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Last lecture
- Line profiles (thermal and kinematic broadening) and some applications

- Magnetic fields are very important but difficult to measure:
         - Zeeman effect traces B component along line of sight.
         - Dust polarication traces B in plane of the sky.
             (Other magnetic field measurements possible.)
 
- Masers are non-thermal processes. Good for high spatial accuracy and
         proper motion studies.

- Dust important from many points of view:
         - Traces warm and cold components of ISM.
         - Important coolant at high densities.
         - Traces magnetic field.
         - Chemical catalyst.
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Dust action at longer wavelengths: Re-emission 

Dust grain hit by UV photon:

1) Photoelectrical effect à give energy to e- à leaves grain and heats gas.

2) Excites lattice vibrations à transformed to (far)-IR photons and re-emitted.    

Stahler & Palla 2004
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Nielbock et al. 2012, Contours 870µm



Dust and gas coupling

G – heating rate       L – Cooling rate

Mainly atomic envelopes
Mainly molecular core

Cosm
ic ray heating m

ore sensitive to density 
than CO cooling. Hence Tg  rises again.

- Low densities: gas and dust de-coupled; at high densities coupled.

- Low densities gas cooling mainly CO; high densities via CO & dust.

- At very high densities gas and dust temperatures approach each other

            à CO cooling becomes insignificant then!           

simplified
model à
lowest obs.
Td ~ 7-10K

Stahler & Palla 2004
Stahler & Palla 2004



Dust can grow and coagulate in very dense environments, e.g., disks.

Figures: Simulations of dust grain cluster growth for different initial parameters (gas and 
dust density, temperature, stickyness, grain charge, coagulation time …).
(From Dorschner & Henning 1995)

Dust incarnations 



Topics today

- Physical distributions (cont.)

- Components of the interstellar medium

- General characteristics of molecular clouds

- Important cloud relations

- Cloud fragmentation



Physical conditions : Micro-Level 
A medium in thermodynamic eq. can be described by 4 distribution laws:

1.) MAXWELL distribution of the particle velocity contributions (kinetic energy):

2.) BOLTZMANN distribution of the population numbers of the particle energy levels:

3.) PLANCK radiation law (distribution of the photon energies):

4.) SAHA equation (distribution of the ionisation levels in plasma):

V  : particle velocities

V  : photon frequencies

Energies of the upper (o) and lower (u) levels
Corresponding statistical weights

Nj+1, Nj - Number densities of (j+1)-fold and j-fold ionised particles
Ne - electron density
cj,j+1 - ionisation energy needed to get from ionisation level j to j+1
Uj+1, Uj - partition function for both states



Physical conditions : Micro-Level 
Are these distribution functions valid in the ISM?

General rule: time scale for processes leading to equilibrium short compared
                    to time scales of disturbing processes

1. Example : Collisions between H-atoms: 

      Consider:
      T = 100 K à mean v ~ 1 km/s; cross section s = p RH2 ~ p (0.1 nm)2

                            Probability for collision: P = v s nH ts

       à average time ts between two collision for P=1: ts = (v s nH)-1

       à with HI density of 1 cm-3  à ts ~ 1000 yrs           
           
       à short compared to most interstellar processes (except shock fronts)
                   
  à Maxwell distribution valid, introduction of kinetic temp. Tkin reasonable                    



Physical conditions : Micro-Level 
                    

2. Example: Balance for energy level population numbers for ISM:

          Correction factor to Boltzmann:             1 
                                                        1 + (A21 / (n Q21))
                   
          (Pure Boltzmann only if (n Q21) >> A21)
    
        
- In thin ISM collision rate small (Example 1) à sub-thermal

- For dense cores: E.g. CO(1-0) at density 105cm-3: A21=7.2x10-8s-1,                
                                                                         Q21=3.3x10-11 cm3s-1

                              à A21 / (n Q21) ~ 0.02
                              à Boltzmann distribution valid in dense cores! 

