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ABSTRACT

Context. When massive stars exert a radiation pressure onto their environment that is higher than their gravitational attraction (super-
Eddington condition), they launch a radiation-pressure-driven outflow, which creates cleared cavities. These cavities should prevent
any further accretion onto the star from the direction of the bubble, although it has been claimed that a radiative Rayleigh-Taylor
instability should lead to the collapse of the outflow cavity and foster the growth of massive stars.
Aims. We investigate the stability of idealized radiation-pressure-dominated cavities, focusing on its dependence on the radiation
transport approach used in numerical simulations for the stellar radiation feedback.
Methods. We compare two different methods for stellar radiation feedback: gray flux-limited diffusion (FLD) and ray-tracing (RT).
Both methods are implemented in our self-gravity radiation hydrodynamics simulations for various initial density structures of the
collapsing clouds, eventually forming massive stars. We also derive simple analytical models to support our findings.
Results. Both methods lead to the launch of a radiation-pressure-dominated outflow cavity. However, only the FLD cases lead
to prominent instability in the cavity shell. The RT cases do not show such instability; once the outflow has started, it precedes
continuously. The FLD cases display extended epochs of marginal Eddington equilibrium in the cavity shell, making them prone to
the radiative Rayleigh-Taylor instability. In the RT cases, the radiation pressure exceeds gravity by 1–2 orders of magnitude. The
radiative Rayleigh-Taylor instability is then consequently suppressed. It is a fundamental property of the gray FLD method to neglect
the stellar radiation temperature at the location of absorption and thus to underestimate the opacity at the location of the cavity shell.
Conclusions. Treating the stellar irradiation in the gray FLD approximation underestimates the radiative forces acting on the cavity
shell. This can lead artificially to situations that are affected by the radiative Rayleigh-Taylor instability. The proper treatment of direct
stellar irradiation by massive stars is crucial for the stability of radiation-pressure-dominated cavities.
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1. Introduction

Outflows are a unique characteristic of the star formation pro-
cess in general. The strong radiation pressure provided by mas-
sive luminous stars plays an important role in the dynamics
of these outflows. Observations show that massive star-forming
regions involve several large-scale outflows and their interac-
tion with the interstellar material depicts an important part of
the complex morphology of the cluster center (e.g. Shepherd
& Churchwell 1996; Zhang et al. 2001; Beltran et al. 2006;
Zhang et al. 2007; Fallscheer et al. 2009; Beuther et al. 2010;
Quanz et al. 2010). Non-radiative MHD simulations (Banerjee
& Pudritz 2006, 2007; Hennebelle et al. 2011) have shown that
cavities of lower density potentially form before the onset of star
formation during the collapse of magnetized clouds. The treat-
ment of the radiation field is the next step in investigating – es-
pecially the thermodynamics of – the cavities.

From the perspective of numerical development, the imple-
mentation and improvement of radiation transport schemes in
(magneto-)hydrodynamics simulations is both a challenging and
timely problem in modern astrophysics, especially in the field of
(massive) star formation, in which the radiative feedback onto
the environment plays a crucial role (Yorke & Sonnhalter 2002;
Krumholz et al. 2007, 2009; Price & Bate 2009; Commercon
et al. 2010; Bate 2010; Kuiper et al. 2010a, 2011).

� Movies are available in electronic form at
http://www.aanda.org

The hybrid radiation transport scheme applied in this pa-
per was previously used in our studies of the radiation pres-
sure barrier in the formation of massive stars (Kuiper et al.
2010a) and the angular momentum transport in disks around
massive stars (Kuiper et al. 2011). We introduced the derivation
of the solving algorithm as well as its numerical implementation
into a three-dimensional (3D) (magneto-)hydrodynamics code
in Kuiper et al. (2010b). The solver algorithm superposes two
radiation fields: a frequency-dependent ray-tracing (RT) compo-
nent representing the stellar irradiation field and a frequency-
averaged (gray) flux-limited diffusion (FLD) component repre-
senting the thermal dust emission. These splitting schemes were
previously used in one-dimensional (1D) simulations (Wolfire
& Cassinelli 1986, 1987; Edgar & Clarke 2003) and in two-
dimensional (2D) hydrostatic disk atmosphere models (Murray
et al. 1994) .

The RT methods are commonly used in radiative trans-
fer models without hydrodynamical motion (e.g. Efstathiou
& Rowan-Robinson 1990; Steinacker et al. 2003). Alternative
methods for these kinds of radiative transfer models include
the short characteristics method (Dullemond & Turolla 2000)
and Monte Carlo radiative transfer (Bjorkman & Wood 2001;
Dullemond & Dominik 2004). Comparison benchmark studies
of these methods were presented in Pascucci et al. (2004) and
Pinte et al. (2009). These methods are able to solve the radia-
tion transport problem to high accuracy for a fixed static con-
figuration, but they require much CPU time, which yields low
efficiency in time-dependent hydrodynamics simulations.
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In this sense, the FLD approximation (Kley 1989;
Bodenheimer et al. 1990; Klahr et al. 1999; Klahr & Kley 2006)
provides a fast method to determine the temperature evolution
accurately in the optically thick (diffusion) and optically thin
(free-floating) limit. However, the approximation becomes in-
accurate in multi-dimensional anisotropic problems as well as
in transition regions from optically thin to thick (shown e.g. in
Boley et al. 2007). One example of this transition region is the
cavity shell investigated in this paper. The FLD approximation
in the frequency-averaged (gray) limit remains the default tech-
nique in modern multi-dimensional radiation hydrodynamics.
In an exceptional case, a frequency-dependent FLD solver was
used in Yorke & Sonnhalter (2002).

From the theoretical point of view, the stability of radiation-
pressure-dominated cavities has a direct impact on the star for-
mation efficiency and accretion onto a luminous massive star.
Krumholz et al. (2009) proposed that massive stars can grow
beyond their Eddington limit because these radiation-pressure-
dominated cavity shells are subject to the so-called “radia-
tive Rayleigh-Taylor instability” allowing additional mass to be
fed onto the central accretion disk. Following the approach of
Nakano (1989) and Yorke & Sonnhalter (2002), we proposed
the feeding of a massive star beyond its Eddington limit by disk
accretion only (Kuiper et al. 2010a, 2011). While the anisotropy
of the thermal radiation field sufficiently diminishes the radiation
pressure onto the disk accretion flow near the midplane, the radi-
ation pressure in the polar direction is able to launch an outflow,
forming a stable cavity.

The removal of a substantial fraction of the initial core mass
by the radiative launching of outflows influences the star for-
mation efficiency in the central core region. These feedback ef-
fects are proposed to play an important role in explaining the low
star-formation efficiencies observed (McKee & Ostriker 2007).
Simulations of HII regions in massive star forming regions by
Dale & Bonnell (2011) and close to massive stars forming in
the cluster center by Peters et al. (2010) suggest that ionized
gas fills preexisting voids and bubbles. Long-lived cleared polar
cavities therefore would make the expansion of HII regions and
their interaction with the stellar cluster environment easier. The
feedback of the energy injection from jets and outflows onto the
stellar cluster formation is briefly discussed in Bonnell & Bate
(2006).

In this study, we investigate different implementation meth-
ods for direct stellar irradiation feedback (see Sect. 3) and their
influence on the stability of radiation pressure dominated cavi-
ties. We present in Sect. 4 the qualitative outcome and Sects. 5
and 6 the quantitative analyses of the simulations. The observed
difference in the radiative acceleration of the cavity shell depend-
ing on the applied radiation transport method is analytically de-
rived in Sect. 7. Finally, a comprehensive comparison section
(Sect. 8) to previous simulations, analytic work, and observa-
tions as well as a brief summary (Sect. 9) are provided.

2. Physical and numerical model

2.1. Physics included

We compare the effect of two different radiation transport meth-
ods on stellar radiation feedback. The goal is to investigate
the stability of the shell surrounding the radiation-pressure-
dominated cavity. We emphasize that in these simulations we do
not aim to provide a complete description of an outflow region
around a massive star.

