Sternentstehung - Star Formation

Winter term 2022/2023
Henrik Beuther, Thomas Henning & Jonathan Henshaw

18.10 Today: Introduction & Overview (Beuther)
25.10 Physical processes I (Beuther)
08.11 Physcial processes IT (Beuther)
15.11 Molecular clouds as birth places of stars (Henshaw)
22.11 Molecular clouds (cont,), Jeans Analysis (Henshaw)
29.11 Collapse models 1 (Beuther)

06.12 Collapse models II (Henning)
13.12 Protostellar evolution & prep-main sequence (Beuther)

10.01 Accretion disks I (Henning)
17.01 Accretion disks II (Henning)
24.01 High-mass star formation, clusters and the IMF  (Henshaw)
31.01 Extragalactic star formation (Henning)
07.02 Planetarium@HdA, outlook, questions GESLGED
13.02 Examination week, no star formation lecture

Book: Stahler & Palla: The Formation of Stars, Wileys

More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws2223.html
beuther@mpia.de, henning@mpia.de , henshaw@mpia.de
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Summary last week I

- Protostellar evolution, 1st and 2" core,
accretion luminosity, definition of protostar

- Envelope structure

- Convection, entropy profile of protostar

- Structure of protostar

- Definition: protostar vs. pre-main sequence star
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Summary last week II

- Pre-main sequence evolution,
—> accretion stops, energy mainly by grav. contraction

- Differences between low- and high-mass protostars

- Concept birthline

- SED observational signatures of the sequence
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Star formation paradigm

Phases of star formation I
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Discovery of outflows I

Herbig 1950, 1951; Haro 1952, 1953 ”
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Jets from Young Stars - HH1/HH2 HST - WFPC2

PRC95-24c¢ - ST Scl OPO - June 6, 1995 - J. Hester (AZ State U.), NASA

Initially thought to be embedded protostars - soon spectra recognized
as caused by shock waves - jets and outflows indicated




Discovery of outflows II
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- Mid to late 70th, first CO non-Gaussian line wing emission detected
(Kwan & Scovile 1976).

- Bipolar structures, extremely energetic




HH30, a disk-outflow system
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The Dynamic HH 30 Disk and Jet HST e WFPC2
NASA and A. Watson (Instituto de Astronomia, UNAM, Mexico) ® STScl-PRC00-32b




The prototypical molecular outflow HH211

HH211, Gueth et al. 1999
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Jet rotation in DG Tau

Observed Radial Velocity Shift
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General outflow properties

- Jet velocities 100-500 km/s <==> Outflow velocities 10-50 km/s
- Estimated dynamical ages between 103 and 10> years
- Size between 0.1 and 1 pc
- Force provided by stellar radiation too low (middle panel)
- non-radiative processes necessary!
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Specific angular momentum
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Impact on surrounding cloud

- Entrain large amounts of cloud mass with high energies.

- Partly responsible to maintain turbulence in cloud.

- Can disrupt the cores to stop any further accretion.

- May trigger collapse in neighboring cores.

- Via shock interactions heat the cloud.

- Alter the chemical properties.
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Jet launching from accretion disks

“magnetic accretion-ejection structures” (Ferreira et al 1995-1997):
1) disk material diffuses across magnetic field lines, 2) is lifted upwards by MHD forces, then
3) couples to the field and 4) becomes accelerated magnetocentrifugally and 5) collimated

Magnetic field lines (thick) and streamlines (dashed)




Jet launching

- Consensus: Jets are driven by magnetocentrifugal winds from
magnetic field lines anchored in rotating circumstellar disks.

Disk winds € = X-winds

Launching over larger € = Launching from a small area
disk area? close to disk truncation?




Jet-launching: Disk winds I

5 months later

Begnehee & Pudrltz 2006

- Infalling core pinches magnetic field.

- If poloidal magnetic field component B, has angle larger 30° from vertical
- centrifugal forces launch matter-loaded wind along field from disk

- Wind transports away from 60 to 100% of disk angular momentum.

Review: Pudritz et al. 2006




Jet Iaunchlng Disk wmds I1

t=1.3x10° yr t=9.66x10° yr

2x10'%cm

1AU~
1.5x10%3cm

- On larger scales, a strong toroidal
magnetic field B, builds up during collapse.

- At large radii (outside Alfven radius ra, the
radius where kin. energy equals magn.

energy) B,/B, much larger than 1
- collimation via Lorentz-force F ~j,B,

2x1013 cm

Banerjee & Pudritz 2006



X-winds
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- The wind is launched magneto-centrifugally from the inner
co-rotation radius of the accretion disk (~0.03AU)




Jet-launching points and angular momenta

Spectro-Astrometry
RW Aur jet
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Outflow driving I

- Molecular outflow masses much larger than stellar masses
- outflow-mass not directly from star-disk but swept-up entrained gas.

- Force in outflow cannot be explained just by force excerted from
central object - other outflow driving and entrainment processes required.