A21 [s-1] Einstein coefficient for 
            spontaneous radiative decay 
Q21 [m3 s-1] collision rate 
n [m-3] number density 



Physical conditions : Micro-Level 
3. Example : Interstellar radiation field (ISRF) : 

Sum of emission contributions from all emitting objects (stars, dust, gas) in 
the nearer and further vicinity of the gas cloud

      ISRF cannot be approximated 
      by a black body (i.e., Planck 
      function not applicable) 
      ISRF hence far from 
      thermodynamic equilibrium …

However: Dense cores and stars can be fitted relatively well with single
               or multiple black body functions.

Power spectrum of the ISRF as 
reported by Black 1987 in:
Interstellar Processes (ed. 
Hollenbach), Dordrecht, Reidel 
Publ., 731-744 

mm    FIR       IR



Topics today

- Physical distributions (cont.)

- Components of the interstellar medium

- General characteristics of molecular clouds

- Important cloud relations

- Cloud fragmentation



Historical Models of the ISM (I)
1.) Simple Two-Phase Model (Field et al. 1969)

- Considering only the atomic gas

- Underlying idea: pressure equilibrium with environment

Stahler & Palla 2004

WNM

CNM

Shortcomings: does not account for hot ionized nor molecular medium

P=nT



Historical Models of the ISM (II)
2.) Three-Phase Model (McKee & Ostriker 1977)

- Takes into account hot component of ISM and supernova blast waves. 
- More dynamical and coupled to the formation (and death) of massive stars

SN blast wave



Historical Models of the ISM (III)
2.) Three-Phase Model (McKee & Ostriker 1977)

Shortcomings in the original model:

- SN rate and SN “luminosity” overestimated, SNe not arbitrarily distributed

- Observations indicate considerable amount of evenly distributed 
   (i.e., not bound to clouds) warm HI gas

- Model still assumes global pressure equilibrium between the phases

- One very important component still missing: molecular clouds !!
                                                                (T ≈ 10 K,  n > 300 cm-3 )

Phase transitions are possible  (e.g., by heating and cooling)

Diffuse clouds         molecular  clouds          stars



Historical Models of the ISM (III)
2.) Three-Phase Model (McKee & Ostriker 1977)

Shortcomings in the original model:

- SN rate and SN “luminosity” overestimated, SNe not arbitrarily distributed

- Observations indicate considerable amount of evenly distributed 
   (i.e., not bound to clouds) warm HI gas

- Model still assumes global pressure equilibrium between the phases

- One very important component still missing: molecular clouds !!
                                                                (T ≈ 10 K,  n > 300 cm-3 )

Phase transitions are possible  (e.g., by heating and cooling)

Diffuse clouds         molecular  clouds          stars



3.) Overview of the components

Phase                              n [cm-3]         T [K]         ƒ            M [109 M¤ ]

Hot ionised medium            0.003            106         0.5               0.1

Warm ionised medium          0.3             8000        0.1               1.0

Warm neutral medium          0.5             8000        0.3…            1.4

Diffuse HI clouds                  50                80          -                 2.5

Molecular clouds                >300               10          -                 2.5

HII regions                       1 – 105            104          -                 0.05

ƒ as volume filling factor regarding the Galactic disk

By mass in Milky Way: ~20 ionized, 60% neutral, 20% molecular
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Topics today

- Physical distributions (cont.)

- Components of the interstellar medium

- General characteristics of molecular clouds

- Important cloud relations

- Cloud fragmentation



M51: The Whirlpool Galaxy

Matsushita et al. 2004



M51: The Whirlpool Galaxy

Matsushita et al. 2004

Schinnerer et al. 2013
CO(1-0), PdBI



Giant Molecular Clouds

Sizes: 20 to 100pc; Masses: 104 to 106 Msun; Temperatures: 10 to 20K
Supersonic velocity dispersion ~2-3 km/s mainly due to turbulence
Magnetic field strengths on the order of 10µG
Average local densities ~104cm-3; Volume-averaged densities ~102cm-3

                                           --> highly clumped material

Galactic Ring survey
13CO(2-1)
Jackson et al. 2006



Hierarchical cloud structure

Rosette Molecular Cloud (Blitz & Williams 1999)

12CO C18O CS

- Clouds fractal and self-similar from 100pc to 0.1pc

- Independent of star-forming or
  non-star-forming clouds

- Fractal dimension of perimeter P  and
         area A: P ~ AD/2 à D~1.4 



Typical prediction
for turbulent media
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Non-star-forming vs. star-forming clouds

- non-star-forming: log-normal

- star-forming: high column 
                      density excessKainulainen et al. 2009



Contour: Av = 4 mag
x = protostars

Dust column density in Taurus, logarithmic color scale

Excess tail can contain
up to 50% of the mass

Correlation of “tail” with star formation

Kainulainen et al. 2009



The 3D structure of molecular clouds?

