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drift-kick-drift variant of the leap-frog integrator that
conserves the total momentum of gas and sink particles
when coupled with the VL2 integrator (C.-G. Kim et al.
in prep.)
Due to the gravitational attraction of a sink particle,

the region around it accretes mass and momentum from
the surrounding gas while the particle moves through
the domain, and we use this to update the particle’s
mass and momentum. We take a conservative approach
of resetting the cubic control volume consisting of 27
cells centered on the particle-containing cell at every
timestep, using the average values taken from the outer
adjacent cells sharing common faces (Kim et al. 2020).
This is equivalent to treating the control volume as ghost
zones and applying outflow boundary conditions. The
change in the mass contained in the control volume due
to the reset procedure, !Mreset, is then conservatively
dumped to the sink particle, such that

!Msink = →!Mreset. (53)

Because the density generally increases toward the ac-
creting sink particles, in most cases !Mreset < 0, lead-
ing to positive accretion onto the particle. At late times,
however, the flow around sink particles may depart from
simple spherical accretion due to, e.g., disk or binary for-
mation, and become chaotic, which can sometimes lead
to !Mreset > 0. Because !Msink < 0 would be unphysi-
cal, in this case we do not update the sink particle mass
and restore the fluid variables in the control volume to
their original values before the reset. Noting that the
change in the total mass in the control volume, !Mctrl

is caused by the mass flux through the control volume
boundary as well as the reset procedure, Equation (53)
can be equivalently written as

!Msink = !t

∮
Fω · dA→!Mctrl, (54)

where Fω is the mass flux returned by the Riemann
solver averaged over the timestep. Equation (54) in-
dicates that the accretion rate of the sink particle is
determined by the mass flux into the control volume,
modulated by the rate of change of the total mass in
the control volume. For steady flows, !Mctrl = 0 and
the accretion rate becomes identical to the mass flux.
Equation (54) is by construction mass-conservative be-
cause the mass entering the control volume is distributed
into the sink particle and the control volume. We apply
the same method of mass accretion described above to
make sink particles accrete gas momentum as well.
When the control volumes of two sink particles over-

lap each other, we merge them into a single particle cre-
ated at the center of mass of the two merging particles,

with the total mass and momentum being conserved. To
verify that our sink particle implementation is correct,
we repeat the test suites of the two-particle orbit, self-
similar accretion of Shu (1977), and the Galilean invari-
ance of accretion presented in Gong & Ostriker (2013a,
Section 3.1, 3.2, 3.3).
Unlike in real GMCs, there are no internal or external

agents that can halt the star formation process in our
simulations, and the sink particles could accrete indefi-
nitely until they consume all the gas within the domain.
Because this would not be consistent with the observed
low SFEs in molecular clouds (↑ 1–10%, e.g., Williams
& McKee 1997; Evans et al. 2009), we terminate the sim-
ulation when the total mass in sink particles reaches 15%
of the initial gas mass, i.e., SFE ↓ Msink/Mbox = 0.15.
Column (10) of Table 1 gives the median and stan-
dard deviation of the termination time tfinal, in units of
t!,0 (see Equation (31) for conversion to physical units),
where the median is taken over di”erent realizations of
the initial velocity field.
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Figure 5. Schematic of the gravitational potential geog-
raphy around a core. The black cross symbol marks the
minimum of ! corresponding to the core center, and the
black solid lines draw the contours (isosurfaces in 3D) of !.
Points A and B are saddle points of the gravitational po-
tential field. The distance to the nearest saddle point (here,
point A) defines the maximum tidal radius rtidal,max, which
sets the largest sphere (red solid circle) that can be consid-
ered as belonging to the “core” in our angle-averaged anal-
ysis. The gray shaded region corresponds to the “leaf” of
the dendrogram of !, whose volume Vleaf defines the aver-
age tidal radius rtidal,avg → [3Vleaf/(4ω)]

1/3 (marked with a
red dashed circle). Point C is situated in no man’s land and
would be considered as a part of the core based on rtidal,max

but not based on rtidal,avg.

3.5. Reverse Core Tracking

One of the main goals of this work is to quantitatively
analyze the evolution of the prestellar cores that form

• Cores have no sharp boundary.


