Sternentstehung - Star Formation Winter term 2024/2025 Henrik Beuther, Thomas Henning & Caroline Gieser 15.10 Today: Introduction & Overview (Beuther) 22.10 Physical processes I (Beuther) 29.10 -- 05.11 Physcial processes II (Beuther) **12.11 Molecular clouds as birth places of stars (Beuther)** 19.11 Molecular clouds (cont.), Jeans Analysis (Henning) 26.11 Collapse models I (Beuther) 03.12 Collapse models II (Beuther) 10.12 Protostellar evolution (Gieser) 17.12 Pre-main sequence evolution & outflows/jets (Henning) 07.01 Accretion disks I (Henning) 14.01 Accretion disks II (Henning) 21.01 High-mass star formation, clusters and the IMF (Gieser) 28.01 Extragalactic star formation (Henning) 04.02 Planetarium@HdA, outlook, questions 11.02 Examination week, no star formation lecture (Beuther, Gieser, Henning) Book: Stahler & Palla: The Formation of Stars, Wileys More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws2425.html

[beuther@m](mailto:beuther@mpia.de)[pia.de, henning@m](mailto:henning@mpia.de)pia.de [, gieser@m](mailto:suri@mpia.de)pia.de

- Line profiles (thermal and kinematic broadening) and some applications
- Magnetic fields are very important but difficult to measure:
	- Zeeman effect traces **B** component along line of sight.
	- Dust polarication traces **B** in plane of the sky. (Other magnetic field measurements possible.)
- Masers are non-thermal processes. Good for high spatial accuracy and proper motion studies.
- Dust important from many points of view:
	- Traces warm and cold components of ISM.
	- Important coolant at high densities.
	- Traces magnetic field.
	- Chemical catalyst.

- Line profiles (thermal and kinematic broadening) and some applications

- Magnetic fields are very important $\frac{2.3082,10^5}{1.7}$
	- Zeeman effect traces **B** com
	- Dust polarication traces **B** in (Other magnetic field meas
- Masers are non-thermal processes proper motion studies.
- Dust important from many points
	- Traces warm and cold components or ISM.
	- Important coolant at high densities.
	- Traces magnetic field.
	- Chemical catalyst.

- Line profiles (thermal and kinematic broadening) and some applications
- Magnetic fields are very important but difficult to measure:
	- Zeeman effect traces **B** component along line of sight.
	- Dust polarication traces **B** in plane of the sky. (Other magnetic field measurements possible.)

- Line profiles (thermal and kinematic broadening) and some applications
- Magnetic fields are very important but difficult to measure:
	- Zeeman effect traces **B** component along line of sight.
	- Dust polarication traces **B** in plane of the sky. (Other magnetic field measurements possible.)
- Masers are non-thermal processes. Good for high spatial accuracy and proper motion studies.
- Dust important from many points of viet
	- Traces warm and cold component
	- Important coolant at high densities
	- Traces magnetic field.
	- Chemical catalyst.

lifficult to measure: nt along line of sight. nents possible.)

- Dust important from many points of view:

- Traces warm and cold components of ISM.
- Important coolant at high densities.
- Traces magnetic field.
- Chemical catalyst.

Dust action at longer wavelengths: Re-emission

Dust grain hit by UV photon:

- 1) Photoelectrical effect \rightarrow give energy to $e^+ \rightarrow$ leaves grain and heats gas.
- 2) Excites lattice vibrations \rightarrow transformed to (far)-IR photons and re-emitted.

Dust action at longer wavelengths: Re-emission

Nielbock et al. 2012, Contours 870µm

Dust and gas coupling

- Low densities: gas and dust de-coupled; at high densities coupled.

- Low densities gas cooling mainly CO; high densities via CO & dust.

- At very high densities gas and dust temperatures approach each other

 \rightarrow CO cooling becomes insignificant then!

Dust incarnations

Dust can grow and coagulate in very dense environments, e.g., disks.

Figures: Simulations of dust grain cluster growth for different initial parameters (gas and dust density, temperature, stickyness, grain charge, coagulation time …). (From Dorschner & Henning 1995)

Topics today

Physical distributions (cont.)

