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credit: ESO/H. Drass et al.

credit: NASA

Orion nebula (d ~ 400 pc)
Cygnus X (d ~ 1.4 kpc)

Challenges of high-mass star formation:
- most high-mass star-forming regions are located at distances of several kpc!

→ difficult to obtain high spatial resolution data (compared to nearby low-mass star forming regions)
- high-mass stars are less common
- high-mass star formation is faster 



  Credit: NASA, ESA, CSA, STScI

Carina nebula (d ~ 2.6 kpc)

→ cold molecular cloud material irradiated by massive stars



  

Galactic Center (d ~ 8.2 kpc)

→ active young star-forming regions close to the Galactic Center (e.g. Sgr B1/B2, C)!
→ many supernova remnants (SNR): endproducts of massive stars

Sgr A*
Credit: EHT collaboration



  
https://www.theguardian.com/science/2009/apr/21/space-raspberries-amino-acids-astrobiology

Galactic Center (d ~ 8.2 kpc)

→ large scale emission of 
complex organic molecules (COMs)
in the Galactic center



  

Chemical enrichment in high-mass star-forming regions

Herbst & van Dishoeck 2009

→ (sub)mm spectra of high-mass protostars reveal a rich & diverse chemical composition

https://www.annualreviews.org/docserver/fulltext/astro/47/1/annurev-astro-082708-101654.pdf?expires=1737380182&id=id&accname=ar-271826&checksum=84A90EAB01C3F1AA30CC82FF280FE9D4


  

Massive stars have final stellar masses M* > 8 M⊙



  

Topics today
●      General concepts of massive star formation

●      Outflows in high-mass star-forming regions

●      Rotation and disks 

●      Clusters and the IMF



  

Why are massive stars important? 

  - a few in numbers, but luminosity L M∝ 3   

  - inject significant amounts of energy into  the 
interstellar medium (ISM) during their lifetime

 (outflows,  radiation, supernovae)

  - produce heavy elements

  - massive stars form in clusters

  → low-mass star formation strongly  
influenced by massive stars in the cluster

General concepts of massive star formation

Credit: NASA, ESA, M. Robberto



  

General concepts of massive star formation

Credit: NASA/CXC/SAO/K. Divona

→ the majority of heavy elements in the Solar system was produced by massive stars!



  

General concepts of massive star formation
Kelvin-Helmholtz contraction time:

timescale in which all gravitational energy is radiated away 

  

 

  

Recap: 
for a low-mass protostar:

accretion onto protostar stops
→ pre-main-sequence (PMS) stage: energy released due to grav. contraction

Solar type star (1M⊙, 5R⊙  and 7L⊙): tKH ~ 106 yr 



  

General concepts of massive star formation
Kelvin-Helmholtz contraction time:

timescale in which all gravitational energy is radiated away 

  

 

  
for a massive protostar:

60M⊙, 12R⊙  and 106L⊙

tKH ~ 9000 yr 
→ no observable pre-main sequence (PMS) phase 

→ due to high luminosity: radiation pressure important constraint



  

Eddington luminosity: upper luminosity limit before star is unstable

 - assumptions: spherical symmetry and fully ionized hydrogen 

  → radiation exerts force on free electrons via Thomson scattering

σT=(q2 / mc2)2                      (σT: cross section, q: charge, m: mass) 

- outward radial force equals rate at which electron absorbs momentum:
 

Frad = σTS/c                                 (S: energy flux) 

- radiation pushes out electron-proton pairs against grav. force  

Fgrav = GM(mp+me) / r2 ~ GMmp / r2 

 

General concepts of massive star formation



  

General concepts of massive star formation
Eddington luminosity: upper luminosity limit before star is unstable

- with flux S = L / 4πr2, the force equilibrium (Fgrav = Frad) is:
GMmp / r2 = σTL / (4πr2c) 

- Eddington luminosity:  
LEdd = 4πGMc (mp / σT)              (independent of r!) 
LEdd = 4πGMc / κ                        (mass absorption coefficient κ = σT / mp) 

 
  
- if L > LEdd then 
        - accretion stops if L provided by accretion 
        - gas layers pushed out and star unstable if L provided by nuclear fusion 

- Scaling relation for massive (proto)stars: L  M∝ a (with 2<a<4 )



  

General concepts of massive star formation
Radiation pressure of the central massive (proto)star  on the surrounding dust cocoon

Same relation: 
                   L / M = 4πGc / κ

 

- While κ is very low for ionized H plasma (κ~0.3cm2g-1),
at the dust  destruction front (T~1500K) 
it is considerably larger with κ~10cm2g-1. 