A list of potential limitations and caveats includes:

1. The collimation effects by magnetic fields – which are cer-
tainly important for the morphology of the cavity – are ne-
glected. Recent results of MHD simulations of jet forma-
tion are summarized by Fendt et al. (2011). Potentially, the
relative importance of radiative or magnetic forces in jet for-
mation can be distinguished observationally based on mor-
phology: a magnetically launched fast jet would be more
collimated than a radiation-pressure-driven wide-angle out-
flow (see e.g. Arce et al. 2007; Pudritz et al. 2007, and cita-
tions therein).

2. Another example of the influence of magnetic fields, the so-
called photon bubble instability (Turner et al. 2007) could
potentially diminish the radiation pressure and could there-
fore alter the morphology of a cavity filled with magnetized
gas.

3. Evaporation of dust is included, but otherwise the dust is as-
sumed to be perfectly coupled to the gas.

4. The dust opacity clearly dominates the absorption in any
dusty region, but in the dust-free zone around the massive
star up to the dust sublimation front the (remaining) gas
opacity is set to be constant κgas = 0.01 cm2 g−1. Such a con-
stant gas opacity of course denotes only a first order approx-
imation to the complex molecular line absorption features.
An optically thick gas disk could e.g. amplify the flashlight
effect (Tanaka & Nakamoto 2011) and therefore increase the
radiative flux into the polar regions.

5. Since the cavity growth is driven by radiation pressure, the
quantitative details of the launching process and the growth
phase depend on the stellar evolution model as well as the
dust model. Future studies will attempt to establish the de-
tails of this dependence.

6. The low-density cavity is potentially enriched, but certainly
influenced, by a stellar wind from the central massive star,
which is neglected herein. Early proto-stellar winds could,
e.g., lead to an early formation of rather collimated polar
cavities (Cunningham et al. 2011). The radiation pressure at
later epochs in such a configuration could be channeled into
pre-existing cavities, leading to smaller opening angles for
the radiation pressure dominated cavities.

7. In Peters et al. (2010, 2011), ionizing radiation was proposed
to dominate the cavity dynamics in regions of massive star
formation.

2.2. Numerical resolution

To obtain unambiguous results, the relevant physical length
scales have to be resolved by the numerical simulations.
Therefore, we discuss these scales with respect to the resolution
of our radiation hydrodynamical simulations. We demonstrate
that the simulations resolve all relevant length scales sufficiently.

A study of a radiative Rayleigh-Taylor instability in the shell
surrounding the outflow cavity needs to resolve the wavelengths
of this instability along the shell discontinuity. At small wave-
lengths, the radiative Rayleigh-Taylor instability is likely to be
suppressed by diffusion, but at large wavelengths – compara-
ble to the physical size of the cavity – the instability occurs.
Quantitatively, the shortest unstable wavelength for instance is
determined to be 1000 AU for a 10 M� and 10 000 AU for a
100 M� star (Jacquet & Krumholz 2011). The polar resolution
rΔθ of the spherical grid in our simulations grows linearly with
the radius and is fixed to rΔθ <∼ 0.1r. The grid size along the
shell discontinuity is typically a factor of ten smaller than the
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Fig. 1. The cooling length scale lc (dashed line) of the thermal dust
emission in the gray approximation as a function of the actual loca-
tion of the cavity shell Rcavity. The solid line denotes the resolution of
our numerical grid.

shortest unstable wavelength. Hence, the length scale of the ra-
diative Rayleigh-Taylor instability is fully resolved.

Two other important length scales are related to the radia-
tive properties of the shell. The “cooling length scale” lc is given
by an optical depth of τ = 1 in the long wavelength regime, and
the “irradiation length scale” l∗ is given by an optical depth of
τ = 1 of the broad stellar irradiation spectrum. Figure 1 shows
the cooling length scale in the gray approximation as a function
of the location of the cavity shell Rcavity. The shell density is cho-
sen to be ρ = 4×10−17 g cm−3 as depicted in Fig. 5. The opacities
are computed as the Rosseland mean opacities of Laor & Draine
(1993). The stellar temperature is taken from the Hosokawa &
Omukai (2009) tracks for a 20 M� star and an accretion rate of
Ṁ = 10−3 M� yr−1, and the temperature at the location Rcavity

is computed with a slope T ∝ R−0.5
cavity in the gray approximation.

For simplification, the evaporation of dust grains is neglected,
but would result in an even larger cooling length-scale. Hence,
we can be sure that the length scale of cooling is resolved.

The absorption length scale l∗ of the stellar irradiation spec-
trum is much smaller than the cooling length scale for ther-
mal dust emission. Using again the opacities of Laor & Draine
(1993), Fig. 2 shows the absorption length scale of the whole
stellar irradiation spectrum for different gas densities. For the
aforementioned shell density of ρ = 4× 10−17 g cm−3 and a typ-
ical stellar temperature at the interesting point in time at the po-
tential onset of instability of about 10 000 K < T∗ < 30 000 K,
the absorption length scale of the photons with frequencies
higher than the peak of the stellar black-body spectrum is about
10 to 100 AU; these photons are most likely to be absorbed in
the first grid cell on top of the cleared cavity. For lower fre-
quency photons, the absorption length scale smoothly rises up
to the 1000 AU scale and is most likely to be resolved. In the
long wavelength regime of the spectrum, the results of the pre-
vious paragraph for the thermal dust emission of course apply.

The morphology in the radial direction during the cav-
ity growth phase can be distinguished into three important
regimes: the inner low-density cleared cavity, the shell of swept-
up material on top of this cavity, and the remnant of the in-falling
envelope on larger scales. The resolved transition of the gas den-
sity, temperature, and velocity in these regimes is depicted in the
context of the following analyses in Figs. 3 (two-dimensional
snapshots) and 5 (along the polar axis). Even the steep gradient
of the density at the inner rim of the cavity shell (Fig. 5, upper
left panel) is resolved by four grid cells, and the smooth decrease
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Fig. 2. The absorption length scale l∗ regarding the stellar irradia-
tion spectrum as a function of frequency ν or wavelength λ, respec-
tively. From top to bottom, the different solid lines denote a density of
ρ = 10−19, 10−18, 10−17, 10−16, and 10−15 g cm−3, respectively. The two
horizontal lines mark the highest and lowest resolution of the spher-
ical grid. The right vertical axis shows the scale for the stellar spec-
tra: from top to bottom, the dashed lines denote black body spectra of
T∗ = 100 000, 30 000, 10 000, and 3000 K. The effect of potential dust
evaporation is not included here, but would lead to a higher resolution
of the numerical grid in terms of the irradiation spectrum.

to larger radii by dozens of grid cells. Therefore, the shell mor-
phology is clearly resolved in the simulations.

2.3. Axial symmetry

The simulations in this paper are performed assuming axial sym-
metry. We are convinced that this is not a critical limitation of
the result we present. In 2D simulations with the same initial
conditions, but different methods for stellar radiation feedback,
we observe strong differences in the resulting radiation feedback
onto the shell on top of the cleared cavity. These differences do
not depend on the detailed morphology of this shell and there-
fore the conclusion is also applicable to non-axially symmetric,
3D configurations.

In our 2D simulation results with the FLD approximation,
the cavity shell undergoes an instability; this result matches the
3D simulation result of Krumholz et al. (2009). In our 2D simu-
lations as well as in our 3D simulation (Kuiper et al. 2011), in-
cluding the RT step for direct irradiation feedback, the radiation-
pressure-dominated cavity remains stable.

3. Method
3.1. Equations

To follow the motion of the gas, we solve the equations of com-
pressible self-gravity hydrodynamics, including shear-viscosity
as described in Kuiper et al. (2010a). For this task, we use the
open source MHD code Pluto (Mignone et al. 2007). This set
of equations is coupled to the radiation transport in the medium.
In contrast to our previous studies, we investigate the influence
of two different methods to determine the radiative flux, namely
our hybrid radiation transport scheme (ray-tracing+ flux-limited
diffusion) and flux-limited diffusion only.

