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Last week 

-  Different components of ISM, early models 

-  Basic characteristics 

-  Important cloud relations 

-  Cloud fragmentation  



-  Virial theorem 

-  Jeans analysis for gravitational instability 

-  Magnetic fields 

-  Cloud formation and turbulence 

Topics today 



Virial Analysis 
What is the force balance within any structure in hydrostatic equilibrium? 
The generalized equation of hydrostatic equlibrium including magnetic  
fields B acting on a current j  and the full convective fluid velocity v is: 
                     
                        ρ Dv/Dt = -grad(P) - ρ grad(Φg) + 1/c j x B 

  Employing the Poisson equation (ΔΦg=4ΠGρ) and requiring mass conservation,   
  one gets after repeated integrations the VIRIAL THEOREM 

                        1/2 (δ2I/δt2) = 2T + 2U + W + M 

  I: Moment of inertia, this decreases when a core is collapsing (m*r2) 
  T: Kinetic energy    U: Thermal energy  W: Gravitational energy M: Magnetic energy  
  All terms except W are positive. To keep the cloud stable, the other forces 
  have to match W. 

Dv/Dt=(∂v/∂t)x+(v grad)v 

1/2(∂2I/∂t2)        -2T            2U            W                    M 
 
(Dv/Dt includes the rate of change at fixed spatial position x (∂v/∂t)x and the change induced 
by transporting elements to a new location with differing velocity.) 



Application of the Virial Theorem I 
If all forces are too weak to match the gravitational energy, we get 

1/2 (δ2I/δt2) = W ~ Gm2/r 
 

Approximating further I=mr2, the free-fall time is approximately 
tff ~ sqrt(r3/Gm) 

  
Since the density can be approximated by ρ=m/r3, one can also write 

tff ~ (Gρ)-1/2 
 

Or more exactly for a pressure-free 3D homogeneous sphere 
tff = (3π/32Gρ)1/2 

 

For a giant molecular cloud, this corresponds to 
tff ~ 7*106 yr (m/105Msun)-1/2  (R/25pc)3/2 

 
For a dense core with ρ~105cm-3 the tff is approximately 105 yr. 

 
However, no globally collapsing GMCs observed à add support! 



Application of the Virial Theorem II 
If the cloud complexes are in approximate force equilibrium, the moment 
of inertia actually does not change significantly and hence 1/2 (δ2I/δt2)=0 

2T + 2U + W + M = 0 
 

This state is called VIRIAL EQUILIBRIUM. What balances gravitation W best? 
 
 

Thermal Energy: Approximating U by U ~ 3/2NkBT ~ mRT/µ
U/|W| ~ mRT/µ (Gm2/R)-1 

                                       = 3*10-3  (m/105Msun)-1  (R/25pc)  (T/15K) 
--> Clouds cannot be supported by thermal pressure alone! 

 
 

Magnetic energy: Approximating M  by M ~ B2r3/6    (cloud approximated as sphere) 
M/|W| ~ B2r3/6 (Gm2/R)-1 

                                      = 0.3 (B/20µG)2  (R/25pc)4  (m/105Msun)-2 

 --> Magnetic force is important for large-scale cloud stability!



Application of the Virial Theorem III 
The last term to consider in 2T + 2U + W + M = 0 is the kinetic energy T 

T/|W| ~ 1/2mΔv2 (Gm2/R)-1 
                                     = 0.5 (Δv/4km/s)  (M/105Msun)-1  (R/25pc) 

 
Since the shortest form of the virial theorem is 2T = -W, the above numbers 

imply that a typical cloud with linewidth of a few km/s is in approximate 
virial equilibrium. 

 
The other way round, one can derive an approximate relation between the 

observed line-width and the mass of the cloud: 
 

2T = 2* (1/2mΔv2) = -W = Gm2/r 
à  virial velocity: vvir = (Gm/r)1/2 

à  or virial mass: mvir = v2r/G 



Application of the Virial Theorem III 
The last term to consider in 2T + 2U + W + M = 0 is the kinetic energy T 

T/|W| ~ 1/2mΔv2 (Gm2/R)-1 
                                     = 0.5 (Δv/4km/s)  (M/105Msun)-1  (R/25pc) 

 
Since the shortest form of the virial theorem is 2T = -W, the above numbers 

imply that a typical cloud with linewidth of a few km/s is in approximate 
virial equilibrium. 