• However, they are not isolated  Tidal radius


• : distance to the nearest saddle point


• : effective radius of the  contour touching the saddle point
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Evolution of Simulated Cores
• There is a physically meaningful, identifiable moment when the collapse begins! 

(Sanghyuk Moon & Eve Ostriker on arXiv; See also David Collins et al. 2024)




• There is a physically meaningful, identifiable moment when the collapse begins! 
(Sanghyuk Moon & Eve Ostriker on arXiv; See also David Collins et al. 2024)


• And the critical time identified in the simulations is consistent with the theoretical prediction.

Evolution of Simulated Cores



Statistical properties of supersonic turbulence 
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Figure 8. Gas surface density maps of model M10 (run with nseed = 1) at t = 0.267tJ,0 = 0.872t!,0, projected along the z
(top) and x (bottom) directions. Locations of prestellar and protostellar cores are highlighted with blue and green squares,
respectively, where in the simulation this is equivalent to before and after sink particle formation. The red square marks the
location of the selected prestellar core whose evolution is illustrated in Figures 9 and 10. Some apparent surface density peaks
are not identified as prestellar cores, because they do not evolve to collapse in our simulation; i.e. they either become failed cores
that disperse back into the ambient medium, or the time until the collapse is longer than our simulation duration. Comparison
of the top and bottom panels reveals that the apparent large-scale filament seen in the top panel extending from y = →2LJ,0 to
y = LJ,0 is in fact a sheet-like structure seen in projection, rather than a genuine three-dimensional filament.

Theory

2. Experimental test
L18 J. Alves et al.: The mass function of dense molecular cores and the origin of the IMF
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Fig. 1. Dust extinction map of the Pipe nebula molecular complex from Lombardi et al. (2006). This map was constructed from near-infrared
observations of about 4 million stars in the background of the complex. Approximately 160 individual cores are identified within the cloud and
are marked by an open circle proportional to the core radius. Most of these cores appear as distinct, well separated entities.

mass spectrum. This latter difference implies a significant phys-
ical difference in the two distributions. For the stellar IMF, the
bulk of the (stellar) mass is tied up in low mass objects while for
clouds the bulk of the mass is tied up in the most massive objects.
A consequence of this difference is that in order to produce the
stellar IMF from the cloud mass spectrum, a transformation must
take place during the process of star formation. It has been sug-
gested that outflows generated during the protostellar stages of
star formation provide a natural feedback to collapse/infall lim-
iting the final mass of a protostellar object (Shu et al. 1987) and
perhaps providing the mechanism for transforming the form of
the cloud mass spectrum into the form of the stellar mass spec-
trum (Lada & Lada 2003). However, it is not clear how such a
process could produce a peak, or a characteristic scale for stellar
masses. Moreover, the comparison of the CO core mass function
and the IMF may not be relevant since CO does not trace the
dense component of the molecular gas within which stars actu-
ally form (Lada 1992).

Indeed, a different picture appears to emerge when observa-
tions of dense gas are considered. Typically only about 10% or
less of the mass of a star-forming molecular cloud is in the form
of dense (i.e., n(H2) ∼ 104 cm−3) gas and this gas appears to be
organized into discrete cores within which stars form. Tachihara
et al. (2002) and Onishi et al. (2002), using C18O and H13CO+
as tracers of dense gas, suggest that the stellar and core mass
distributions are similar. Recent observations of dust continuum
emission originating from such dense cores has enabled the con-
struction of the dense core mass function (DCMF) in a number
of nearby molecular cloud complexes. For cores with masses in
excess of ∼0.5 M⊙ the derived mass spectra appear to be de-
scribed by a single power-law, similar to the CO cores but with

