Sternentstehung - Star Formation Winter term 2017/2018 Henrik Beuther & Thomas Henning

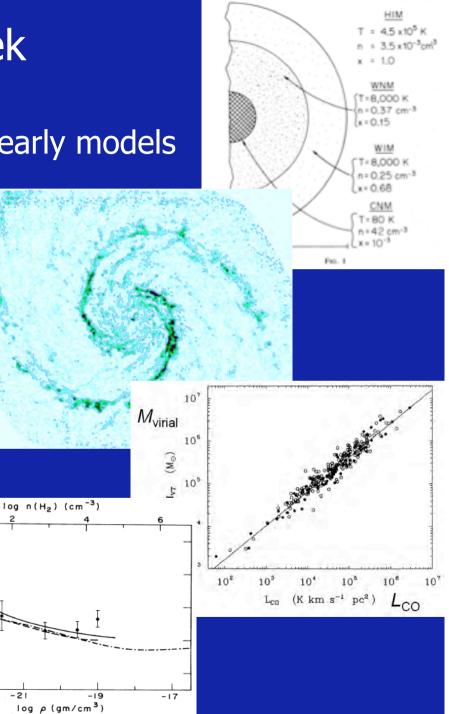
<i>17.10 Today: Introduction & Overview 24.10 Physical processes I 31.10 no lecture – Reformationstag</i>	(H.B.) (H.B.)		
07.11 Physcial processes II	(H.B.)		
14.11 Molecular clouds as birth places of stars	(H.L.)		
21.11 Molecular clouds cont., virial & Jeans Ana			
28.11 Collapse models I	(H.B.)		
05.12 Collapse models II	(T.H.)		
12.12 Protostellar evolution	(T.H.)		
19.12 Pre-main sequence evolution & outflows/jets	(T.H.)		
09.01 Accretion disks I	(T.H.)		
16.01 Accretion disks II	(T.H.)		
23.01 High-mass star formation, clusters and the IMF	(H.B.)		
30.01 Planet formation	(T.H.)		
06.02 Examination week, no star formation lecture			
Book: Stahler & Palla: The Formation of Stars, Wileys			
More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws1718.html			

beuther@mpia.de, henning@mpia.de

Last week

- Different components of ISM, early models

log T (°K)


2

0

- 23

- Basic characteristics
- Important cloud relations

- Cloud fragmentation

Topics today

Virial theorem

- Jeans analysis for gravitational instability

- Magnetic fields

- Cloud formation and turbulence

Virial Analysis

What is the force balance within any structure in hydrostatic equilibrium? The generalized equation of hydrostatic equilibrium including magnetic fields **B** acting on a current **j** and the full convective fluid velocity **v** is:

 $(D\mathbf{v}/D\mathbf{t} \text{ includes the rate of change at fixed spatial position x } (\partial \mathbf{v}/\partial t)_x$ and the change induced by transporting elements to a new location with differing velocity.)

Employing the Poisson equation ($\Delta \Phi_g = 4\Pi G\rho$) and requiring mass conservation, one gets after repeated integrations the **VIRIAL THEOREM**

 $1/2 (\delta^2 I / \delta t^2) = 2T + 2U + W + M$

I: Moment of inertia, this decreases when a core is collapsing (m^*r^2) T: Kinetic energy U: Thermal energy W: Gravitational energy *M*: Magnetic energy All terms except W are positive. To keep the cloud stable, the other forces have to match W.

Application of the Virial Theorem I

If all forces are too weak to match the gravitational energy, we get $1/2 (\delta^2 I / \delta t^2) = W \sim Gm^2/r$

Approximating further $I=mr^2$, the free-fall time is approximately $t_{\rm ff} \sim sqrt(r^3/Gm)$

Since the density can be approximated by $\rho{=}m/r^3,$ one can also write $t_{\rm ff} \sim (G\rho)^{{-}1/2}$

Or more exactly for a pressure-free 3D homogeneous sphere $t_{\rm ff} = (3\pi/32 {\rm G}\rho)^{1/2}$

For a giant molecular cloud, this corresponds to $t_{\rm ff} \sim 7*10^6 \, {\rm yr} \, ({\rm m}/10^5 {\rm M}_{\rm sun})^{-1/2} \, ({\rm R}/25 {\rm pc})^{3/2}$

For a dense core with $\rho \sim 10^5$ cm⁻³ the t_{ff} is approximately 10⁵ yr.

