Extragalactic Star Formation

A Galaxy at z=14.2 Forming Massive Stars

GALAXY JADES-GS-Z14-0 GALAXY EXISTED 300 MILLION YEARS AFTER BIG BANG

- Stars dominate UV luminosity.
- Oxygen observed with ALMA facility.

Jades Collaboration (2024)

NIRSpec Microshutter Array Spectroscopy

Differences between high-z Star Formation and MW Star Formation

 $\begin{array}{l} MW: \ 0.01-100 \ M_{sun} \\ Characteristic \ Mass: \ 0.7 \ M_{sun} \end{array}$

Early Universe:

 $20 - 600 \text{ M}_{sun}$ Characteristic Mass: 100 M_{sun}

Values are highly uncertain (fragmentation)

Argument: Less cooling, Higher Temperatures, Higher Jeans Mass

Extragalactic Star Formation

M74 – Phantom Galaxy (PHANGS program) – Grand Design Galaxy

MIRI/JWST Image of NGC 628 - M 74

Bubbles & Hierarchical Filament Structure – Stellar Clusterin Centre 19 galaxies with star formation: HST/JWST - PHANGS Collaboration (ApJL 944, 2023); Hoyer et al. (2023)

Extragalactic Star Formation Quantities

- We only "see" short-lived massive star formation (duration different for diff. measures)
- SFR Rate (Mass per year, often also per area- SFR density)
- SFR/Mstar Specific star formation rate
- SFH History of SF (continuous/steady state; instantaneous)
- SFE Efficiency of conversion of gas mass in stars
- How to measure SFR and to determine the SF history?
- Where is SF taking place in a galaxy?
- What triggers star formation?

Bottom-up ΛCDM structure formation model: Primordial density fluctuations grow by gravitational instability driven by cold (collisionless) dark matter. Merger events.

Star Formation Tracers

- Population Synthesis Models to determine colours & spectra (IMF, metallicity, SF history, age)
- UV continuum: SFR ~ L(UV) (massive short-lived stars) [Extinction + IMF] (GALEX – UV galaxy L function)
- Recombination Lines: SFR ~ L(Hα) [Extinction + IMF] (Short-lived O stars – 20 Myr)
- Forbidden lines
- Far-infrared Continuum (Dust distribution)
- Radio Continuum [Contributions from AGN and old stars] (Thermal vs. Non-thermal radiation)

Kennicutt-Schmidt Relation

Bigiel et al. (2009)

Empirical derived index: Roughly 1.5

How can we understand this?

 $\Sigma_{SFR} \sim \epsilon \Sigma_{gas}$ (G ρ_{gas})^{1/2} (timescale of the conversion of gas = free-fall time scale)

With constant gas scale height:

$$\Sigma_{\rm gas} \sim \rho_{\rm gas} \rightarrow \text{This results in } \Sigma_{\rm SFR} \sim \Sigma_{\rm gas}^{1.5}$$

If SF is dominated by gravitational instability in disk, then only valid in this region.

Star Formation in Disk Galaxies

NASA/JPL

- Star formation in spiral arms (giant molecular clouds, OB associations)
- Star formation efficiency only few percent (supersonic streaming motions)
- Star formation in circumnuclear regions globally not important
- Interactions influence SF history in general: Gas supply

Where - Global Properties

Table 1. Star formation in disks and nuclei of galaxies

Property	Spiral disks	Circumnuclear regions
Radius	1-30 kpc	0.2-2 kpc
Star formation rate (SFR)	0-20 $M_{\odot}{ m year}^{-1}$	0-1000 $M_{\odot}{ m year}^{-1}$
Bolometric luminosity	10 ⁶ -10 ¹¹ L _☉	10 ⁶ -10 ¹³ L _☉
Gas mass	10 ⁸ -10 ¹¹ M _☉	10 ⁶ -10 ¹¹ M _☉
Star formation time scale	1-50 Gyr	0.1-1 Gyr
Gas density	1-100 $M_\odot\mathrm{pc}^{-2}$	$10^2 - 10^5 M_{\odot} \mathrm{pc}^{-2}$
Optical depth (0.5 $\mu m)$	0-2	1-1000
SFR density	0-0.1 $M_{\odot}\rm year^{-1}\rm kpc^{-2}$	1-1000 $M_\odot{ m year^{-1}kpc^{-2}}$
Dominant mode	steady state	steady state + burst
Type dependence?	strong	weak/none
Bar dependence?	weak/none	strong
Spiral structure dependence?	weak/none	weak/none
Interactions dependence?	moderate	strong
Cluster dependence?	moderate/weak	?
Redshift dependence?	strong	?

Starburst Galaxies

M 82 – nearest starburst (Hubble Image)

- Short-lived circumnuclear burst High gas and stellar density density in center
- High star formation efficiency
- Starburst dominates luminosity
- IR starbursts up to 1000 Mo/yr

ULIRG - Mergers

Antennae (NGC 4038/ NGC 4039)

• Dust heated by AGN and star formation with $L > 10^{12}$ Lsun

Star Formation Triggers

Galactic Scale Gravity:

Density Waves (Spiral arms, bars, instabilities) Tidal Interactions (Mergers) Ram Pressure stripping

Local Effects

Expanding SN shells Winds and radiation pressure from massive stars

Global rates of galaxy gas accretion determine the cold molecular gas content and SFR.

SFR is correlated with M_{star} for main-sequence star-forming galaxies (disky galaxies) Quiescent galaxies which do not form stars (dead, red, massive): elliptical galaxies, S0 galaxies

- Number of blue galaxies fairly constant; Number of red galaxies rising
- Gas-rich spirals: 20Msun/yr, Ellipticals: 0
- Transition stellar mass is about 10¹¹ Msun
- Starburst galaxies have elevated SFR

Cosmic SFRD as a Function of Redshift (Madau Plot)

Balance between gas accretion and feedbackM(stellar, SN, AGN)(both closely related to stellar mass)

Madau Plot – Cosmic SFRD as a Function of Redshift

Rapid decline over the last 8 billion years after having peaked at redshift 2 - Approximately 3.5 Gyr after the Big Bang (feedback, less mergers) SFRD declines rapidly for z>4

Evolution of Stellar Density

Madau & Dickinson (2014)

Evolution of the Molecular Gas Density

- Star-forming galaxies contained much more molecular gas at earlier times
- Galaxy integrated depletion time depends on z (or Hubble time)