a relatively steep slope (−1.1 to −1.6, in log mass units) similar
to the that of the stellar IMF (Motte et al. 1998; Testi & Sargent
1998; Johnstone et al. 2000, 2001; Motte et al. 2001; Beuther
& Schilke 2004; Stanke et al. 2006). Moreover, in one example,
the ρ Ophiuchi cloud, the core mass spectrum exhibited possible
evidence of a flattening or break near a mass of about 0.5 M⊙,
also similar to the stellar IMF (Motte et al. 1998). In another
cloud, NGC 1333, measurements of dust emission produced a
core mass spectrum between 0.1 and 0.5 M⊙ with a slope of ap-
proximately −0.4 (Sandell & Knee 2001), similar to that univer-
sally derived for less-dense gas traced by CO emission in other
clouds but also consistent with the apparent break and assumed
flattening below 0.5 M⊙ of the DCMF of the Ophiuchi dark
cloud mentioned above. The observed similarity between the
slopes of the DCMF derived from millimeter-wave dust emis-
sion studies and the slope of the IMF above 0.5 M⊙ has been
taken as evidence that the individual dense cores are the di-
rect precursors of new stars and moreover that the stellar IMF
is completely specified by the fragmentation process in molecu-
lar clouds. In addition, the possible flattening of the DCMF near
0.5 M⊙ implies a high star formation efficiency (SFE) for dense
gas (about 100%). In this case there is no need for a mass trans-
formation from the DCMF to the IMF. The characteristic scale
of stellar mass demanded by the stellar IMF is set by the funda-
mental physics of cloud fragmentation (Shu et al. 2004; Larson
2005). Which picture is correct?

In order to bring new insight to this issue we used an in-
dependent method of identifying and measuring the masses of
dense cores. This method uses precise infrared measurements
of dust extinction toward stars background to a molecular cloud
(the NICE(R) method, Lada et al. 1994; Alves et al. 1998, 2001;

1. Observational test

Alves, Lombardi, & Lada (2007)
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range is slightly higher in the case of the simulation, partly
because the turnover region has a slightly larger width than in
the Chabrier IMF. The values of the best-fit parameters are
plotted in Figure 5, showing that all IMFs above 16 have a
width, σm, consistent with that of the Chabrier IMF, except for
the slight increase in the case of the run high, and a power-law
slope, Γ, consistent with the Salpeter value. In the case of the
lowest-resolution run, 16, σm cannot be measured and Γ is
slightly smaller than Salpeter’s value. The IMF peak, mpeak,
shows a clear dependence on resolution (top panel of Figure 6),
but also a trend toward numerical convergence (which may or
may not have been already reached at the resolution of the
run high).

An alternative way to test for numerical convergence of the
IMFs with increasing resolution is to use the cumulative IMFs.
Although the value of mpeak is best defined by a lognormal fit to
the IMF, as we did above, the procedure has some dependence
on the choice of bin size and location, while the cumulative
IMF is immune to such choices. In Figure 7, we show the
cumulative IMFs of the convergence-test simulations at
SFE=0.13, expressed as the number of sink particles above
the mass m as a function of m. The figure shows a clear
tendency toward numerical convergence. The two highest-
resolution runs, med and high, have essentially the same
cumulative IMF down to a mass of order 0.1Me, lower than
the IMF peak. The rate of convergence is illustrated in

Figure 6, where we plot the number of stars above a given
mass, mmin, as a function of the root grid size of the simulation.
Even in the case of the total number of stars, mmin=0Me, the
cumulative IMFs are clearly converging with increasing
resolution, consistent with the convergence of mpeak in the
top panel of Figure 5. For stars with m>0.1Me, the
convergence is achieved at the resolution of the run med, and
all runs have essentially the same number of intermediate- and
high-mass stars (mmin= 1.0Me).
Based on the above convergence tests, we can conclude that

we have found, for the first time, clear evidence of the
convergence of the IMF turnover (with a nearly converged
value of mpeak in agreement with the observations) in the case
of isothermal MHD turbulence, as predicted by the turbulent
fragmentation models of the IMF (PN02; Padoan et al. 1997;
Hennebelle & Chabrier 2008, 2009; Padoan &
Nordlund 2011b; Hopkins 2012).

5. IMF Variability

The universality of the stellar IMF is hotly debated. While
most works emphasize the apparent invariance of the IMF (e.g.,
Chabrier 2005; Bastian et al. 2010; Massey 2011; Offner
et al. 2014; Weisz et al. 2015), some stress compelling
evidence of IMF variability (e.g., Kroupa 2001; Dib et al. 2010,
2017; Marks et al. 2012; Kroupa et al. 2013; Scholz et al. 2013;
Dib 2014). Observational determinations of the stellar IMF

Figure 3. Evolution of the SFE (top) and SFR per free-fall time (bottom) as a
function of time, measured in free-fall times for the convergence runs. The
dashed line is a power-law fit SFE=0.04 (t/tff)1.5 corresponding to
SFRff=0.06 (t/tff)0.5. The free-fall time of the runs is tff=1.18 Myr. The
SFRff is highly intermittent on the very fine cadence of 80 days, which we use
to record the sink particle properties, and has been low-pass filtered to aid
readability.