However, no globally collapsing GMCs observed \rightarrow add support!

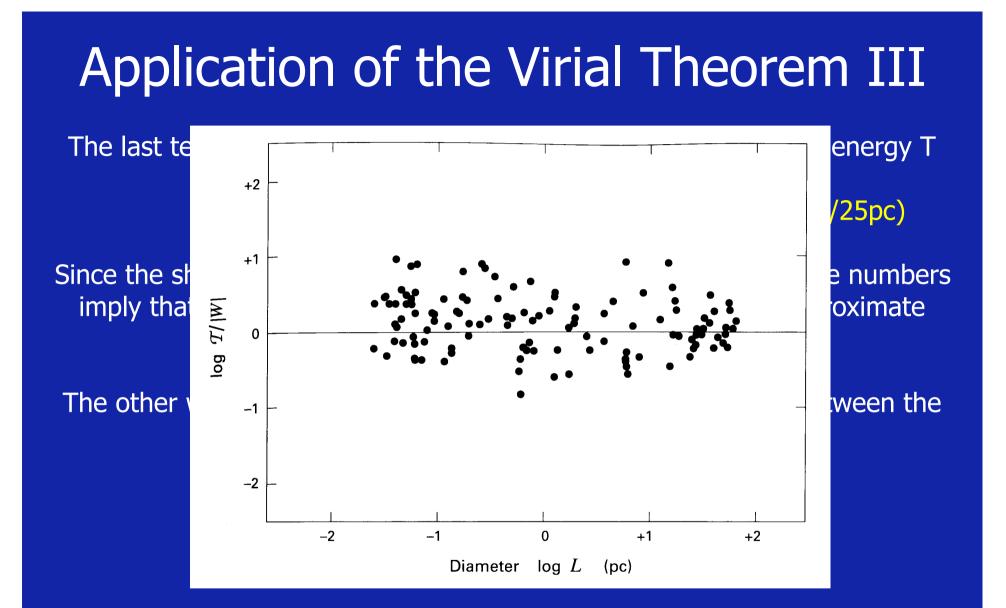
Application of the Virial Theorem II

If the cloud complexes are in approximate force equilibrium, the moment of inertia actually does not change significantly and hence $1/2 (\delta^2 I / \delta t^2) = 0$ 2T + 2U + W + M = 0

This state is called VIRIAL EQUILIBRIUM. What balances gravitation W best?

Thermal Energy: Approximating U by U ~ $3/2Nk_BT \sim mRT/\mu$ U/|W| ~ mRT/μ (Gm²/R)⁻¹ = $3*10^{-3}$ (m/10⁵M_{sun})⁻¹ (R/25pc) (T/15K) --> Clouds cannot be supported by thermal pressure alone!

Magnetic energy: Approximating *M* by $M \sim B^2 r^3/6$ (cloud approximated as sphere) $M/|W| \sim B^2 r^3/6 (Gm^2/R)^{-1}$ $= 0.3 (B/20\mu G)^2 (R/25pc)^4 (m/10^5 M_{sun})^{-2}$ --> Magnetic force is important for large-scale cloud stability!


Application of the Virial Theorem III

The last term to consider in 2T + 2U + W + M = 0 is the kinetic energy T $T/|W| \sim 1/2m\Delta v^2 (Gm^2/R)^{-1}$ $= 0.5 (\Delta v/4km/s) (M/10^5 M_{sun})^{-1} (R/25pc)$

Since the shortest form of the virial theorem is 2T = -W, the above numbers imply that a typical cloud with linewidth of a few km/s is in approximate virial equilibrium.