- Observations probe column densities, 
            but theories deal with volume densities.

-  How to estimate the 3-dimensional structure?

Courtesy: J. Kainulainen



Column density map

Scale decomposition 
and object recognition

The 3D structure of molecular clouds?

Kainulainen et al. 2014
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à Density PDFs

Kainulainen et al. 2014

Based on sample of Gould-Belt clouds
Dark brown: star-forming gas 
light brown: structures enveloping star-forming gas
Green: non-structured gas

- Direct comparison with theory

- Star formation density threshold à 5x103cm-3



Topics today

- Physical distributions (cont.)

- Components of the interstellar medium

- General characteristics of molecular clouds

- Important cloud relations

- Cloud fragmentation



A GMC in viral equilibrium

Shortest version of virial theorem (next week): 2T = -W
(T kinetic energy, W gravitational energy)

2T = 2* (1/2mDv2) = -W = Gm2/r

à virial velocity: vvir = (Gm/r)1/2

à or virial mass: mvir = v2r/G
 



Luminosity-mass relation
Integrated CO intensity: ICO = ∫ T(v)dv

CO luminosity LCO = TDv πr2
(T brightness temperature, Dv linewidth, r cloud radius)

Substituting v = (Gm/r)1/2 and mass m = 4/3πr3 r

à LCO = (3πG/(4r))1/2 T m 

Solomon et al. 1987

GMCs are roughly in
virial equilibrium.



The linewidth-size relation
Solomon et al. 1987

- Linewidth-size relation first found by Larson 1981
  (Thermal CO linewidth at 20K only ≈0.1km/s)

- Approximate relation: linewidth ≈ √size

- Extends over many orders of magnitude in size but not down to cores

- Implies strong turbulent contribution to the ISM



Additional relations

- Linewidth-size relation: dv ≈ r1/2

- Virial equilibrium: dv ≈ (Gm/r)1/2   à m = dv2r/G

This leads to other relations:
   à m = r2/G à m/r2 = constant à approximate constant column
                                                     density N in GMCs

   à r ≈ m/r3 ≈ dv2/G * 1/r2

Some average empirical values for GMCs:

N ≈ 1.5 x 1022 cm-2

AV ≈ 10mag
S ≈ 150 Msunpc-2

  



Topics today

- Physical distributions (cont.)

- Components of the interstellar medium

- General characteristics of molecular clouds

- Important cloud relations

- Cloud fragmentation



Clusters and the Initial Mass Function (IMF)

Msun   32     10                1                 0.1             0.01

Muench et al. 2002

~M-2.35



Pre-stellar core mass functions 

Motte et al. 1998



Pre-stellar core mass functions 

Motte et al. 1998



Characteristic  mass defined by thermal physics

Larson 1985

Tempereature variation
with increasing density

- Low densities à T decreases with increasing r à regions cool efficiently 
         à decreasing MJ suggests that fragmentation is favoured

- Further increasing r à gas thermally couples to dust and clouds, and 
  become partially optically thick à Cannot cool well enough anymore 
                                              à temperature slightly increases again.
          à MJ decreases slower, inhibiting much further fragmentation.

à Regime with lowest T should correspond to preferred fragmentation scale
à The Jeans mass at this point is about 0.5 Msun.

- Jeans mass depends on T:

 MJ ~ at
3/r0

1/2 ~ T3/2/r1/2 



Summary
- Physical distribution

- Different components of ISM

- Basic characteristics

- Important cloud relations

- Cloud fragmentation 
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Elena Pancino
(INAF – Osservatorio Astrofisico di Arcetri):

Stardance: The non-canonical evolution of stars in clusters 