- Components of the interstellar medium

- General characteristics of molecular clouds

- Important cloud relations

- Cloud fragmentation

A medium in thermodynamic eq. can be described by 4 distribution laws:

1.) MAXWELL distribution of the particle velocity contributions (kinetic energy):

$$
N(v;T) = 4\pi \left(\frac{m}{2kT}\right)^{3/2} v^2 \exp\left(-\frac{mv^2}{2kT}\right)
$$

 ν : particle velocities

2.) BOLTZMANN distribution of the population numbers of the particle energy levels:

$$
\frac{N_o}{N_u} = \frac{g_o}{g_u} \exp\left(-\frac{E_o - E_u}{kT}\right)
$$

 $E_{\text{out}} \longrightarrow$ Energies of the upper (o) and lower (u) levels

- $g_{o/u} \longrightarrow$ Corresponding statistical weights
- 3.) PLANCK radiation law (distribution of the photon energies):

$$
B_v = \frac{2h v^3/c^2}{\exp(h v/kT) - 1}
$$

 ν : photon frequencies

4.) SAHA equation (distribution of the ionisation levels in plasma):

 $\frac{N_{j+1}N_e}{N_j} = \frac{2 U_{j+1}(T)}{U_j(T)} \left(\frac{2\pi m_e kT}{h^2} \right)^{3/2} \exp(-\chi_{j,j+1}/kT)$

- N_{j+1} , N_j Number densities of (j+1)-fold and j-fold ionised particles
- N_e electron density
- $\chi_{j,j+1}$ ionisation energy needed to get from ionisation level j to $j+1$
- U_{j+1} , U_j partition function for both states

Are these distribution functions valid in the ISM?

General rule: time scale for processes leading to equilibrium short compared to time scales of disturbing processes

1. Example : Collisions between H-atoms:

 Consider: $T = 100 \text{ K} \rightarrow \text{mean } v \sim 1 \text{ km/s}$; cross section $\sigma = \pi R_H^2 \sim \pi (0.1 \text{ nm})^2$

Probability for collision: $P = v \sigma n_H \tau_s$

 \rightarrow average time τ_s between two collision for P=1: $\tau_s = (v \circ n_H)^{-1}$ \rightarrow with HI density of 1 cm⁻³ $\rightarrow \tau_s \sim 1000$ yrs

 \rightarrow short compared to most interstellar processes (except shock fronts)

 \rightarrow Maxwell distribution valid, introduction of kinetic temp. T_{kin} reasonable

2. Example: Balance for energy level population numbers for ISM:

 Correction factor to Boltzmann: 1 $\frac{1}{1 + (A_{21} / (n Q_{21}))}$

(Pure Boltzmann only if $(n Q_{21}) >> A_{21}$)

 A_{21} [s⁻¹] Einstein coefficient for spontaneous radiative decay Q_{21} [m³ s⁻¹] collision rate n [m-3] number density

- In thin ISM collision rate small (Example 1) \rightarrow sub-thermal

- For dense cores: E.g. CO(1-0) at density 10^5 cm⁻³: A₂₁=7.2x10⁻⁸s⁻¹, $Q_{21} = 3.3 \times 10^{-11}$ cm³s⁻¹

> \overline{P} A₂₁ / (n Q₂₁) ~ 0.02 \rightarrow Boltzmann distribution valid in dense cores!

3. Example : Interstellar radiation field (ISRF) :

Sum of emission contributions from all emitting objects (stars, dust, gas) in the nearer and further vicinity of the gas cloud

 ISRF cannot be approximated by a black body (i.e., Planck function not applicable) ISRF hence far from thermodynamic equilibrium …

However: Dense cores and stars can be fitted relatively well with single or multiple black body functions.

Topics today

Physical distributions (cont.)