3.1.1. Ray-tracing + flux-limited diffusion

For simulations labeled “RT+FLD”, we use our hybrid radia-
tion transport module (see Kuiper et al. 2010b). The total ra-
diation energy density Ftot is divided into the flux F∗(ν, r) of
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the frequency-dependent stellar irradiation and the flux of the
frequency-averaged thermal radiation energy density F

∂tER + fc∇ · F = − fc
(∇ · F∗ − Q+

)
, (1)

F∗ (ν, r) /F∗ (ν,R∗) = (R∗/r)2 exp (−τ (ν, r)) , (2)

where Eq. (1) denotes the evolution of the thermal radiation en-

ergy density ER. The factor fc =
(
cVρ/4aT 3 + 1

)−1
depends

only on the ratio of internal to radiation energy and contains
the specific heat capacity, cV, and the radiation constant, a. The
source term Q+ depends on the physics included and contains
any additional energy source such as hydrodynamical compres-
sion −P∇ · u and viscous heating. We solve Eq. (1) using the
so-called flux-limited diffusion approximation, in which the flux
is set proportional to the gradient of the radiation energy den-
sity (F = −D∇ER). The diffusion constant D = λc/ρκR depends
on the flux limiter λ and the Rosseland mean opacity κR. The
quantity c denotes the speed of light in a vacuum. We use the
flux limiter proposed by Levermore & Pomraning (1981) and
neglect scattering.

Equation (2) calculates the flux of the frequency-dependent
stellar irradiation in a ray-tracing step. The first factor on the
right hand side describes the geometrical decrease in the flux
proportional to r−2. The second factor describes the absorption
of the stellar light as a function of the optical depth τ(ν, r) =
κ(ν)ρ(r)r depending on the frequency-dependent mass absorp-
tion coefficients κ(ν). For this purpose, we use tabulated dust
opacities by Laor & Draine (1993), including 79 frequency bins,
and calculate the local evaporation temperature of the dust grains
by using the formula of Isella & Natta (2005). The flux at the
inner radial boundary is given by the luminosity L∗, tempera-
ture T∗, and radius R∗ of the forming star. For this purpose, we
use tabulated stellar evolutionary tracks for accreting high-mass
stars, calculated by Hosokawa & Omukai (2009). The gas and
dust temperature T is finally calculated in equilibrium with the
combined stellar irradiation and thermal radiation field

aT 4 = ER +
κ (ν)
κP(T )

|F∗|
c

(3)

with the Planck mean opacities κP.
Numerical details, test cases, including a comparison of gray

and frequency-dependent irradiation, as well as performance
studies of the hybrid radiation transport scheme are summarized
in Kuiper et al. (2010b). The viscosity prescription as well as
the tabulated dust and stellar evolution model are presented in
Kuiper et al. (2010a).

3.1.2. Flux-limited diffusion only

For simulations labeled “FLD”, we do not ray-trace the stellar
irradiation, but add the luminosity of the forming star as a source
term to the right hand side of the FLD equation

∂tER + fc∇ · F = fc
(
L∗δ(r) + Q+

)
. (4)

Since the forming star is enclosed in the inner sink cell in our
grid in spherical coordinates, the luminosity of the central star is
implemented as a Dirichlet boundary condition at the inner rim
of the computational domain. The radiation energy at this inner
boundary is therefore given by the stellar surface temperature
and the assumption that the medium between the stellar surface
R∗ and the inner rim at rmin = 10 AU is optically thin.

The hybrid radiation transport scheme (Sect. 3.1.1) as well
as the FLD approach were tested in detail in comparison with

a Monte Carlo solution using the RADMC code (Dullemond
& Dominik 2004) or a short characteristics method using the
RADICAL code (Dullemond & Turolla 2000) in a setup includ-
ing a central star, an accretion disk, and an envelope as described
in Pascucci et al. (2004) and Pinte et al. (2009).

3.2. Numerical configuration

The simulations are performed on a time-independent grid in
spherical coordinates with a logarithmically stretched radial co-
ordinate axis. The outer core radius is fixed to rmax = 0.1 pc,
and the inner core radius is fixed to rmin = 10 AU. The accu-
rate size of this inner sink cell was determined in a parameter
scan presented in Kuiper et al. (2010a), Sect. 5.1. The polar an-
gle extends from 0◦ to 90◦ assuming midplane symmetry. The
grid consists of 64 × 16 grid cells, i.e. the highest resolution of
the non-uniform grid is chosen to be

Δr × rΔθ = 1.27 AU × 1.04 AU (5)

around the forming massive star. The resolution decreases loga-
rithmically in the radial outward direction proportional to the ra-
dius. The radially inner and outer boundary of the computational
domain are semi-permeable walls, i.e. the gas is allowed to leave
the computational domain (by accretion onto the central star or
due to radiative and centrifugal forces over the outer boundary),
but cannot enter this domain. This outer boundary condition al-
lows the mass reservoir for stellar accretion to be controlled by
the initial choice of the mass of the pre-stellar core.

The Pluto code uses high-order Godunov solver methods
to compute the hydrodynamics, i.e. it uses a shock capturing
Riemann solver within a conservative finite volume scheme.
Our default configuration consists of a Harten-Lax-Van Leer
Riemann solver and a so-called “minmod” flux limiter us-
ing piecewise linear interpolation and a Runge-Kutta 2 time-
integration, also known as the predictor-corrector-method; for
comparison we also refer to van Leer (1979). Therefore, the total
difference scheme is accurate to second order in time and space.

The internal iterations of the implicit solver of the FLD in
Eqs. (1) or (4) is stopped at an accuracy of the resulting temper-
ature distribution of either ΔT/T ≤ 10−3 or ΔT ≤ 0.1 K. The
internal iterations of the implicit solver for Poisson’s equation is
stopped at an accuracy of the resulting gravitational potential of
ΔΦ/Φ ≤ 10−5.

3.3. Initial conditions

We start from a cold (T0 = 20 K) pre-stellar core of gas and
dust. The initially constant dust-to-gas mass ratio is chosen to
be Mdust/Mgas = 0.01. Dynamically, the model describes a so-
called quiescent collapse scenario without initial turbulent mo-
tion (ur = uθ = 0) and the core is initially in slow solid-body ro-
tation

(
|uφ|/R = Ω0 = 5 ∗ 10−13 Hz

)
. The total mass Mcore in the

computational domain is chosen to be 50 or 100 M�. In addi-
tion to the influence of the different radiation transport methods
described in the last sections, we check the dependence of the
stability of the radiation pressure dominated cavity on the initial
density slope of the pre-stellar core. We chose the initial density
slope to be either ρ ∝ r−1.5 or ρ ∝ r−2. An overview of the runs
is given in Table 1. For a more comprehensive parameter scan of
the initial conditions of this pre-stellar core collapse model, we
refer to Kuiper et al. (2010a, 2011).

A122, page 4 of 13



R. Kuiper et al.: On the stability of radiation-pressure-dominated cavities

Table 1. Overview of simulations performed.

Run Mcore ρ ∝ rβ RTM Epoch of E ≈ 1

A-RT+FLD 100 –2 RT+FLD No
A-FLD 100 –2 FLD Yes
B-RT+FLD 50 –2 RT+FLD No
B-FLD 50 –2 FLD Yes
C-RT+FLD 100 –1.5 RT+FLD No
C-FLD 100 –1.5 FLD Yes

Notes. The table contains the run label (Col. 1), the two distinguish-
ing parameters of the different initial conditions, namely the initial pre-
stellar core mass Mcore (Col. 2) and the exponent β of the initial density
slope ρ(r) (Col. 3), in addition to the radiation transport method (RTM)
in use (Col. 4), and the resulting existence of an epoch of marginal
Eddington equilibrium E ≈ 1 (Col. 5).

