Rightarrow dI_v/ d τ_v = I_{v,0} - S_v

Assuming a spatially constant source function \rightarrow radiation transfer equation

 $\Rightarrow I_{v} = S_{v} (1 - e^{-\tau(v)}) + I_{v,0} e^{-\tau(v)}$

Radiation transfer II

The excitation temperature T_{ex} is defined via a Boltzmann distribution as

 $n_{\rm J}/n_{\rm J-1} = g_{\rm J}/g_{\rm J-1} \exp(-hv/kT_{\rm ex})$

with n_1 and g_1 the number density and statistical weights.

In case of rotational transitions

 $g_{J} = 2J + 1$

J: rot. quantum number

In thermal equilibrium

 $T_{ex} = T_{kin}$

In a uniform molecular cloud the source function S_v equals Planck function

 $S_v = B_v (T_{ex}) = 2hv^3/c^2 (exp(hv/kT_{ex}) - 1)^{-1}$

Radiation transfer III

Then the radiation transfer equation

 $\Rightarrow I_{v} = B_{v} (T_{ex}) (1 - e^{-\tau(v)}) + I_{v,0} e^{-\tau(v)}$

In the Rayleigh-Jeans limits (hv < < kT) B equals

 $B = 2kv^2/c^2T$ (def. $\rightarrow T = c^2/(2kv^2) I_v$)

And the radiation transfer equation using now the radiation temperature is

$$T_{r} = J_{v} (T_{ex}) (1 - e^{-\tau(v)}) + J_{v,0} (T_{bq}) e^{-\tau(v)}$$

with

 $J_v = hv/k (exp(hv/kT) - 1)^{-1}$

Molecular column densities I

To derive molecular column densities, 3 quantities are important:

1) Intensity T of the line

2) Optical depth τ of the line (observe isotopologues or hyperfine structure)

3) Partition function Q

The optical depth τ of a molecular transition can be expressed like

 $\tau = c^2/8\pi v^2 A_{ul}N_u (exp(hv/kT) - 1) \phi$

with the Einstein A_{ul} coefficient

 $A_{ul} = 64\pi^4 v^3 / (3c^3h) \mu^2 J_u / (2J_u - 1)$

and the line form function $\boldsymbol{\varphi}$

 $\phi = c/v 2 \operatorname{sqrt}(\ln 2)/(\operatorname{sqrt}(\pi)\Delta v)$

Molecular column densities II

Using furthermore the radiation transfer eq. ignoring the background

 $T = J_v (T_{ex}) \tau (1 - e^{-\tau})/\tau$

And solving this for N_u, one gets

 $N_u = 3k/8\pi^3 v \ 1/\mu^2 \ (2J_u-1)/J_u \ \tau /(1 - e^{-\tau}) \ (T\Delta v \ sqrt(\pi)/(2sqrt(ln2)))$

The last expression equals the integral $\int T dv$.

The column density in the upper level N_u relates to the total column density N_{tot}

 $N_{tot} = N_u/g_u \exp(E_u/kT) Q$

For a linear molecule like CO, the partition function Q can be approximated to

Q = kT/hB.

However, for more complex molecules Q can become very complicated.

Summary

- Main tools: Spectral line emission and thermal emission and extinction from dust (more on dust next week)

- Molecules interesting for themselves and chemistry

- However, also extremely useful to trace physical processes.

- Molecules deplete on grains at low temperatures

- Discussed main cooling and heating processes

- Discussed basic line radiation transfer and column density determination

Sternentstehung - Star Formation Winter term 2017/2018 Henrik Beuther & Thomas Henning

17.10 Today: Introduction & Overview	(H.B.)
24.10 Physical processes I	(<i>H.B</i> .)
31.10 no lecture – Reformationstag	
07.11 Physcial processes II	(H.B.)
14.11 Molecular clouds as birth places of stars	(H.L.)
21.11 Molecular clouds (cont.), Jeans Analysis	(H.B.)
28.11 Collapse models I	(H.B.)
05.12 Collapse models II	(T.H.)
12.12 Protostellar evolution	(T.H.)
19.12 Pre-main sequence evolution & outflows/jets	(T.H.)
09.01 Accretion disks I	(T.H.)
16.01 Accretion disks II	(T.H.)
23.01 High-mass star formation, clusters and the IMF	(H.B.)
30.01 Planet formation	(T.H.)
06.02 Examination week, no star formation lecture	
Book: Stahler & Palla: The Formation of Sta	rs, Wileys
More Information and the current lecture files: http://www.mpia.do/homec/ba	uthor/locturo

More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws1718.html beuther@mpia.de, henning@mpia.de