- Components of the interstellar medium

- General characteristics of molecular clouds

- Important cloud relations

- Cloud fragmentation

Historical Models of the ISM (I)

1.) Simple Two-Phase Model (Field et al. 1969)

- Considering only the atomic gas
- Underlying idea: pressure equilibrium with environment

Shortcomings: does not account for hot ionized nor molecular medium

Historical Models of the ISM (II)

2.) Three-Phase Model (McKee & Ostriker 1977)

- Takes into account hot component of ISM and supernova blast waves. - More dynamical and coupled to the formation (and death) of massive stars

Historical Models of the ISM (III)

2.) Three-Phase Model (McKee & Ostriker 1977)

Shortcomings in the original model:

- SN rate and SN "luminosity" overestimated, SNe not arbitrarily distributed
- Observations indicate considerable amount of evenly distributed (i.e., not bound to clouds) warm HI gas
- Model still assumes global pressure equilibrium between the phases
- One very important component still missing: **molecular clouds !!** $(T \approx 10 \text{ K}$, n > 300 cm⁻³)

Phase transitions are possible (e.g., by heating and cooling)

Diffuse clouds \longrightarrow molecular clouds \longrightarrow stars

Historical Models of the ISM (III)

- 2.) Three-Phase Model (N
- Shortcomings in the original
- SN rate and SN "lumind
- Observations indicate c (i.e., not bound to cloud
- Model still assumes glo
- One very important con

Phase transitions are possible (e.g., by heating and cooling)

Diffuse clouds \longrightarrow molecular clouds \longrightarrow stars

3.) Overview of the components

 f as volume filling factor regarding the Galactic disk By mass in Milky Way: ~20 ionized, 60% neutral, 20% molecular

3.) Overview of the components

Topics today

Physical distributions (cont.)

- Components of the interstellar medium

General characteristics of molecular clouds

- Important cloud relations

- Cloud fragmentation

M51: The Whirlpool Galaxy

Matsushita et al. 2004

M51: The Whirlpool Galaxy

Matsushita et al. 2004

Giant Molecular Clouds

Galactic Ring survey $13CO(2-1)$ Jackson et al. 2006

Sizes: 20 to 100pc; Masses: 10^4 to 10^6 M_{sun}; Temperatures: 10 to 20K Supersonic velocity dispersion \sim 2-3 km/s mainly due to turbulence Magnetic field strengths on the order of 10μ G Average local densities $\sim 10^4$ cm⁻³; Volume-averaged densities $\sim 10^2$ cm⁻³ --> highly clumped material

Hierarchical cloud structure

- Clouds fractal and self-similar from 100pc to 0.1pc
- Independent of star-forming or non-star-forming clouds
- Fractal dimension of perimeter P and area A: P ~ $A^{D/2}$ \rightarrow D~1.4

Probability density distributions (PDFs)

Kainulainen et al. 2009 density excess

Correlation of "tail" with star formation

Dust column density in Taurus, logarithmic color scale

- Observations probe *column* densities, but theories deal with *volume* densities.

- How to estimate the 3-dimensional structure?

Column density map

Scale decomposition and object recognition

Column density map

Scale decomposition and object recognition 2D structures

\rightarrow Density PDFs

Based on sample of Gould-Belt clouds

Dark brown: star-forming gas light brown: structures enveloping star-forming gas Green: non-structured gas

- Direct comparison with theory
- Star formation density threshold \rightarrow 5x10³cm⁻³

Topics today

Physical distributions (cont.)

- Components of the interstellar medium

- General characteristics of molecular clouds

- Important cloud relations

- Cloud fragmentation

A GMC in viral equilibrium

Shortest version of virial theorem (next week): 2T = -W (T kinetic energy, W gravitational energy)

 $2T = 2* (1/2m\Delta v^2) = -W = Gm^2/r$

 \rightarrow virial velocity: $v_{vir} = (\overline{Gm}/r)^{1/2}$ \rightarrow or virial mass: $m_{vir} = v^2 r/G$

Luminosity-mass relation

Integrated CO intensity: $I_{CO} = \int T(v) dv$

CO luminosity $L_{CO} = T \Delta v \pi r^2$ (T brightness temperature, Δv linewidth, r cloud radius) Substituting $v = (Gm/r)^{1/2}$ and mass m = 4/3 $n³$ \circ

 \rightarrow L_{CO} = (3πG/(4_p))^{1/2} T m

GMCs are roughly in virial equilibrium.