4. Qualitative simulation results

We summarize the qualitative outcome, the stability, and the
overall morphology of the radiation pressure dominated cavities,
depending on the different initial conditions and the radiation
transfer method. In the six simulations, the radiation pressure is
generally high enough to launch an outflow and form a cleared
polar cavity.

In the case of the RT+FLD radiation transport method, these
outflow cavities, once launched, rapidly grow in their extent up
to the outer computational domain at 0.1 pc away from the cen-
tral star. In contrast to this monotonic growth, the outflow cav-
ities in the FLD radiation transport scheme stop their increase
along the polar axis at an extent of the order of several 100 to
1400 AU depending on the initial conditions. This stopping of
their growth is followed by a penetration of the gas mass on
top of the outflow cavity formed so far, i.e. the outflow cav-
ity collapses. During a follow-up second and third epoch of
outflow launching, the resulting cavities grow in their extent,
but on much longer timescales than in the RT+FLD case. The
epochs of frozen cavity growth in the FLD-only simulations
suggest that (parts of) the top layer of the outflow cavity are
in marginal Eddington equilibrium, i.e. the radiation pressure
force is in equilibrium with the stellar gravity. The qualitative
outcome of the simulations (depending on whether an extended
epoch of marginal Eddington equilibrium occurs) is summarized
in Table 1, Col. 5.

In addition to the different growth rates, the radiation-
pressure-driven outflow cavities also develop pronounced
differences in their morphology depending on the applied radi-
ation transport method. As an example, the different morpholo-
gies produced by the different radiation transport methods are
visualized in three snapshots in time during the onset of the out-
flow launching in Fig. 3. In the case of FLD, the outflow is easily
stopped by the infalling matter along the polar axis, while in the
RT+FLD case the outflow cavity grows rapidly with time. In the
FLD approximation, the radiative flux tends to follow a path that
minimizes the optical depth and hence avoids the swept-up mass
on top of the cavity. This avoidance is alleviated by the centrifu-
gal forces, which diminish the gravitational attraction in regions
slightly above the disk. In the ray-tracing method, the isotropic
stellar irradiation flux directly impinges onto the swept-up mass
on top of the polar cavity and pushes the mass to larger radii.
The resulting large-scale morphology of the cavity is far more
isotropic. The opening angle of the cavity is determined by the
inner disk structure.

In the following Sects. 5 and 6, we analyze quantitatively
the outcome of the simulations presented here. We check our
hypothesis of epochs of marginal Eddington equilibrium in the
FLD-only runs and determine via analytical estimates (Sect. 7),
why the cavity shells in the RT+FLD case do not undergo these
epochs and therefore remain stable with respect to the radiative
Rayleigh-Taylor instability.

5. Quantitative analysis of the cavity growth

We analyze quantitatively the time-dependent extent of the out-
flow cavity. The radial extent Rcavity of the outflow cavities above
the central star is determined as the extent of the cleared cavity
along the polar axis, as visualized in Fig. 3. The resulting cavity
radii as a function of time are shown for the three different initial
conditions as well as the different radiation transport methods in
Fig. 4.

For all initial conditions, the extent of the radiation pres-
sure dominated cavities increases far more rapidly, if the stellar
source of radiation is treated via a ray-tracing scheme (labeled
“RT+FLD”) than simply included in the flux-limited diffusion
solver (labeled “FLD”). If using the FLD approximation, the
outflow is launched a little bit earlier in time and after its ini-
tial growth phase undergoes an epoch of marginal stability, in
which the radiation pressure force along the polar axis seems
to be balanced by gravity; the cavity growth along the polar
axis is first stopped and then reversed. Under these conditions
of marginal Eddington equilibrium

(
frad <∼ fgrav

)
with FLD, the

cavity shell region has been proposed to be subject to the ra-
diative Rayleigh-Taylor instability (Jacquet & Krumholz 2011).
As a consequence, subsequent growth phases of the outflows in
the FLD runs depend on the details of the subgrid models; the
dynamics of the marginally balanced cavity shells are strongly
influenced by the stellar evolution model and the dust model,
particularly the treatment of sublimation and evaporation.

In contrast to this epoch of marginal Eddington equilibrium,
the extent of the outflow cavity in the RT + FLD simulations in-
creases rapidly in time. With the exception of the Mcore = 50 M�
case, in which a correspondingly lower mass star (yielding much
lower luminosity) is formed, the outflow cavity increases in size
monotonically in the RT + FLD simulations.

The difference in the growth rate for the various radiation
transport schemes is most prominent in the Mcore = 100 M� and
ρ ∝ r−2 case (Fig. 4 left panel), i.e. in the case of the initially
highest mass in the central core region, allowing for a rapid for-
mation and growth of the central star. In the Mcore = 50 M� case
(Fig. 4 middle panel), the much lower stellar luminosity results
in an initially unstable cavity region even in the RT+FLD case
(but with a smaller extent than 100 AU). In the ρ ∝ r−1.5 case
(Fig. 4 right panel), the mass is initially more concentrated at
larger radii and hence the cavity shell has to sweep up far more
mass during its increase. Therefore, the growth phase of the cav-
ity takes much longer than in the cases of initially steeper density
profiles.

6. Quantitative analysis of the cavity shell
morphology and dynamics

To unveil the physical background of the qualitative and quan-
titative difference of the outflow cavity structure in the simu-
lations using either the RT+FLD or the FLD method, we now
investigate the morphology and dynamics of the cavity shell de-
pending on the radiation transport method. In this section, we
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(a) FLD run at t = 44 kyr (b) RT+FLD run at t = 39 kyr

(c) FLD run at t = 49 kyr (d) RT+FLD run at t = 44 kyr

(e) FLD run at t = 54 kyr (f) RT+FLD run at t = 49 kyr

Fig. 3. Simulation snapshots of the gas density for one of the FLD (left panels) and one of the ray-tracing + FLD (right panels) runs for three
different points in time during the launch of the radiation pressure dominated cavities. The data is taken from the runs with initial core mass
Mcore = 50 M� and a radial density slope of β = −2. The spatial section of the RT+FLD snapshots increases with time to follow the rapid
expansion of the outflow cavity. Animations of the launch of the radiation-pressure-dominated cavities in the simulations are available as online
material, too.
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Fig. 4. Size of the cavity Rcavity as a function of time t for the three different initial conditions. All runs were performed using the RT+FLD
hybrid radiation transport scheme (solid lines) and the FLD scheme (dashed lines). The lowest and highest extent of Rcavity of 10 AU and 0.1 pc,
respectively, are given by the inner and outer rim of the computational domain.

analyze quantitatively the difference in the morphology and the
dynamics of the cavity shell in the RT+FLD and FLD cases.
We focus on the data of the simulation with an initial core mass
Mcore = 100 M� and a radial density slope of β = −2.

The cavity in the FLD case increases in its first growth phase
up to roughly 1400 AU before the expansion along the polar axis
stops and the mass flow is reversed by gravity. We analyze the
gas dynamics at the point in time when in both simulations (with
RT+FLD and with FLD only) the expansion of the outflow cav-
ity has arrived at the same location, namely at t = 16.7 kyr. The
gas density, temperature, radial velocity, and the radial mass loss
rate along the polar axis at this time are shown in Fig. 5. The
upper left panel of this figure shows that there is almost no dif-
ference in the radial extent, compactness, and peak density of the
swept-up mass in the cavity shell. The peaks in the density distri-
butions correspond to 4.1×10−17 g cm−3 and 3.7×10−17 g cm−3

in the RT+FLD and FLD cases, respectively.

The upper right panel of Fig. 5 shows that the RT+FLD
run results in a continuously slightly higher temperature in the
cleared cavity, the cavity shell, and beyond. The temperature dis-
tribution in the pure FLD run stays 24% to 45% below the tem-
perature distribution of the RT+FLD run.