The other way round, one can derive an approximate relation between the observed line-width and the mass of the cloud:

2T = 2* (1/2m∆v²) = -W = Gm²/r → virial velocity: $v_{vir} = (Gm/r)^{1/2}$ → or virial mass: $m_{vir} = v^2 r/G$

Topics today

Virial theorem

- Jeans analysis for gravitational instability

- Magnetic fields

- Cloud formation and turbulence

Jeans analysis I

Start again with equation of hydrodynamic equilibrium (without magn. Field):

Equation of motion: $\rho D\mathbf{v}/Dt = -\text{grad}(P) - \rho \text{grad}(\Phi_g)$ $\rho (\partial \mathbf{v}/\partial t) + (\mathbf{v} \text{grad})\mathbf{v} = -\text{grad}(P) - \rho \text{grad}(\Phi_g)$

Continuity equation:

$$(\partial \rho / \partial t) = -grad(\rho v)$$

Poisson equation:

$$\Delta \Phi_{g} = 4 \Pi G \rho$$

Static solution: $\rho = \rho_0 = \text{const}$; $P = P_0 = \text{const}$; $\mathbf{v} = \mathbf{v_0} = \text{const}$; $\Phi_q = \Phi_0 = \text{const}$

Little pertubation: linear stability analysis:

 $\rho = \rho_0 + \rho_1; P = P_0 + P_1; \mathbf{v} = \mathbf{v_0} + \mathbf{v_1}; \Phi_g = \Phi_0 + \Phi_1$ (with $|\rho_1| \ll \rho_0$ etc.)

Jeans analysis II

Considering only expressions of first order:

 $\partial \mathbf{v_1} / \partial t = -1/\rho_0 \operatorname{grad}(\mathsf{P}_1) - \operatorname{grad}(\Phi_1)$ (Eq. 1)

$$\partial \rho_1 / \partial t = -\rho_0 \operatorname{grad}(\mathbf{v_1})$$
 (Eq. 2)

$$\Delta \Phi_1 = 4 \Pi \mathsf{G} \rho_1 \tag{Eq. 3}$$

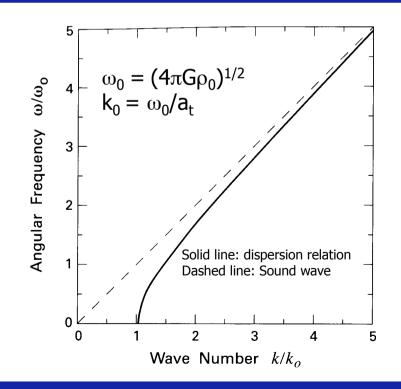
Using furthermore: $P_1 = a_t^2 \rho_1$ and $a_t = kT/(\mu m_H)$ (*a_t* sound speed; μ mean mass of particle; *m_H* mass of hydrogen)

Apply grad to Eq. 1: $grad(\partial v_1 / \partial t) = -\Delta (a_t^2 \rho_1 / \rho_0 + \Phi_1)$

Time derivative for Eq. 2: $\partial^2 \rho_1 / \partial t^2 = -\rho_0 \operatorname{grad}(\partial \mathbf{v_1} / \partial t)$

 \rightarrow wave equation: $\partial^2 \rho_1 / \partial t^2 = a_t^2 \Delta \rho_1 + 4 \Pi G \rho_0 \rho_1$

Jeans analysis III


- A travelling wave in an isothermal gas can be described as:

 $\rho(\mathbf{x},\mathbf{t}) = \rho_1 \exp[i(\mathbf{k}\mathbf{x} - \omega \mathbf{t})]$

wave number $k=2\pi/\lambda$ and frequency ω

Then: $\partial^2 \rho_1 / \partial t^2 = -\omega^2 \rho_1$ and $\Delta \rho_1 = -k^2 \rho_1$

- This results in *dispersion equation*: $\omega^2 = k^2 a_t^2 - 4\pi G \rho_0$

Large k high-frequency disturbances
→ sound wave ω=ka_t
→ isothermal sound speed of background

Low k (k<=k₀) $\omega^2 \rightarrow 0$. \rightarrow Jeans-length: $\lambda_J = 2\pi/k_0 = (\pi a_t^2/G\rho_0)^{1/2}$

Perturbations larger λ_{J} have exponentially growing amplitudes \rightarrow instable

Jeans analysis IV

This corresponds in physical units to Jeans-lengths of

 $\lambda_{\rm J} = (\pi a_{\rm t}^2/{\rm G}\rho_0)^{1/2} = 0.19 {\rm pc} ({\rm T}/(10{\rm K}))^{1/2} ({\rm n}_{\rm H2}/(10^4 {\rm cm}^{-3})^{-1/2})^{1/2}$

and Jeans-mass

 $M_J = m_1 a_t^3 / (\rho_0^{1/2} G^{3/2}) = 1.0 M_{sun} (T/(10K))^{3/2} (n_{H2}/(10^4 cm^{-3})^{-1/2})^{1/2}$