 
The other way round, one can derive an approximate relation between the 

observed line-width and the mass of the cloud: 
 

2T = 2* (1/2mΔv2) = -W = Gm2/r 
à  virial velocity: vvir = (Gm/r)1/2 

à  or virial mass: mvir = v2r/G 



-  Virial theorem 

-  Jeans analysis for gravitational instability 

-  Magnetic fields 

-  Cloud formation and turbulence 

Topics today 



Jeans analysis I 
Start again with equation of hydrodynamic equilibrium (without magn. Field): 
 
Equation of motion:           ρ Dv/Dt           = -grad(P) - ρ grad(Φg)  
                             ρ (∂v/∂t) + (v grad)v = -grad(P) - ρ grad(Φg)  
 
Continuity equation:                    (∂ρ/∂t)  = -grad(ρv) 
 
Poisson equation:                             ∆Φg  = 4πGρ

Static solution: ρ = ρ0 = const; P = P0 = const; v = v0 = const; Φg = Φ0 = const 
 
 
Little pertubation: linear stability analysis: 
 
                        ρ = ρ0 + ρ1; P = P0 + P1; v = v0 + v1; Φg = Φ0 + Φ1 

                            (with |ρ1| << ρ0  etc.) 
 



Jeans analysis II 
Considering only expressions of first order: 
 
                                        ∂v1/∂t = - 1/ρ0 grad(P1) - grad(Φ1)          (Eq. 1) 
 
                                  ∂ρ1/∂t = -ρ0 grad(v1)                                (Eq. 2) 
 
                                     ∆Φ1  = 4πGρ1                                                                        (Eq. 3) 

Using furthermore: P1 = at
2ρ1       and      at = kT/(µ mH) 

                           (at sound speed; µ mean mass of particle; mH mass of hydrogen) 
 
Apply grad to Eq. 1:         grad(∂v1/∂t) = -∆ (at

2ρ1 /ρ0 + Φ1) 
 
Time derivative for Eq. 2:       ∂2ρ1/∂t2  = -ρ0 grad(∂v1/∂t)  
 
 
     à wave equation:            ∂2ρ1/∂t2  = at

2∆ρ1 + 4πGρ0ρ1 



Jeans analysis III 
-  A travelling wave in an isothermal gas can be described as: 
 
           ρ(x,t) = ρ1 exp[i(kx - ωt)]                 wave number k=2π/λ and frequency ω 

     Then:       ∂2ρ1/∂t2 = -ω2ρ1           and    ∆ρ1 = -k2ρ1 

-  This results in dispersion equation:   ω2 = k2at
2 - 4πGρ0 

Large k high-frequency disturbances 
à sound wave ω=kat 
à  isothermal sound speed of background 
 
Low k (k<=k0) ω2 à 0.  
à  Jeans-length: λJ = 2π/k0 = (πat

2/Gρ0)1/2
  

 
Perturbations larger λJ have exponentially 
growing amplitudes à instable 
 

ω0 = (4πGρ0)1/2 
k0 = ω0/at

Solid line: dispersion relation 
Dashed line: Sound wave  



Jeans analysis IV 
This corresponds in physical units to Jeans-lengths of 

λJ = (πat
2/Gρ0)1/2

  = 0.19pc (T/(10K))1/2 (nH2/(104cm-3)-1/2 

 
 

and Jeans-mass 
 
 

MJ = m1at
3/(ρ0

1/2G3/2) = 1.0Msun (T/(10K))3/2 (nH2/(104cm-3)-1/2 

 
  

à  Clouds larger λJ or more massive than MJ may be prone to fragmentation.  

à  Conversely, small or low-mass cloudlets could be stable if there is 
sufficient external pressure. Otherwise only transient objects. 