In contrast to these similarities, the two lower panels of Fig. 5
highlight the striking difference of both runs in their radial ve-
locities and mass flux along the polar axis. In the RT+FLD run,
the swept-up shell material moves into the interstellar medium
with a speed slightly higher than 100 km s−1, which is roughly
a factor of three higher than in the corresponding FLD run. At
larger radii (r > 3000 AU), the velocity slope is still dominated
by gravitational infall and hence is independent of the radiation
transport method.

Up to the onset of the Eddington equilibrium epoch in
the FLD run, the mass of the central star in both simulations
(RT+FLD and FLD only) closely match, leading to the same
strength of gravitational attraction for the matter in the cavity
and shell towards the direction of the star. Furthermore, the den-
sity structure is roughly the same (Fig. 5, upper left panel) and
the deviation in temperature within the cavity is smaller than 24–
45% (Fig. 5, upper right panel), hence the slightly higher thermal
pressure cannot be the main driver of the enormous difference in
the radial velocities and mass flux (Fig. 5, lower panels).

As a consequence, the radiation pressure acting on the swept-
up mass on top of the outflow cavity has to differ in the two radi-
ation transport methods. First, the FLD approximation assumes
that the dust grains of the swept-up mass on top of the cavity
are embedded in a local radiation field, whereas the RT+FLD
method takes into account the (frequency-dependent) absorp-
tion probability caused by direct stellar irradiation. The resulting

difference in the radiative acceleration at the top of the outflow
cavity is analytically estimated in the following section.

Secondly, since the FLD approximation is mathematically a
moment method, the derivation of the FLD approximation in-
cludes the integral over the angular distribution of the radiative
flux; hence the emitted photons of the central star do not move
along straight rays until they are absorbed. The radiative flux in
the FLD approximation instead follows a path that minimizes
the optical depth. The FLD method was originally introduced
to describe spherically symmetric flows, hence the integral over
the propagation direction did not result in unphysical behavior
(see e.g. Bruenn 1985). In a multi-dimensional environment with
a non-isotropic optical depth, this assumption of the FLD ap-
proximation breaks down. Including higher-order terms in the
derivation would minimize this inaccuracy and potentially yield
a sufficient tracing of the correct photon path. However, in the
RT+FLD scheme the irradiation by the central star is computed
via a tay-tracing equation, which takes into account the correct
photon propagation direction, i.e. the stellar irradiation flux di-
rectly impinges on the swept-up mass shell at the top of the op-
tically thin cavity.

7. Analytical determination of the acceleration
caused by stellar irradiation in the ray-tracing
approach and the flux-limited diffusion
approximation

Our aforementioned analysis indicates that the difference be-
tween the cavity shell stability in the two radiation transport
methods is due to the higher radiative acceleration of the swept-
up material when the RT approach is used for the stellar irradi-
ation instead of the FLD approximation. The use of RT guaran-
tees that the stellar radiation directly interacts with the swept-up
mass at the top of the optically thin outflow cavity. The dust
grains in the swept-up material therefore absorb the stellar flux
following the frequency-dependent absorption coefficient κ(ν).
If we integrate over frequencies, the dust grains absorb the stel-
lar spectrum with respect to the Planck mean opacity κP(T∗) at a
temperature T∗ of the stellar photosphere. In contrast, the FLD
approximation assumes that dust grains are embedded in a lo-
cally isotropic radiation field and that their absorption behavior
is based on the Rosseland mean opacity κR(T ) at the local radia-
tion temperature T at the top of the cavity. Computing the Planck
or Rosseland mean opacity for a given temperature T mostly re-
sults in a difference of only a factor of two. However, computing
the Planck mean opacity with the stellar temperature T∗ instead
of the local radiation temperature T leads to enormous differ-
ences. In the next subsection, we determine and illustrate the
difference between these opacities.
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Fig. 5. Gas density ρ (upper left panel), temperature T (upper right panel), radial velocity v (lower left panel), and radial mass-loss rate (lower
right panel) as a function of height z above the star along the polar axis. Data is for the run with initial core mass Mcore = 100 M� and radial
density slope β = −2. The snapshot in time (t = 16.7 kyr) is chosen in such a way that the cavity shell has arrived at the same location in both
simulations (RT+FLD and FLD only). The lowest density of ρ = 10−19 g cm−3 in the upper left panel is given by the numerical floor value of the
hydrodynamics solver.

7.1. Opacities

For the FLD part of our hybrid radiation transport scheme, we
compute the Rosseland mean opacities κR(T ) directly from the
frequency-dependent opacity table (Laor & Draine 1993). To ob-
tain the absorption coefficient in a given grid cell, these opacities
are multiplied by the local dust-to-gas mass ratio Mdust/Mgas(x).
In our models, the evaporation temperature of dust grains is cal-
culated depending on the local gas density by applying the for-
mula of Isella & Natta (2005), which represents a power-law fit
to the Pollack et al. (1994) data. For the opacities in the simula-
tion of Krumholz et al. (2009), the authors use linear regressions
to the Pollack et al. (1994) data in a small couple of intervals;
the density dependence of the evaporation of dust grains is not
taken into account.

The Rosseland κR(T ) and Planck κP(T ) mean opacities used
in our simulations and those applied in Krumholz et al. (2007),
Eq. (11), are visualized in Fig. 6. Owing to the similarities be-
tween our and the Krumholz et al. opacities, the resulting ra-
diation pressure in the cavity and shell should be comparable
in the runs using the FLD radiation transport method. If there
were a difference at all, the higher mean opacities in our simu-
lations for T > 600 K would lead to a slightly higher radiation
pressure onto the swept-up mass shell than in the simulations of
Krumholz et al. If our opacities in the FLD run lead to an un-
stable cavity shell, the opacities used by Krumholz et al. have to
yield the same outcome.

In our RT+FLD runs, the FLD approximation is only used
to determine the thermal radiation by dust grains. In addition,
the irradiation of the stellar luminosity up to the first absorption

event (i.e. up to an optical depth of τ(ν) ≈ 1) is computed by
a RT step that appropriately resembles the propagation and ab-
sorption of the stellar photons. The dust grains absorb the star
light according to the frequency-dependent absorption coeffi-
cient κ(ν). Although this frequency dependence is fully covered
in our RT solver (we use 79 frequency bins in the case of the Laor
& Draine 1993, opacities), in this derivation – for simplicity –
we use the gray approximation by computing the corresponding
Planck mean opacities κP(T∗) that depend on the stellar surface
temperature T∗. Fig. 7 shows the resulting Planck mean opac-
ities κ0P(T∗) as a function of the stellar surface temperature T∗.
To obtain the absorption coefficient κP(T∗) in a given grid cell
of the computational domain for these stellar photons, the opac-
ities κ0P(T∗) are multiplied by the evaporation probability, and,
therefore, also depend on the local gas density and temperature.

The mass of the proto-star during the onset of the cavity shell
instability in the FLD run is about 20 M� and higher. Comparing
the absorption coefficient of the dust grains in the shell on top of
the optically thin cavity in the FLD approximation (Fig. 6) with
the RT method (Fig. 7), immediately illustrates that the FLD ap-
proximation underestimates the absorption coefficient tremen-
dously (at least by a factor of 20–50).

In the following subsections, we show that this underesti-
mated absorption coefficient for direct stellar irradiation in the
FLD method leads to epochs of marginal Eddington equilib-
rium in the cavity shell, allowing the shell to become unsta-
ble, whereas the higher-order treatment of stellar irradiation via
RT results in a stable cavity shell with radial velocities up to
v � 100 km s−1 and mass-loss rates of Ṁ ≈ 2 × 10−4 M� yr−1.
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7.2. Radiative acceleration

To compute the radiative acceleration arad of the swept-up mate-
rial at the top of the optically thin cavity, we derive analytic ex-
pressions for the different radiation transport approaches based
on formulae similar to the well-known Eddington limit. We start
with the formula for radiative acceleration

arad = κ
F
c

(6)

for the radiative flux F and the speed of light c. Since we only
wish to estimate the radiation pressure by the first absorption of
the (isotropic) stellar light and the cavity is treated as optically
thin up to the location Rcavity of the swept-up material on top of
it, we compute the radiative acceleration onto dust grains only
along the direction of the polar axis (1D) and express the radia-
tive flux by

F(Rcavity) =
L∗

4π R2
cavity

· (7)

Equation (7) is valid either for the assumption of an optically
thin cavity or – owing to the conservation of momentum and

energy – as long as the swept-up mass in the cavity shell can be
treated as spherically symmetric. By means of the absorption of
stellar photons, the dust grains heat up and then re-emit photons
at longer wavelengths. Integrating over all photons penetrating a
shell at the radius r and the momentum gained by the dust grains
ensures that there is an excellent conservation of momentum.