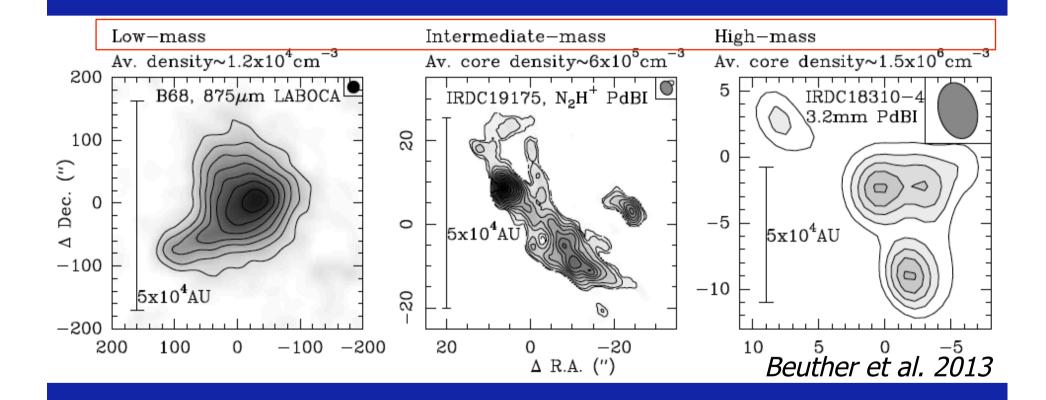
 \rightarrow Clouds larger λ_{j} or more massive than M_{j} may be prone to fragmentation.

→ Conversely, small or low-mass cloudlets could be stable if there is sufficient external pressure. Otherwise only transient objects.

Jeans analysis V

Examples:

 $\begin{array}{l} \label{eq:small} \frac{\text{Small HI cloud:}}{T \sim 100\text{K; n}_{\text{H}} \sim 20 \text{ cm}^{-3}; \text{ L} \sim 5\text{pc; M} \sim 20\text{M}_{\text{sun}} \\ \rightarrow \text{L}_{1} \sim 13\text{pc} \end{array}$


 \rightarrow Jeans stable

Giant Molecular Cloud (GMC) $T=10K \text{ and } n_{H2}=10^{3} \text{ cm}^{-3}$ $\rightarrow M_{J} = 3.2 M_{sun}$

Orders of magnitide too low \rightarrow Jeans instable

 \rightarrow Additional support necessary, e.g., magnetic field, turbulence ...

Jeans fragmentation in star formation

Topics today

- Virial theorem

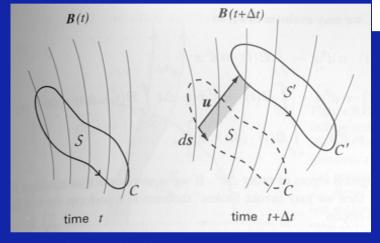
- Jeans analysis for gravitational instability

- Magnetic fields

- Cloud formation and turbulence

Magnetic fields I

Object	Туре	Diagnostic	B [μG]
Ursa Major NGC2024 S106 W75N	Diffuse cloud GMC clump HII region Maser	HI OH OH OH OH	10 87 200 3000

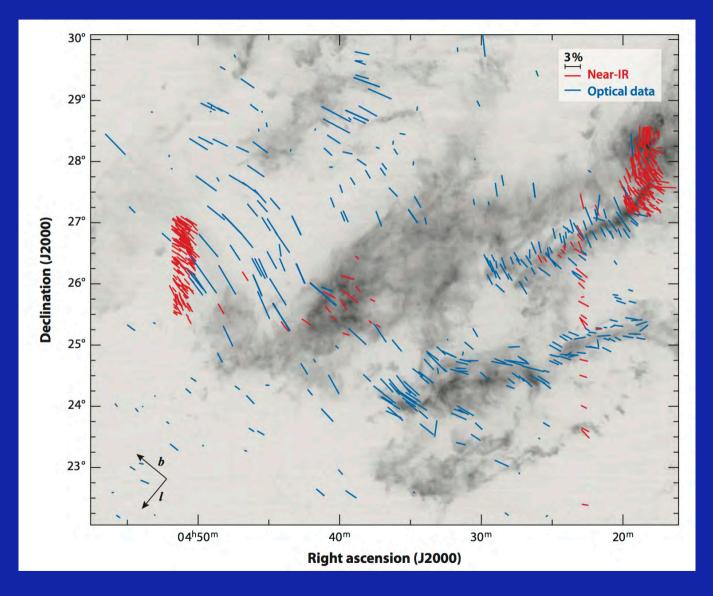

Increasing magnetic field strength with increasing density indicate "fieldfreezing" between B-field and gas