       → L / M ~ 103  [L⊙/M⊙] 



  

General concepts of massive star formation
Radiation pressure of the central massive (proto)star  on the surrounding dust cocoon

 - L/M ~ 103  [L⊙/M⊙] 

 -  In spherical symmetric accretion models, accretion is expected to stop 
        as soon as the luminosity is approximately 1000 times larger than the 
        mass of the protostar.

→ no problem for low-mass protostars (L much lower)

 - The critical ratio is reached for stars of approximately 10M⊙ :
         Since more massive stars are known, the assumption of spherical 
         accretion has to be wrong and other processes are needed.



  

General concepts of massive star formation

 

Kuiper+2010

Circumventing the radiation pressure issue:

spherical accretion disk accretion

https://iopscience.iop.org/article/10.1088/0004-637X/722/2/1556/pdf


  

General concepts of massive star formation

 

Kuiper+2010

Circumventing the 
radiation pressure issue:

spherical accretion (1D)
→disk accretion (2D)

- Core (with mass Mcore) collapses 
and matter is accreted 
onto protostar (with mass M*)

- Protostar expells matter (Mout)
through molecular outflow

Credit: ESO

https://iopscience.iop.org/article/10.1088/0004-637X/722/2/1556/pdf


  

General concepts of massive star formation
Massive star formation scenarios

I) Modified low-mass star formation: 

- 100M⊙ star forms in ~105yr  
→  average accretion rate: ~10-3M⊙/yr

(this is 2-3 order of magnitudes higher 
compared to a Solar type star!) 



  

General concepts of massive star formation
Massive star formation scenarios

I) Modified low-mass star formation: 

- increased accretion rates of a few 
orders of magnitude 

- 2D disk geometry helps accretion 
processes.

- radiation pressure can escape through  
outflow cavities 
→ flashlight effect

Credit: Rivilla+2013

Credit: Moscadelli+2022

https://www.aanda.org/articles/aa/pdf/2013/06/aa17487-11.pdf
https://www.nature.com/articles/s41550-022-01754-4


  

General concepts of massive star formation
Massive star formation scenarios

I) Modified low-mass star formation: 

- “turbulent core model”: 

massive stars form  within 
grav. bound cores 
supported by turbulence 
and magnetic fields

McKee & Tan 2003

Credit: Rivilla+2013

https://iopscience.iop.org/article/10.1086/346149
https://www.aanda.org/articles/aa/pdf/2013/06/aa17487-11.pdf


  

General concepts of massive star formation

Massive star formation scenarios

II) Competetive accretion and coalescence: 

- massive stars form only in clusters

     - the cluster potential favours accretion toward  objects in the center

- all kinds of protostellar entities may merge

Credit: Rivilla+2013

https://www.aanda.org/articles/aa/pdf/2013/06/aa17487-11.pdf


  
Kumar+2020

General concepts of massive star formation

Massive star formation scenarios

III) Global star formation 
scenarios 

- consider the hierarchical 
structures of molecular clouds

- low-mass star formation 
in filaments

- high-mass star formation in hub
systems

https://www.aanda.org/articles/aa/full_html/2020/10/aa38232-20/aa38232-20.html


  

Hub structure in Mon R2

Kumar+2022

https://www.aanda.org/articles/aa/pdf/2022/02/aa40363-21.pdf


  
Motte+2018

General concepts of massive star formation
Evolutionary stages during high-

mass star formation
(the following is a crude classification motivated by observed properties)

Infrared dark cloud (IRDC):
- embedded protostar only visible in FIR/mm (cold gas/dust)

High-mass protostellar object (HMPO):
- protostar in main accretion phase
- large-scale energetic molecular outflows
- protostar becomes detectable in IR

Hot molecular core (HMC):
- at temperatures ~100 K:

molecules frozen onto dust grains evaporate 
into the gas-phase revealing line rich spectra

HII region:
- protostellar radiation ionizes surroundingenvelope

→ free-free emission observed at low frequencies

(HI: neutral hydrogen / HII: ionized hydrogen)

https://www.annualreviews.org/content/journals/10.1146/annurev-astro-091916-055235


  

General concepts of massive star formation

Simulations of massive star formation:

Massive stellar system forming out of turbulent core:
https://www.youtube.com/watch?v=SgYwNoPMmGE

Formation of a massive protostar:
https://www.youtube.com/watch?v=IxrQoHu7W94



  

Topics today
●      General concepts of massive star formation

●      Outflows in high-mass star-forming regions

●      Rotation and disks 

●      Clusters and the IMF



  

Outflows in high-mass star-forming regions

Lopez-Sepulcre+2009
- common bipolar outflow tracers: CO isotopologues, SiO
- red- and blue-shifted line wings trace red- and blue-shifted outflow lobes

https://www.aanda.org/articles/aa/full_html/2009/21/aa12051-09/aa12051-09.html


  