Inserting Eq. (7) into Eq. (6) results in a radiative accelera-
tion that depends on the absorption coefficient κ, the stellar lu-
minosity L∗, and the cavity height Rcavity above the star

arad = κ
L∗

4π c R2
cavity

· (8)

This radiative acceleration has to be compared with the gravita-
tional attraction agrav of the dust grains at the cavity shell position
Rcavity of the central stellar mass M∗

agrav =
G M∗
R2

cavity

, (9)

where G is the gravitational constant. The gravity of the less
massive circumstellar accretion disk is neglected here. In obser-
vations and simulations, even the mass of the accretion disk plus
the rotating large-scale torus further away from the cavity shell is
less than or comparable to the mass of the central star; hence ne-
glecting this mass reduces the stellar gravity by only a factor of
two at most. To minimize the numbers of independent variables,
we derive the stellar luminosity L∗ from the stellar mass M∗ by
assuming that the proto-star follows the evolutionary track of
Hosokawa & Omukai (2009) with a constant accretion rate of
Ṁ = 10−3 M� yr−1. The assumption of this particular evolution-
ary track does of course influence the exact quantitative compar-
ison of the radiative versus the gravitational acceleration, but the
qualitative outcome does not change. The critical factor in this
comparison is the strength of the absorption coefficient κ.

In the FLD approximation, the absorption coefficient κ is
given by the Rosseland mean opacity κR(T ) at the local radia-
tion temperature T of the cavity shell.

In the following, we compute the local gas temperature T at
the top of the cavity by the formula of Spitzer (1978) for an opti-
cally thin stellar environment with the prerequisite Rcavity 
 R∗
that the distance Rcavity to the shell is much larger than the stellar
radius R∗

T (Rcavity) =

(
0.5

R∗
Rcavity

) 2
4+βopacity × T∗, (10)
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Fig. 8. Radiative and gravitational acceleration at a position Rcavity = 2000 AU (left panel) and Rcavity = 10 000 AU (right panel) above the massive
proto-star as a function of the stellar mass M∗ for three different radiation transport approaches: The label “FLD 1” denotes the FLD approximation
with the opacity description of Krumholz et al. (2007). The label “FLD 2” refers to the FLD approximation with the opacities used in Kuiper et al.
(2010a, 2011) and in this paper. The label “Ray-Tracing” refers to the RT step as in the hybrid radiation transport scheme.

where βopacity represents the exponent of the slope of the
frequency-dependent opacities at longer wavelengths. The as-
sumption of gray absorption would, e.g., imply βopacity = 0 and,
therefore, results in a temperature slope of T ∝ R−0.5

cavity. The slope
for the opacities of Laor & Draine (1993) is βopacity ≈ 2.05.

We can express the radiative acceleration in the FLD case us-
ing Eq. 8 with the Rosseland mean opacities of Fig. 6 at the local
radiation temperature T (Rcavity) computed via Eq. (10). The ra-
diative acceleration in the RT case is computed by using Eq. (8)
with the corresponding Planck mean opacities (including the lo-
cal dust evaporation probability) of Fig. 7 at the stellar temper-
ature T∗, which is for a specific stellar mass M∗ also taken from
the evolutionary track of Hosokawa & Omukai (2009). The final
formulae for the accelerations are given by

aFLD
rad = κR(T (Rcavity)) × L∗(M∗)

4π c R2
cavity

, (11)

aRT
rad = κP(T∗(M∗)) × L∗(M∗)

4π c R2
cavity

, (12)

agrav =
G M∗
R2

cavity

· (13)

The two remaining independent parameters are the actual stellar
mass M∗ and the location Rcavity of the cavity shell material. In
the RT case, the opacity in regions cooler than the dust evapo-
ration temperature is independent of the location Rcavity, i.e. the
radiative acceleration scales with a ∝ R−2

cavity in the same way as

the gravitational acceleration. The ratio aRT
rad/agrav of these accel-

erations, therefore, is scale-free and depends only on the proto-
stellar properties leading to the well-known formula for the gen-
eralized Eddington limit

L∗
M∗
=

4πG c
κP(T∗)

· (14)

7.3. Results

In the following, we compare the accelerations depending on
the remaining variables M∗ and Rcavity. Therefore, Fig. 8 com-
pares the radiative accelerations in both the FLD approximation
and the RT approach to gravity at two different locations from
the proto-star as a function of the stellar mass M∗. The steep
increase in the radiative forces at roughly 6–8 M� marks the
point in time at which the stellar luminosity in the Hosokawa
& Omukai (2009) tracks starts to dominate over the accretion
luminosity.

The results of the analytical estimate derived in the previ-
ous section and visualized in Fig. 8 fully support the outcome
of the radiation hydrodynamical simulations: In the RT case,
the cavity shell becomes super-Eddington (ratio of radiative to
gravitational acceleration of unity) for a 10 M� star and be-
yond. Afterwards, the radiative acceleration increases rapidly to
be one or two orders of magnitude higher than gravity. The cav-
ity shell is highly super-Eddington in all RT+FLD simulations.
Furthermore, the continuous enhancement in radiative acceler-
ation from a 10 M� up to a 26 M� star explains the differ-
ence between the first and second outflow launch in the low-
mass (Mcore = 50 M�) case, which are not detected in the
Mcore = 100 M� cases, yielding higher accretion rates and more
rapid stellar evolution.

At large radii, also in the FLD runs, the cavity shell is fi-
nally super-Eddington, but even for a 30 M� star only by a fac-
tor of a few. Most of the time, the cavity shell in the FLD case is
in marginal Eddington equilibrium. In the runs for the FLD ap-
proximation, the cavity shell can be estimated to be in marginal
Eddington equilibrium for a proto-stellar mass of roughly 20 M�
and an extent of the cavity of roughly 2000 AU (left panel of
Fig. 8). As a consequence, the launched cavity shell stops its ex-
pansion along the polar axis at a height Rcavity = 2000 AU, where
it undergoes an epoch of marginal Eddington equilibrium, i.e. ra-
diative forces are balanced by gravity. In this situation, these
cavity shells are supposed to become radiative Rayleigh-Taylor
unstable (Jacquet & Krumholz 2011). This is in full agreement
with the FLD simulation results herein.

This behavior changes drastically when the direct absorption
of stellar light is taken into account. In the simulations, which
treat the stellar irradiation with a RT step, the dust grains of the
cavity shell absorb the stellar light according to its frequency.
In this way, the acceleration of the shell turns out to be one to
two orders of magnitude higher than in the FLD approximation.
In the analytical estimate of the RT case, the environment of
the 20 M� proto-star is super-Eddington by a factor of 20 and
increases at large radii up to 100 for a proto-star of 30 M�.

In the simulations, the difference in the radiation transport
methods exists only up to an optical depth of τ(ν) ≈ 1 in the cav-
ity shell, i.e. up to the location where all stellar photons are ab-
sorbed. In our hybrid radiation transport scheme, the re-emission
of the photons by dust grains (mostly at longer wavelengths in
the infrared regime) is computed in the FLD solver step. The
corresponding length scale is given by l∗ = (κ∗(ν) ρcavity)−1 and
therefore depends on the frequency ν of the photons as well as
on the actual shell density ρcavity. This absorption length scale l∗
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is shown as a function of frequency ν for different densities ρ of
the cavity shell in Fig. 2.