(B-field couples to ions and electrons, and these via collisons to neutral gas).

Magnetic fields II

This field freezing can be described by ideal MHD:

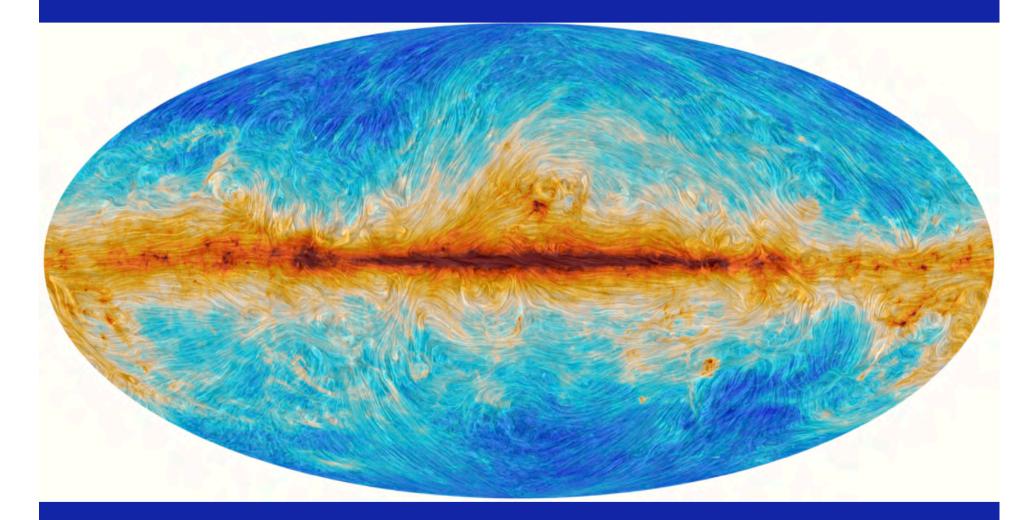
$$\frac{d\mathbf{B}}{dt} = \nabla \times (\mathbf{u} \times \mathbf{B})$$


However, ideal MHD must break down at some point.

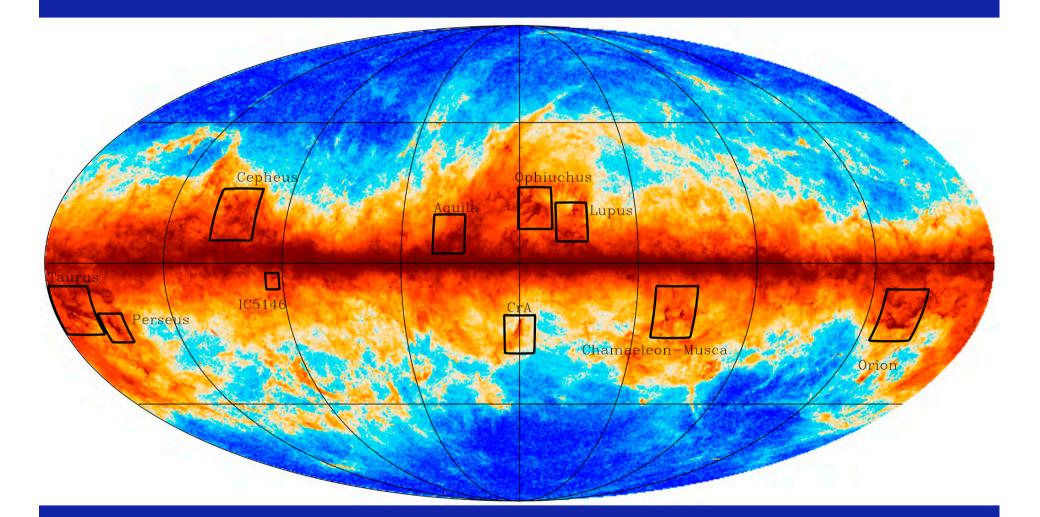
Dense core: $1M_{sun}$, $R_0=0.07pc$, $B_0=30\mu G$ <u>versus</u> T Tauri star: $R_1=5R_{sun}$