The linewidth-size relation

- Linewidth-size relation first found by Larson 1981 (Thermal CO linewidth at 20K only ≈0.1km/s)
- Approximate relation: linewidth ≈ √size
- Extends over many orders of magnitude in size but not down to cores
- Implies strong turbulent contribution to the ISM

Additional relations

- Linewidth-size relation: dv $\approx r^{1/2}$

- Virial equilibrium: dv \approx (Gm/r)^{1/2} \rightarrow m = dv²r/G

This leads to other relations: \rightarrow m = $\overline{r^2/G}$ \rightarrow m/r² = constant \rightarrow approximate constant column density N in GMCs

 $\rightarrow \rho \approx m/r^3 \approx dv^2/G * 1/r^2$

Some average empirical values for GMCs:

 $N \approx 1.5 \times 10^{22}$ cm⁻² $A_V \approx 10$ mag $\overline{\Sigma} \approx 150 \text{ M}_{\text{sun}}$ pc⁻²

Topics today

Physical distributions (cont.)

- Components of the interstellar medium

- General characteristics of molecular clouds

- Important cloud relations

Cloud fragmentation

Clusters and the Initial Mass Function (IMF)

Orion Nebula Subaru Telescope, National Astronomical Observatory of Japan

CISCO (J, K' & H2 (v=1-0 S(1)) January 28, 1999

Pre-stellar core mass functions

Characteristic mass defined by thermal physics

- Jeans mass depends on T:

 $M_{\rm J} \sim a_{\rm t}^{3}/\rho_0^{1/2} \sim T^{3/2}/\rho^{1/2}$

- Low densities \rightarrow T decreases with increasing $\rho \rightarrow$ regions cool efficiently \rightarrow decreasing M₁ suggests that fragmentation is favoured

- Further increasing $\rho \rightarrow$ gas thermally couples to dust and clouds, and become partially optically thick \rightarrow Cannot cool well enough anymore \rightarrow temperature slightly increases again. \rightarrow M₁ decreases slower, inhibiting much further fragmentation.

 \rightarrow Regime with lowest T should correspond to preferred fragmentation scale \rightarrow The Jeans mass at this point is about 0.5 Msun.

Summary

(Xe) 1 60

 \circ

- Physical distribution

- Different components of ISM

- Basic characteristics

- Important cloud relations

- Cloud fragmentation

Sternentstehung - Star Formation Winter term 2024/2025 Henrik Beuther, Thomas Henning & Caroline Gieser 15.10 Today: Introduction & Overview (Beuther) 22.10 Physical processes I (Beuther) 29.10 -- 05.11 Physcial processes II (Beuther) 12.11 Molecular clouds as birth places of stars (Beuther) **19.11 Molecular clouds (cont.), Jeans Analysis (Henning)** 26.11 Collapse models I (Beuther) 03.12 Collapse models II (Beuther) 10.12 Protostellar evolution (Gieser)

17.12 Pre-main sequence evolution & outflows/jets (Henning) 07.01 Accretion disks I (Henning)

14.01 Accretion disks II (Henning)

21.01 High-mass star formation, clusters and the IMF (Gieser)

28.01 Extragalactic star formation (Henning)

04.02 Planetarium@HdA, outlook, questions

11.02 Examination week, no star formation lecture (Beuther, Gieser, Henning) Book: Stahler & Palla: The Formation of Stars, Wileys More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws2425.html [beuther@m](mailto:beuther@mpia.de)[pia.de, henning@m](mailto:henning@mpia.de)pia.de [, gieser@m](mailto:suri@mpia.de)pia.de

Heidelberg Joint Astronomical Colloquium Winter Semester 2024/25 Tuesday November 12th Main Lecture Theatre, Philosophenweg 12, 16:30 CEST

Elena Pancino

(INAF – Osservatorio Astrofisico di Arcetri):

Stardance: The non-canonical evolution of stars in clusters

https://www.physik.uni-heidelberg.de/hephysto/ Host: Michela Mapelli (mapelli@uni-heidelberg.de) Image Credit: Mark A. Garlick / University of Warwick