8. Comparisons

8.1. Comparison with a 3D gray FLD simulation

Krumholz et al. (2009) presented a self-gravity radiation hy-
drodynamics simulation of the collapse of a 100 M� pre-stellar
core. The outer core radius was chosen to be 0.1 pc and the den-
sity profile declines in proportion to r−1.5. The initial isothermal
temperature of the core is 20 K. The pre-stellar core is initially
in solid-body rotation without any turbulent motion. The model
describes a so-called monolithic collapse scenario. The applied
radiation transport method is the gray flux-limited fiffusion ap-
proximation. These properties of this configuration are the same
as in our simulation run “C-FLD”. The equations are solved on
a 3D adaptive mesh refinement grid in cartesian coordinates.
Densities above the Jeans density on the finest grid level are rep-
resented by sink particles.

During the simulation, bipolar “radiation-filled bubbles” are
blown into the environment of the forming massive star. To clar-
ify our terminology, these “radiation-filled bubbles” correspond
to the “radiation-pressure-dominated cavities” and the “bubble
wall” is called a “cavity shell” in this paper. At an extent of
roughly from 1200 to 2000 AU (from Krumholz et al. 2009,
Fig. 1 therein) the cavity shell is subject to a “radiative Rayleigh-
Taylor instability”, meaning that the radiation pressure expands
the optically thin region only at specific solid angles, while at
other solid angles the concentrated mass load on top of the cav-
ity shell is able to penetrate into the low-density region.

This mechanism of shell instability, the focus of radiation
pressure onto solid angles with lower optical depth, and the col-
lapse of condensed material from the infalling envelope at other
solid angles, precisely matches the outcome of our simulations,
if the FLD approximation is used for the stellar radiation feed-
back. After the epoch of instability – the caving-in of material
– the continuing evolution of their simulation differs in terms of
morphology from our simulations because of the evolving non-
axisymmetric structures. We comment further on this difference
after the following paragraph on the RT + FLD simulations.

In our simulations using the frequency-dependent RT step
for the stellar irradiation, the mass load on top of the cavity
shell causes a dependence of the optical depth on the solid an-
gle (owing to the decreasing centrifugal forces towards the pole).
However, in these simulations, the caving-in of material at solid
angles of high optical depth is prohibited; this is most likely
caused by the treatment of the direct stellar irradiation by means
of a RT approach preserving the natural isotropy of the irradi-
ation up to the first absorption layer. Furthermore, the RT ap-
proach accounts for the respective frequency-dependent absorp-
tion coefficients as demonstrated in the previous sections.

The cavity is affected by Rayleigh-Taylor-like instabilities,
when the FLD approximation is used for the radiation transport.
This implication is verified by the axial symmetric simulations
performed herein as well as by the 3D simulation in Krumholz
et al. (2009). Improving the radiation transport scheme by in-
corporating a ray-tracing of the direct stellar irradiation cor-
rects for this behavior and leads to a stable cavity growth. This
implication is verified by the axial symmetric simulations per-
formed herein as well as by the 3D simulation in Kuiper et al.
(2011). The largest differences between the numerical treatment
in the simulation of Krumholz et al. (2009) and the simulations
with similar initial conditions presented herein are twofold: the

radiation transport approaches and our assumed axial symmetry.
As mentioned above, the simplification to axial symmetry in-
creases the difficulty of a comparison of epochs after the occur-
rence of the instability, but the overall simulation results indicate
that the outcome, regardless of whether the instability occurs,
does not depend on the axial symmetric approach:

– the 2D simulations in the FLD approximation match the
outcome of the 3D simulation in the FLD approximation,
namely the instability of the cavity;

– in the 2D simulations with the improved radiation transport
scheme (ray-tracing + FLD), the cavity remains stable;

– in our 3D simulation (Kuiper et al. 2011), using a frequency-
dependent RT step to account for stellar irradiation, the out-
flow cavity contains strong non-axisymmetric features, but
no instability is detected.

This implies that the stability of the outflow cavity is strongly
effected by the direct stellar irradiation of the massive star, inde-
pendent of the symmetry.

8.2. Comparison with frequency-dependent FLD simulations

In Yorke & Sonnhalter (2002), the authors presented six self-
gravity radiation hydrodynamics simulations of the collapse of
a pre-stellar core. The initial core mass in the simulations was
chosen to be 30, 60, and 120 M� with an outer core radius of
0.05, 0.1, and 0.2 pc. The density profile drops proportional to
r−2. Since in these simulations an additional inflow of mass at
the outer boundary into the computational domain is allowed, the
total mass reservoir of the forming star is not limited to these ini-
tial core masses. The initial isothermal temperature of the core is
20 K. The pre-stellar core is initially in solid-body rotation with-
out any turbulent motion. The equations are solved on a static
nested grid of three levels in cylindrical coordinates assuming
axial symmetry and midplane symmetry. The forming massive
star is represented by a sink cell at the origin of the domain.
The radiation transport method used is the gray as well as the
frequency-dependent FLD approximation.

The outflow properties in the simulations with gray FLD and
initial core masses of 30 and 120 M� are neither visualized nor
discussed in Yorke & Sonnhalter (2002). In the simulation with
gray FLD and an initial core mass of 60 M�, the massive star
stops its mass growth at M∗ = 20.7 M� and maintains a lumi-
nosity of L∗ = 5.2 × 104 L�. No polar cavity forms before the
end of the simulation at 110 kyr.

In the three simulations with frequency-dependent FLD, po-
lar cavities are formed. In the 30 M� case, the cavity interacts
with the infalling envelope and collapses within a few thousand
years. In the two higher mass cases, the infall even at larger radii
is reversed shortly after the launch of the outflow cavity; there-
fore the cavity does not interact with a gravitationally driven
infall anymore and simply expands in time. The 60 M� sim-
ulation run was stopped after an evolutionary age of 45 kyr.
Nevertheless, in the 120 M� case, the radiation pressure eventu-
ally evacuates the stellar environment in all directions, including
the disk midplane. After its first expansion phase, this radiation-
pressure-dominated cocoon-like structure decreases again, es-
pecially in the direction of the highest optical depth (the mid-
plane), similar to the behavior of the expansion of the cavity
shell in the FLD simulation by Krumholz et al. (2009) as well as
in our FLD simulations. The expansion velocity of the cavities
of v � 10 km s−1 corresponds more to the velocities observed
in our FLD simulation (v = 6−30 km s−1) than those using the
ray-tracing method (v ∼ 100 km s−1).
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The frequency dependence of the FLD solver (as in our
RT method) might also be important. Using the FLD approxi-
mation in the gray limit leads to a downgrading of the radiation
field throughout the cavity region, i.e. the dust grains in the cav-
ity shell absorb the stellar flux with the Rosseland mean opacity
at the local radiation temperature of the cavity shell, which does
not resemble the broad stellar irradiation spectrum. By dividing
the stellar flux into several frequency bins and treating the flux of
each bin in the FLD approximation, one also can ensure that the
high-frequency part of the stellar spectrum is absorbed with the
appropriate absorption coefficient. In addition to a more correct
description of the absorption behavior in the cavity shell, the RT
approach provides a most realistic representation of the photon
paths emitted at the stellar photosphere. Owing to the integral
over the solid angle in the FLD approximation, the resulting flux
does not include the correct propagation direction.

Moreover, including the long-wavelength part of the stellar
spectrum explicitly can accelerate the layers on top of the swept-
up cavity shell, which is optically thick for the short wavelengths
only. Furthermore, Schartmann et al. (2011) demonstrated that
in numerical simulations using a RT approach for the radiation
feedback, the acceleration of a gas clump by radiation pressure
against a gravitational potential is inversely proportional to the
optical depth of the clump, as expected by analytic estimates
similar to the computation of the Eddington limit.