If flux-freezing \rightarrow magnetic flux $\Phi_M = \pi BR^2$ should remain constant: $\rightarrow B_1 = 2 \times 10^7 \text{ G}$, which exceeds observed values by orders of magnitude

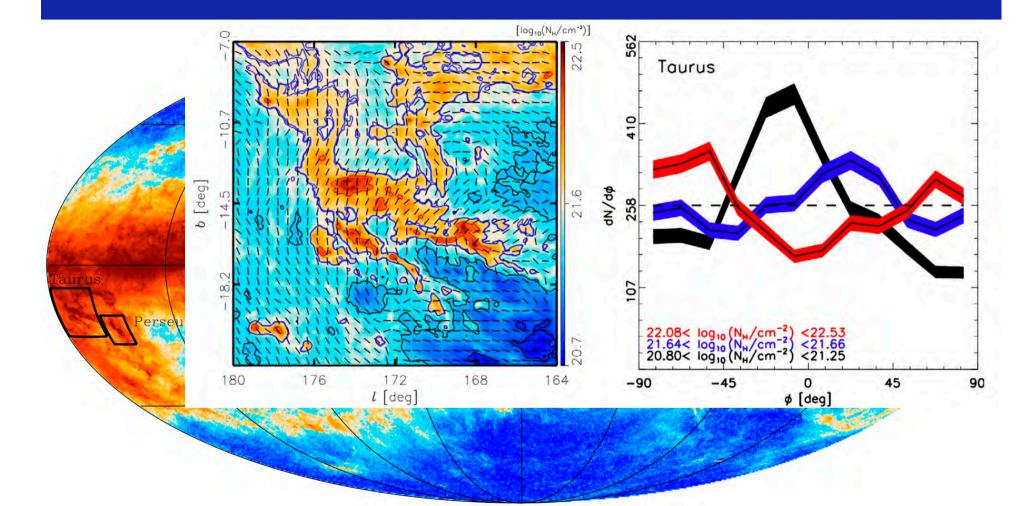
Ambipolar diffusion: neutral and ionized medium decouple, and neutral gas can sweep through during the gravitational collapse.


Magnetic fields morphology in Taurus

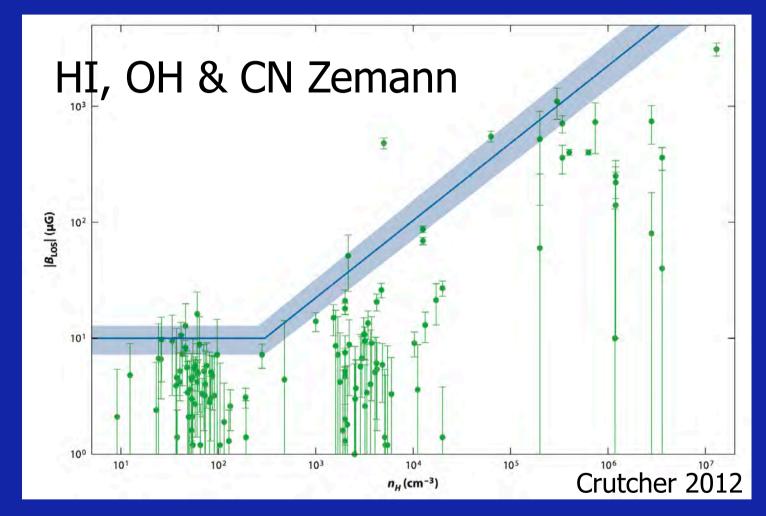
Grey: ¹³CO; line segments: optical polarization