Outflows in high-mass star-forming regions

Beuther & Shepherd 2005

Outflow collimation related to
evolutionary stage

HMPO: high-mass protostellar object
→ accretion through disk
→ system launches a collimated jet

Hypercompact HII region (HC HII)
→ additional contributions from disk winds

in HII region stage

Ultracompact HII region (UC HII)
→ strong contribution by disk winds

https://arxiv.org/pdf/astro-ph/0502214


  

Outflows in high-mass star-forming regions

Beuther+2002

- Outflow-mass Mout scales with core mass Mcore

 → High outflow rates imply high accretion rates

- Bipolar outflows are observed easily
(although difficult to identify launching protostar

in clustered regions)

- Accretion disks are challenging to resolve
(high-mass protostars are much further away 

than low-mass protostars)

https://www.aanda.org/articles/aa/pdf/2002/09/aah3133.pdf


  

Outflows in high-mass star-forming regions

Kong+2019

Molecular outflows 
in a young high-mass 
star-forming region

At high spatial resolution:
Bipolar molecular outflows 
show a complex 
morphology!

https://iopscience.iop.org/article/10.3847/1538-4357/ab07b9/pdf


  

Topics today
●      General concepts of massive star formation

●      Outflows in high-mass star-forming regions

●      Rotation and disks 

●      Clusters and the IMF



  

Rotation and disks

Ahmadi+2019

Synthetic ALMA 
observations of a
simulated fragmented 
massive disk at a distance
of 2 kpc 
at different inclinationsVelocity integrated intensity of a

methyl cyanide (CH3CN) line
Peak velocity of a
methyl cyanide (CH3CN) line

→ signatures of disk rotation of molecules can be spectrally and spatially resolved 
with interferometers at very high angular resolution (0.08 arcsec)

Credit: ALMA (ESO/NAOJ/NRAO), 
A. Marinkovic/X-Cam

https://www.aanda.org/articles/aa/pdf/2019/12/aa35783-19.pdf


  

Rotation and disks

Ahmadi+2023

NOEMA observations 
of high-mass 
protostars
(0.4 arcsec resolution)

Peak velocity of a
methyl cyanide (CH3CN) line

→ in real observations: complex morphology, additional contributions from, e.g., envelope rotation

Credit: IRAM

https://www.aanda.org/articles/aa/pdf/2023/09/aa45580-22.pdf


  

Rotation and disks

Matthews+2010https://lweb.cfa.harvard.edu/kalypso/Figure5b.gif

A disk wind in Source I in the Kleinmann–Low (KL) nebula in Orion (d ~ 400 pc)

https://iopscience.iop.org/article/10.1088/0004-637X/708/1/80/pdf


  

Topics today
●      General concepts of massive star formation

●      Outflows in high-mass star-forming regions

●      Rotation and disks 

●      Clusters and the IMF



  

Clusters and the IMF

Initial mass function (IMF): 
initial mass distribution for 
a stellar population

(present day distribution may be different!)

Credit: NASA/ ESA/ STScI/Aura

Possible variations of the IMF: 
metallicity
temperature of the collapsing molecular cloud
magnetic field structure

Carina nebula
Almost all stars form not in isolation, but in clusters.



  

Clusters and the IMF

IMF described by
power-law approximations 

for different mass regimes, e.g.:



  

Clusters and the IMF

Muench+2002
Credit: NASA; K.L. Luhman (Harvard-Smithsonian CfA); and G. Schneider, 
E. Young, G. Rieke, A. Cotera, H. Chen, M. Rieke, R. Thompson

https://arxiv.org/pdf/astro-ph/0203122


  

A Bubbly Origin for Stars Around the 
Sun

https://www.youtube.com/watch?v=08UlpJBt5Ic

Credit: Leah Hustak (STScI)



  

Bubbles in NGC 628 (M 74)

Credit: NASA / ESA / CSA / Judy Schmid



  

Summary
- Massive stars are very important for energy budget and nucleosynthesis

- They form exclusively in a clustered mode

- They have very short Kelvin-Helmholtz contraction times and hence no 
  optically observable pre-main sequence evolution. 

- Large radiation pressure has to be overcome. 

  Two main proposals: 
(1) Scaled up low-mass star formation scenario  
(turbulent core model) with accretion disks and enhanced accretion rates. 
(2) Turn more dynamical, competitive accretion, coalescence and merging. 
→ Likely a combination of turbulent core and competitive accretion is solution

- Discussed outflows, disks, initial mass function, and clusters 
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