Figure 4. Dependence of the IMF on numerical resolution. The five histograms
correspond to the IMFs for the runs 16, 32, low, med, and high (bottom to top),
all sampled at SFE=0.13, corresponding to a time of 1.61, 1.91, 2.46, 2.62,
and 2.64 Myr, respectively, after the formation of the first star. Except for the
top one, the histograms are shifted vertically by a factor of 1/5 (med), 1/25
(low), 1/125 (32), and 1/625 (16). The dotted lines are lognormal fits between
the smallest mass bin where the IMF appears to be complete (based on a sharp
cutoff at lower masses, more apparent in histograms with narrower bins) and 2
Me. The solid lines are power-law fits above 2 Me. The dashed line
corresponds to Chabrier’s IMF (Chabrier 2005) up to 2 Me and Salpeter’s IMF
(Salpeter 1955) above that mass.
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Figure 16. Linewidth-size relations for model M10 at the mean core forming time tcf = 0.72t!,0. Local linewidth-size relations are
obtained by choosing a central location within the computational box, then calculating the one-dimensional velocity dispersion
ωV using Equation (13) as well as the mean density ε as a function of the radius r for a sphere centered on that location. (a)
Local linewidth-size relations for 100 randomly chosen central positions, color-coded by ε/ε0. The orange dashed line plots
the mean linewidth-size relation averaged over 1,000 randomly chosen locations at this time per simulation. The black dashed
line plots the scaling ωV = cs(r/ϑs,cloud)

1/2 expected from the initial k→2 power spectrum, with the cloud-average sonic scale
ϑs,cloud from Equation (48) marked by a vertical gray band. The intersection of colored lines with the horizontal gray band gives
the actual sonic scale ϑs on each linewidth-size curve. Decay of turbulence from its initial M3D = 10 level is clearly observed
at large radii. (b) Velocity dispersion measured at r = ϑs,cloud (i.e., intersection points in panel (a) with vertical line) versus
the mean density at that radius, demonstrating a positive correlation between the two quantities at a given size scale (also
manifested by vertical color gradients in panel (a)). (c) Measured local sonic scale ϑs (i.e., intersection points in panel (a) with
horizontal line) versus the mean density at that radius. The horizontal gray band marks ϑs,cloud. For reference, we also plot
LJ/LJ,0 → cs[ϖ/(Gε)]1/2/LJ,0 with a black solid line, and mark 4!x/LJ,0 and 4!xAMR/LJ,0 (see Section 5.2) with purple and
cyan dashed lines, respectively.

consistent with our expectation in Figure 1. Some past
images of cores live in the “forbidden region” where in-
stability is completely suppressed by turbulence. Others
fall in the region where instability is allowed, but they
generally have low rs and ωc such that the critical con-
ditions (Equation (66)) are not easily satisfied. Overall,
Figure 17 indicates that cores start collapsing when the
turbulence su!ciently dissipates and the central den-
sity becomes large enough due to the converging flows.
It also suggests that the density at which collapse starts
is not unique, but rather depends on the local strength
of turbulence parametrized by rs. In Paper II, we will
present more detailed properties of critical cores and dis-
cuss them in the context of critical density.
While the present study focuses on cores in which col-

lapse succeeds, there is likely a class of “failed cores,”
in which the critical condition for collapse is never met,
with the material that has been gathered instead dis-
persing back into the ambient medium. A recent study
by O”ner et al. (2022) identified and tracked simulated
cores using the density dendrogram. They applied a
clustering algorithm to a vector of measured physical
properties of cores, finding the entire core dataset can be

classified into three categories which they term “turbu-
lent”, “coherent”, and “pre/protostellar” phases. Their
finding suggests that cores not only transition stochas-
tically between these phases but also disperse entirely
from any of these phases (see their Fig. 10). This could
happen, for example, when the core-building converging
flows are not strong enough or are maintained for only
a brief period of time; a core is hit by traveling shock
waves. Identifying these failed cores would require sys-
tematic analysis di”erent from the present approach, in
which we trace the prior history of cores that form sink
particles.
Our critical conditions (Equation (66)) suggest that

the fate of a core depends not only on the local den-
sity but also on the local strength of turbulence and the
gravitational potential terrain around the core. When
considering the e”ects of turbulence, almost all theo-
ries assume a single linewidth-size relation applied to all
cores. However, Figure 16 shows that both the slope and
normalization of the local linewidth-size relations signif-
icantly vary from region to region. A complete theory
should take into account 1) the e”ects of turbulence on
the critical radius and mass of a core (e.g., from the TES