Chapman et al. 2011

Planck and the magnetic field


Soler et al. 2015

Planck and the magnetic field


Soler et al. 2015

Planck and the magnetic field

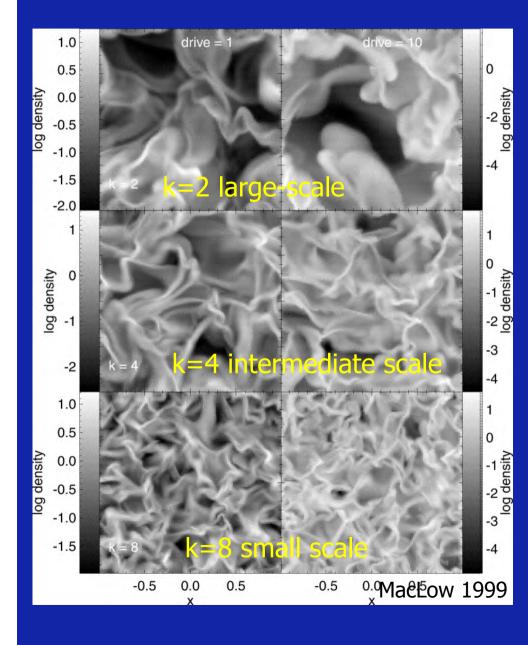
Soler et al. 2015

Magnetic fields strength

Jeans-like analysis: $M_{cr} = 1000M_{sun} (B/(30\mu G)) (R/(2pc)^2)$

M<M_{cr} magnetically subcritical; M>M_{cr} magnetically supercritical

Topics today

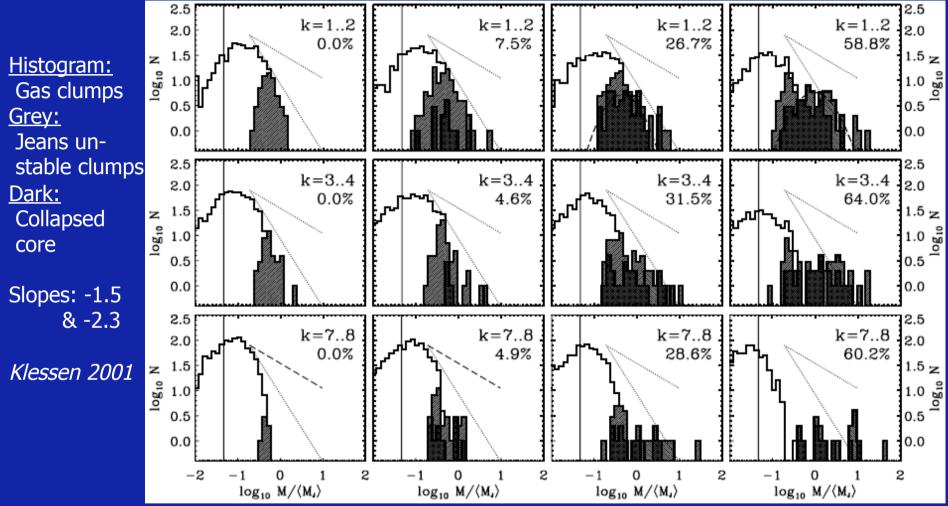

Virial theorem

- Jeans analysis for gravitational instability

- Magnetic fields

- Cloud formation and turbulence

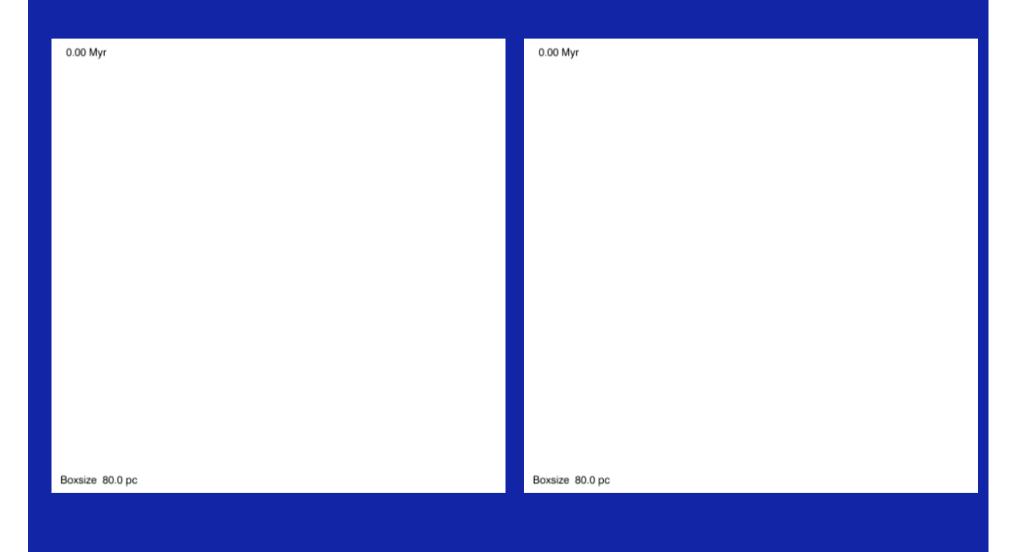
Interstellar Turbulence


- Supersonic \rightarrow network of shocks
- → Density fluctuations $\delta \rho \propto M^2$
- \rightarrow Molecular H₂ can form.

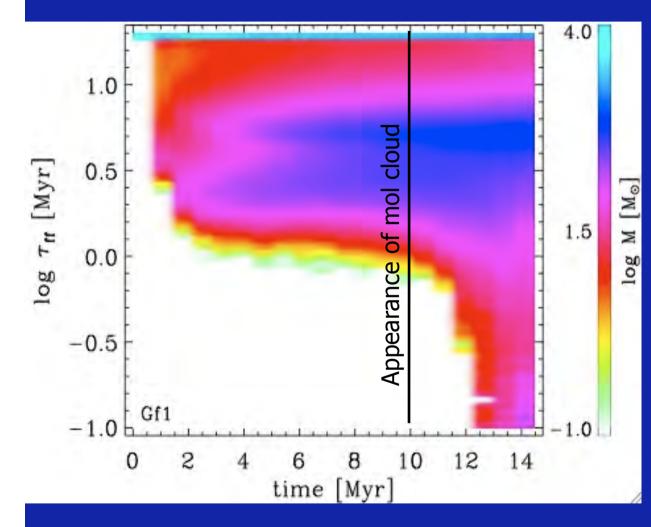
- $t_{form} = 1.5 \times 10^9 yr / (n/1 cm^{-3})$ (Hollenbach et al. 1971)

- → either molecular clouds form slowly in low-density gas or rapidly in ~10⁵yr in n=10⁴cm⁻³
- Decays on time-scales of order the free-fall time-scale
 → Needs continuous driving

Candidates: Protostellar outflows, radiation from massive stars, supernovae explosions



2 steps: 1.) Turbulent fragmentation \rightarrow 2.) Collapse of individual core


- Large-scale driving reproduces shape of IMF.
- Discussion whether largest fragments remain stable or fragment further ...

Simulations of colliding flows

Banerjee et al. 2009