8.3. Comparison with an analytic stability analysis

Jacquet & Krumholz (2011) derived a criterion for the stabil-
ity of radiation-pressure-dominated cavities for the adiabatic
approximation. They provided growth times of the radiative
Rayleigh-Taylor instability in cavity shells around massive stars.

This analytic analysis fully supports the outcome of our in-
vestigations. From our estimate of the accelerations in Sect. 7,
we compute the expansion timescale of the cavity shell to be

tcavity =

√
2 Rcavity

arad − agrav
· (15)

In the case of FLD simulations, the radiation pressure onto the
cavity shell is in marginal equilibrium with gravity (E ≈ 1)
for long epochs in time. The corresponding shell expansion
timescale goes to infinity during these epochs, allowing the ra-
diative Rayleigh-Taylor instability to set in. In the case of RT
simulations, radiation pressure exceeds gravity by 1–2 orders
of magnitude, leading to a much shorter cavity shell expan-
sion timescale. For a stellar mass of 20 M� and a cavity radius
of Rcavity = 1400 AU, one obtains an expansion timescale of
tcavity ≈ 0.68 kyr.

Jacquet & Krumholz (2011) stated that the growth times of
the radiative Rayleigh-Taylor instability in cavity shells around
massive stars should always be shorter then 1 kyr, but actually
the numbers one reads from their plots (Fig. 3 and 4) are in-
stead 6.3–40 kyr depending on the actual stellar mass and the
wavelength of the instability. Hence, the expansion timescale
of the shell is at least one order of magnitude shorter than the
timescale for the growth of the radiative Rayleigh-Taylor insta-
bility. Even, for the largest shell radius of Rcavity = 0.1 pc at
the outer boundary of our computational domain, the expansion
timescale is tcavity ≈ 10 kyr. During this 10 kyr, the massive star
increases its mass approximately from 20 to 30 M� by disk ac-
cretion. Therefore, a cavity shell that has formed around a mas-
sive star is expected to be able to expand up to the stellar cluster

scale (≈0.1 pc) before being prone to the radiative Rayleigh-
Taylor instability.

One might discuss whether an actual outflow of a massive
star might fulfill the conditions for adiabaticity. In Jacquet &
Krumholz (2011), the authors assume that the cavity shell is in
the “adiabatic regime”. This is estimated in Jacquet & Krumholz
(2011) in Eq. (84) under the assumption of a hot cavity shell
with T <∼ 1100 K at a very large radius of Rcavity ≈ 104 AU.
In the simulation data of Krumholz et al. (2009) and our simu-
lations in this paper, we observe much lower shell temperatures,
even at much smaller radii. As a consequence, for the stellar evo-
lutionary tracks of Hosokawa & Omukai (2009) and the shell
temperature estimate given in Eq. (10), the cavity shell is in the
non-adiabatic regime even out to an extent of 0.1 pc for a stellar
mass of M∗ ≤ 40 M�. In the non-adiabatic regime, the radiative
Rayleigh-Taylor instability is damped by diffusion. The quanti-
tative change caused by the damping remains unclear, and the
growth rates of the radiative Rayleigh-Taylor instability in the
non-adiabatic regime have not yet been derived.

8.4. Comparison with observations

As mentioned in the introduction, radiation-pressure-dominated
cleared cavities or optically thin bubbles of the discussed sizes
around massive proto-stars have not yet been observed. Similar
cavities are also proposed to form during a non-radiative but
magnetized pre-stellar core collapse as shown in MHD simu-
lations of Banerjee & Pudritz (2006, 2007) and Hennebelle et al.
(2011). The observation of cavities, especially in their initial
launch phase, are hampered by the extinction (the cavities are
still embedded in the infalling envelope) as well as the lim-
ited resolution of the inner core structure close to the proto-star.
However, large-scale polar cavities could potentially diminish
the extinction of the envelope at pole-on viewing angles.

Moreover, a direct comparison of the detailed morphology
of the simulated outflow cavities is of course restricted by the
limitations and caveats of the numerical simulations discussed
in Sect. 2. Nevertheless, the basic properties of the radiation-
pressure-dominated outflows investigated in this paper include a
shell velocity on the order of v ≈ 100 km s−1, as well as a mass-
loss rate of roughly Ṁ ≈ 10−4 M� yr−1 (see Fig. 5).

9. Summary

We have performed six self-gravity radiation hydrodynamics
simulations of a collapsing pre-stellar core including the launch
of a radiation-pressure-dominatedoutflow cavity by the centrally
forming star. For the radiation transport method, three of these
simulations were performed using the FLD approximation and
three use the hybrid radiation transport scheme introduced in
Kuiper et al. (2010b). In the hybrid radiation transport scheme,
the stellar irradiation is computed in a frequency-dependent RT
step and only the computation of the thermal dust emission
makes use of the FLD approximation. The three different ini-
tial conditions of the simulations vary in terms of the initial pre-
stellar core mass (50 and 100 M�) as well as the initial density
slope (ρ ∝ r−1.5 and ρ ∝ r−2). The analysis of these simula-
tions indicates that only in the case of the FLD approximation
does the cavity shell undergo an epoch of marginal Eddington
equilibrium, i.e. radiative forces are balanced by gravity. As a
consequence, the expansion of the outflow cavity along the po-
lar axis stops and the infalling envelope material gathered on top
of the cavity shell caves in. In contrast to this scenario, simu-
lations using the hybrid radiation transport scheme predict that
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there are stable and rapidly growing outflow cavities, and that no
long-term epochs of marginal Eddington equilibrium occur.

We analyzed the outcome of these simulations in more de-
tail using analytical estimates of the radiative acceleration and
the growth timescale of the cavities with respect to the radiation
transport method. In contrast to the FLD assumption that dust
grains absorb photons according to the local radiation tempera-
ture, dust grains in the shell on top of the optically thin cavity are
directly irradiated by photons from the luminous massive star.
Therefore, including the feedback effect of direct stellar irradi-
ation via a frequency-dependent RT approach leads to the pre-
diction of stronger radiative forces in the cavity shell. Including
the direct absorption of stellar photons enhances the accelera-
tion of the shell by between one and two orders of magnitude
in comparison with the FLD assumption. This analytic estimate
confirms the much higher shell velocity detected in the radia-
tion hydrodynamics simulations including the RT step for stellar
radiation feedback. These estimates of the relevant timescales
imply that this enhancement in acceleration leads to a cavity ex-
pansion time that is much shorter than the timescale needed for
the radiative Rayleigh-Taylor instability to occur.

The results of this study does not prohibit in general the exis-
tence of (radiative) instabilities in cavity shells. The simulation
results for the three different initial conditions show a depen-
dence of the radiative launching and cavity growth on the den-
sity distribution of the stellar environment, e.g. initially flatter
density profiles lead to larger amounts of mass at larger radii
and, therefore, a heavier mass load on top of the cavity shell.
The limitations and caveats of the numerical simulations (e.g. the
assumptions of no magnetic fields and perfect dust-to-gas cou-
pling) do not allow a complete or even comprehensive descrip-
tion of the complex outflow region of a massive star.

Nevertheless, this study clearly emphasizes the strong influ-
ence of the (spectral) stellar irradiation on both the dynamics
and the stability of the first absorption layer. It has been demon-
strated that a careful numerical treatment of this direct stellar
irradiation feedback can be achieved by using a RT approach.
For comparison with future high-resolution observations of the
inner core regions, the velocity and the mass-loss rate of these
radiation-pressure-dominated outflows are given: in the simula-
tions, we find a shell velocity on the order of v ≈ 100 km s−1 and
a mass-loss rate of roughly Ṁ ≈ 10−4 M� yr−1. The qualitative
and quantitative analyses of our numerical simulations, includ-
ing different initial conditions and radiation transport methods
combined with the analytical estimates of the relevant forces and
timescales, cast severe doubt on the occurrence of the radiative
Rayleigh-Taylor instability in the radiation-pressure-dominated
cavities around forming high-mass stars.
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