Resolving Turbulence



24 Moon & Ostriker

Figure 16. Linewidth-size relations for model M10 at the mean core forming time tcf = 0.72t!,0. Local linewidth-size relations are
obtained by choosing a central location within the computational box, then calculating the one-dimensional velocity dispersion
ωV using Equation (13) as well as the mean density ε as a function of the radius r for a sphere centered on that location. (a)
Local linewidth-size relations for 100 randomly chosen central positions, color-coded by ε/ε0. The orange dashed line plots
the mean linewidth-size relation averaged over 1,000 randomly chosen locations at this time per simulation. The black dashed
line plots the scaling ωV = cs(r/ϑs,cloud)

1/2 expected from the initial k→2 power spectrum, with the cloud-average sonic scale
ϑs,cloud from Equation (48) marked by a vertical gray band. The intersection of colored lines with the horizontal gray band gives
the actual sonic scale ϑs on each linewidth-size curve. Decay of turbulence from its initial M3D = 10 level is clearly observed
at large radii. (b) Velocity dispersion measured at r = ϑs,cloud (i.e., intersection points in panel (a) with vertical line) versus
the mean density at that radius, demonstrating a positive correlation between the two quantities at a given size scale (also
manifested by vertical color gradients in panel (a)). (c) Measured local sonic scale ϑs (i.e., intersection points in panel (a) with
horizontal line) versus the mean density at that radius. The horizontal gray band marks ϑs,cloud. For reference, we also plot
LJ/LJ,0 → cs[ϖ/(Gε)]1/2/LJ,0 with a black solid line, and mark 4!x/LJ,0 and 4!xAMR/LJ,0 (see Section 5.2) with purple and
cyan dashed lines, respectively.
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Figure 16. Linewidth-size relations for model M10 at the mean core forming time tcf = 0.72t!,0. Local linewidth-size relations are
obtained by choosing a central location within the computational box, then calculating the one-dimensional velocity dispersion
ωV using Equation (13) as well as the mean density ε as a function of the radius r for a sphere centered on that location. (a)
Local linewidth-size relations for 100 randomly chosen central positions, color-coded by ε/ε0. The orange dashed line plots
the mean linewidth-size relation averaged over 1,000 randomly chosen locations at this time per simulation. The black dashed
line plots the scaling ωV = cs(r/ϑs,cloud)

1/2 expected from the initial k→2 power spectrum, with the cloud-average sonic scale
ϑs,cloud from Equation (48) marked by a vertical gray band. The intersection of colored lines with the horizontal gray band gives
the actual sonic scale ϑs on each linewidth-size curve. Decay of turbulence from its initial M3D = 10 level is clearly observed
at large radii. (b) Velocity dispersion measured at r = ϑs,cloud (i.e., intersection points in panel (a) with vertical line) versus
the mean density at that radius, demonstrating a positive correlation between the two quantities at a given size scale (also
manifested by vertical color gradients in panel (a)). (c) Measured local sonic scale ϑs (i.e., intersection points in panel (a) with
horizontal line) versus the mean density at that radius. The horizontal gray band marks ϑs,cloud. For reference, we also plot
LJ/LJ,0 → cs[ϖ/(Gε)]1/2/LJ,0 with a black solid line, and mark 4!x/LJ,0 and 4!xAMR/LJ,0 (see Section 5.2) with purple and
cyan dashed lines, respectively.
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the critical radius and mass of a core (e.g., from the TES
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Figure 16. Linewidth-size relations for model M10 at the mean core forming time tcf = 0.72t!,0. Local linewidth-size relations are
obtained by choosing a central location within the computational box, then calculating the one-dimensional velocity dispersion
ωV using Equation (13) as well as the mean density ε as a function of the radius r for a sphere centered on that location. (a)
Local linewidth-size relations for 100 randomly chosen central positions, color-coded by ε/ε0. The orange dashed line plots
the mean linewidth-size relation averaged over 1,000 randomly chosen locations at this time per simulation. The black dashed
line plots the scaling ωV = cs(r/ϑs,cloud)