Force(=p/t) vs. L
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Outflow driving II

Momentum-driven vs. energy-driven molecular outflows

- Energy-driven: jet-energy conserved in pressurized bubble that
gets released adiabatically as the bubble expands.
- large transverse velocities which are not observed
- momentum conservation better

Energy-driven bubble

- Completely radiative shock - only dense plug at front
- Completely adiabatic shock - large bow shocks with mainly
transverse motions
- Both wrong - intermediate solution with highly dissipative
shock required - forward motion & bow shock
—> accelerate the ambient gas

Completely radiative shock o . Dire?ﬁ'on of rave, :
= No bow shock forms, just dense plug e e
head of shock -

Collimated .
jet i

Low-pressure
cocoon ———*

Colhmated | ~ Dense : Swept-up — S
Jet e shockedgas shell
| ey Highly dissipative shock: Forwardflelife]y
Masson et a/ 1993 AND bow-shock for gas entrainment.




Outflow entrainment models 1

Basically 4 outflow entrainment models are discussed in the literature:

Turbulent jet entrainment model
- Working surfaces at the jet boundary layer caused by Kelvin-Helmholtz

instabilities form viscous mixing layer entraining molecular gas.
- The mixing layer grows with time and whole outflow gets turbulent.

- Broken power-law of mass-velocity relation is reproduced, but velocity
decreases with distance from source = opposite to observations

Jet-bow shock model
- Jet impacts on ambient gas - bow shocks are formed at head of jet.
- High pressure gas is ejected sideways
- broader bow shock entraining the ambient gas.
—> Episodic ejection produces chains of knots and shocks.

- Numerical modeling reproduces many observables,
e.g. Hubble-law (outflow velocity increases with distance).




Outflow entrainment models 1

Basically 4 outflow entrainment models are discussed in the literature:

Turbulent jet entrainment model

- Working surfaces at the jet boundary layer caused by Kelvin-Helmholtz

instabilities form viscous mixing layer entraining molecular gas.
- The mixing layer grows with time and whole outflow gets turbulent.

- Broken power-law of mass-velocity relation is reproduced, but velocity
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Outflow entrainment models 1

Basically 4 outflow entrainment models are discussed in the literature:

Turbulent jet entrainment model
- Working surfaces at the jet boundary layer caused by Kelvin-Helmholtz

instabilities form viscous mixing layer entraining molecular gas.
- The mixing layer grows with time and whole outflow gets turbulent

- Broken power-law of mass-velocity relation is reproduced, but velocity

decreases with distance from source = opposite to observations
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Outflow entrainsatimessis

Basically 4 outflow entrainment model

Turbulent jet entrainment model
- Working surfaces at the jet bound

instabilities form viscous mixing
- The mixing layer grows with ti

Gueth et al. 1999
- Broken power-law of mass-vel o —.... - S—

decreases with distance from source - opposite to observations

Jet-bow shock model
- Jet impacts on ambient gas - bow shocks are formed at head of jet.
- High pressure gas is ejected sideways
- broader bow shock entraining the ambient gas.
—> Episodic ejection produces chains of knots and shocks.

- Numerical modeling reproduces many observables,
e.g. Hubble-law (outflow velocity increases with distance).




The case of the HH34 bow shock

jet frame

In the jet-frame, after subtracting the velocity of the
mean axial flow, the knots are following the sides
of the bow shock.

Reipurth et al. 2002



Jet simulations 1

He 140 S(1) t = O yr

3-dimensional hydrodynamic simulations, including H, C and O chemistry
and cooling of the gas, this is a pulsed jet.

COO0-0 R(1) t=0yr

Rosen & Smith 2004




Jet simulations II: small precession

PS5 Hy1=0 S{1) t = Qyr

P5 CO Q-0 R(1) t=0yr

Rosen &
Smith 2004




Jet simulations III, large precession

P20 Ha 10 S{1) t = O yr

P20 CO O-+0 R{1) L= 0yr

Rosen &
Smith 2004




Outflow entrainment models II

Wide-angle wind model
- Wide-angle wind blows into ambient gas forming a thin swept-up shell.

- Different degrees of collimation can be explained by different density
structures of the ambient gas.

- Attractive models for older and low collimated outflows.

/'to observer

Circulation model
- Molecular gas not entrained
is deflected from the central

- Proposed to explain massive

difficult to entrain large amg
Shu et al. 1991




Outflow entrainmentmodels II

Wide-angle wind model
- Wide-angle wind blows into ambient gas formi

- Different degrees of collimation can be explainfi
structures of the ambient gas. "

- Attractive models for older and low collimated &

Circulation model
- Molecular gas not entrained by underlying jet/wind, but infalling gas
is deflected from the central protostar by high MHD pressure.

- Proposed to explain massive outflows because originally considered
difficult to entrain large amounts of gas. ... not necessary anymore ...




Outflow entrainment models III

Molecular outflow properties predicted by different models

Predicted property of molecular outflow along axis
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Arce et al. 2007




Collimation and pv-structure
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VLAQ0548: consistent with wind-driving

- pv-structure of jet- and wind-driven models very different

- Often Hubble-law observed - increasing velocity with increasing distance
from the protostar

Lee et al. 2001



Summary

- Outflows and jets are ubiquitous and necessary phenomena in star formation.
- Transport angular momentum away from protostar.

- They are formed by magneto-centrifugal disk-winds.

- Collimation is caused by Lorentz forces.

- Gas entrainment can be due to various processes: turbulent
entrainment, bow-shocks, wide-angle winds, circulation ...

- They inject significant amounts of energy in the ISM, may be
important to maintain turbulence and disrupt their maternal clouds.
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