 



Jeans analysis V 
Examples:  

 
Small HI cloud: 

T ~ 100K; nH ~ 20 cm-3; L ~ 5pc; M ~ 20Msun 
à LJ ~ 13pc 

à Jeans stable 
 

Giant Molecular Cloud (GMC) 
T=10K and nH2=103cm-3 

à  MJ = 3.2 Msun 

Orders of magnitide too low à Jeans instable 
 

à  Additional support necessary, e.g., magnetic field, turbulence … 



Jeans fragmentation in star formation 

Beuther et al. 2013 



-  Virial theorem 

-  Jeans analysis for gravitational instability 

-  Magnetic fields 

-  Cloud formation and turbulence 

Topics today 



Magnetic fields I 

              Object             Type           Diagnostic            |B|||  [µG] 
             =================================== 
              Ursa Major    Diffuse cloud        HI                     10 
              NGC2024      GMC clump          OH                     87 
              S106            HII region            OH                    200 
              W75N           Maser                 OH                     3000 
 
 
 
Increasing magnetic field strength with increasing density indicate “field- 
freezing” between B-field and gas  
 
(B-field couples to ions and electrons, and these via collisons to neutral gas).   



Magnetic fields II 

This field freezing can be described by ideal MHD: 

However, ideal MHD must break down at some point.  
 
Dense core: 1Msun, R0=0.07pc, B0=30µG     versus       T Tauri star: R1=5Rsun     
  
If flux-freezing à magnetic flux ΦM=πBR2 should remain constant: 
   à B1=2x107 G, which exceeds observed values by orders of magnitude 
 
Ambipolar diffusion: neutral and ionized medium decouple, and neutral gas  
can sweep through during the gravitational collapse. 



Magnetic fields morphology in Taurus 

Grey: 13CO; line segments: optical polarization            Chapman et al. 2011 



Planck and the magnetic field 

Soler et al. 2015 



Planck and the magnetic field 

Soler et al. 2015 



Planck and the magnetic field 

Soler et al. 2015 



Crutcher 2012 

HI, OH & CN Zemann 

Magnetic fields strength 

Jeans-like analysis: Mcr = 1000Msun (B/(30µG)) (R/(2pc)2 

 
M<Mcr magnetically subcritical;    M>Mcr magnetically supercritical 
 



-  Virial theorem 

-  Jeans analysis for gravitational instability 

-  Magnetic fields 

-  Cloud formation and turbulence 

Topics today 



Interstellar Turbulence 
-  Supersonic à network of shocks 

à  Density fluctuations δρ ∝ M2 
  

à  Molecular H2 can form. 

-  tform = 1.5x109yr / (n/1cm-3) 
  (Hollenbach et al. 1971) 
 
à either molecular clouds form 
      slowly in low-density gas or 
      rapidly in ~105yr in n=104cm-3 

 
-  Decays on time-scales of order 
  the free-fall time-scale 
à  Needs continuous driving 
   
Candidates: Protostellar outflows, 
       radiation from massive stars, 
       supernovae explosions 

k=2 large-scale 

k=4 intermediate scale 

k=8 small scale 
MacLow 1999 



(Gravo)-turbulent fragmentation 

  

  

2 steps: 1.) Turbulent fragmentation à 2.) Collapse of individual core 

-  Large-scale driving reproduces shape of IMF. 
-  Discussion whether largest fragments remain stable or fragment further … 

Histogram: 
 Gas clumps 
Grey: 
 Jeans un- 
 stable clumps 
Dark: 
 Collapsed 
 core 
 
Slopes: -1.5 
        & -2.3 
 
Klessen 2001 

 
 



Simulations of colliding flows 

Banerjee et al. 2009 



Densest regions form 
stars while the envelope 
(blue) is not participating. 
 
 
 
 
à Densest region have  
    shortest free-fall time. 

Heitsch & Hartmann 2008 

Time scales 
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Cloud and star formation with different physics 

Federrath 2015 



Summary 

-  Virial theorem and its application 

-  Jeans analysis and applications 

-  Magnetic fields in the interstellar medium 

-  Turbulence, cloud formation and time scales 
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