1/2 expected from the initial k→2 power spectrum, with the cloud-average sonic scale
ϑs,cloud from Equation (48) marked by a vertical gray band. The intersection of colored lines with the horizontal gray band gives
the actual sonic scale ϑs on each linewidth-size curve. Decay of turbulence from its initial M3D = 10 level is clearly observed
at large radii. (b) Velocity dispersion measured at r = ϑs,cloud (i.e., intersection points in panel (a) with vertical line) versus
the mean density at that radius, demonstrating a positive correlation between the two quantities at a given size scale (also
manifested by vertical color gradients in panel (a)). (c) Measured local sonic scale ϑs (i.e., intersection points in panel (a) with
horizontal line) versus the mean density at that radius. The horizontal gray band marks ϑs,cloud. For reference, we also plot
LJ/LJ,0 → cs[ϖ/(Gε)]1/2/LJ,0 with a black solid line, and mark 4!x/LJ,0 and 4!xAMR/LJ,0 (see Section 5.2) with purple and
cyan dashed lines, respectively.

consistent with our expectation in Figure 1. Some past
images of cores live in the “forbidden region” where in-
stability is completely suppressed by turbulence. Others
fall in the region where instability is allowed, but they
generally have low rs and ωc such that the critical con-
ditions (Equation (66)) are not easily satisfied. Overall,
Figure 17 indicates that cores start collapsing when the
turbulence su!ciently dissipates and the central den-
sity becomes large enough due to the converging flows.
It also suggests that the density at which collapse starts
is not unique, but rather depends on the local strength
of turbulence parametrized by rs. In Paper II, we will
present more detailed properties of critical cores and dis-
cuss them in the context of critical density.
While the present study focuses on cores in which col-

lapse succeeds, there is likely a class of “failed cores,”
in which the critical condition for collapse is never met,
with the material that has been gathered instead dis-
persing back into the ambient medium. A recent study
by O”ner et al. (2022) identified and tracked simulated
cores using the density dendrogram. They applied a
clustering algorithm to a vector of measured physical
properties of cores, finding the entire core dataset can be

classified into three categories which they term “turbu-
lent”, “coherent”, and “pre/protostellar” phases. Their
finding suggests that cores not only transition stochas-
tically between these phases but also disperse entirely
from any of these phases (see their Fig. 10). This could
happen, for example, when the core-building converging
flows are not strong enough or are maintained for only
a brief period of time; a core is hit by traveling shock
waves. Identifying these failed cores would require sys-
tematic analysis di”erent from the present approach, in
which we trace the prior history of cores that form sink
particles.
Our critical conditions (Equation (66)) suggest that

the fate of a core depends not only on the local den-
sity but also on the local strength of turbulence and the
gravitational potential terrain around the core. When
considering the e”ects of turbulence, almost all theo-
ries assume a single linewidth-size relation applied to all
cores. However, Figure 16 shows that both the slope and
normalization of the local linewidth-size relations signif-
icantly vary from region to region. A complete theory
should take into account 1) the e”ects of turbulence on
the critical radius and mass of a core (e.g., from the TES
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Questions for discussion
• Is it valid to separate control of SF into different stages in numerical simulations (and theory)? 

– Do idealized IC and BC give the same results as realistic IC and BC? 
– Are realistic simulations even possible, given the huge dynamic range in time? (not just space)


• If so, within a given stage, 
– what essential physics must be included? 
– what algorithmic approaches are sufficiently accurate? 
– what are the resolution requirements imposed by the key physical processes? 
– how can we efficiently and systematically explore the large parameter space?


• Is it possible to empirically constrain gravo-magneto-turbulent fragmentation into cores in more 
extreme environments? 
– Galactic center molecular clouds 
– Cluster-forming clumps within outer-disk GMCs


• Is it possible to identify critical core transition from positive to negative force in observations?


• What kind of new analysis would prove to be useful? Virial analysis? Tracer particles? Neural network? 
What would be the best strategy to analyze anisotropic evolution when there are magnetic fields?


• What is the correct refinement condition in star formation simulations?