Time scales

Densest regions form stars while the envelope (blue) is not participating.

$$\tau_{\rm ff} = \sqrt{\frac{3\pi}{32G\rho}}$$

→ Densest region have shortest free-fall time.

Heitsch & Hartmann 2008

Cloud and star formation with different physics

Summary

- Virial theorem and its application

- Jeans analysis and applications

- Magnetic fields in the interstellar medium

- Turbulence, cloud formation and time scales

Sternentstehung - Star Formation Winter term 2017/2018 Henrik Beuther & Thomas Henning

17.10 Today: Introduction & Overview	(H.B.)
24.10 Physical processes I	(<i>H.B</i> .)
31.10 no lecture – Reformationstag	
07.11 Physcial processes II	(H.B.)
14.11 Molecular clouds as birth places of stars	(H.L.)
21.11 Molecular clouds cont., virial & Jeans Analysis	(H.B.)
28.11 Collapse models I	(H.B.)
05.12 Collapse models II	(T.H.)
12.12 Protostellar evolution	(T.H.)
19.12 Pre-main sequence evolution & outflows/jets	(T.H.)
09.01 Accretion disks I	(T.H.)
16.01 Accretion disks II	(T.H.)
23.01 High-mass star formation, clusters and the IMF	(H.B.)
30.01 Planet formation	(T.H.)
06.02 Examination week, no star formation lecture	
Book: Stahler & Palla: The Formation of Star	rs, Wileys
More Information and the current lecture files: http://www.mpia.de/homes/bei	uther/lecture

More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws1718.html beuther@mpia.de, henning@mpia.de