Sternentstehung - Star Formation

Winter term 2024/2025
Henrik Beuther, Thomas Henning & Caroline Gieser

15.10 Today: Introduction & Overview (Beuther)
22.10 Physical processes I (Beuther)
29.10 --

05.11 Physcial processes IT (Beuther)
12.11 Molecular clouds as birth places of stars (Beuther)
19.11 Molecular clouds (cont.), Jeans Analysis (Henning)

03.12 Collapse models II GESIGED

10.12 Protostellar evolution (Gieser)

17.12 Pre-main sequence evolution & outflows/jets (Henning)

07.01 Accretion disks I (Henning)

14.01 Accretion disks II (Henning)

21.01 High-mass star formation, clusters and the IMF  (Gieser)

28.01 Extragalactic star formation (Henning)

04.02 Planetarium@HdA, outlook, questions

11.02 Examination week, no star formation lecture (Beuther, Gieser, Henning)
Book: Stahler & Palla: The Formation of Stars, Wileys

More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws2425.html
beuther@mpia.de, henning@mpia.de , gieser@mpia.de
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Last week

- Virial theorem and applications to cloud (in)stability

- Jeans analysis and applications to fragmentation

- Magnetic fields

- Cloud formation and lifetimes
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Star formation paradigm

Phases of sgformation I

E.

Outflow

young star Magn. Field

Turbulence
https.// www.mpifr-bonn.mpg.de/473576/starform




Three equations governing the equilibrium are:
Hydrostatic equilibrium

yp-va,=0
P

[deal isothermal gas P: Pressure
s | p: density
P = pa ' ®,: grav. Potential

. . a;: sound speed
where the ¢, obeys Poisson equation t :

V0, = 47Gp
Substituting equation 2 in 1 and after integration
Inp+ 3,/a* = const.

In the spherical case, this is




Isothermal Sphere II

With p, the density at the center and ®4(r =
the Poisson eq. becomes

r? O@ﬂ = 4nGp

— 4rGpexp(—8,/a?) (2)

Often, this equations is used in dimensionless form
with the dimensionless potential:

b= B,/a°
and the dimensionless length £
4’»’FGPC Boundary conditions:

S 5(0) = 0

Then the Poisson eq. turns into the Lane-Emden eq. ¢'(0) =0
L1 Gravitational potential and

&7 37 (520@ = exp(—o) &) force are 0 at the center.

- Numerical integration: gravitational potential versus radius ... then density




Isothermal Sphere III

Nondimensional Radius §

- Density and pressure (P=pa?) drop monotonically away from the center.
- important to offset inward pull from gravity for grav. collapse.
- After numerical integration of the Lane-Emden equation
- density p/p. approaches asymtotically 2/&2.
- Hence the dimensional density profile of the isothermal sphere is:
p(r) = a2/(2nGr2) ~ 1/r2.




Isothermal Sphere III
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- density p/p. approaches asymtotically 2/&2.
- Hence the dimensional density profile of the isothermal sphere is:
p(r) = a2/(2nGr2) ~ 1/r2.




Isothermal Sphere IV

The dimensional mass 1s

."'perT 1, With:
. 9 .3/ r = V(a?/(4nGp.))*¢

[ e g de Bl o = pcexp(-0)
Subscript 0 at cloud edge

4 |

Using the Lane-Emden eq. and the boundary
condition ¢'(0)) = ()
\3/2 _
] | [ odo ]
&"—
- [
\" dl)g,

Defining furthermore a dimensionless mass m

7||‘ ;'3 -Q\I . D 9
m = : , with Py = ppa;
a;

the dimensionless mass equals

1/2

m = [ ~17r& l
L0 /

L. : , (D
Since &y is known for each p./po. and (£757)
- ) . S2Q0N

read from the previous figure, one can evaluate m.

Celll ])(‘




Isothermal Sphere IV

The dimensional mass 1s

M = 4 [ pridr (1) EWiE
UL IR * - (2C/(4nGpo)*:
= 47p, \‘m} [ e ?&7de Ol o = p.exp(-0)

Subscript 0 at cloud edge

Usill,'_'; the Lane-Emden €q. and the boundarv

condition ¢'(0) = 0 25 T | ! ' ! -
4
, 9 C3/2 ] .7
oa; Ao ’ —
‘ . t - - ‘
M = dmp, | L & ] 20 o
!‘ 4]77(1,0(.,’ , d(' ’
\ / \ > /& ’
/ —
. . . : 15 [~ ’
Defimng furthermore a dimensionless m: L7

2EG3M
m = . with [..—p..l

a;

the dimensionless mass equals

.)

Ldo) 0
m = [LT—‘ [& ] 0 1 23 4 5 6
o0 \ " d& "}En Nondimensional Radius &
L : , (o9 e
Since & 1s known for each p./po. and [& ”,c]( can be
' S4Q0

read from the previous figure, one can evaluate m.




Isothermal Sphere V
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The beginning is for a radius &,=0, hence p/po=1 and m=0.

For increasing p./po, M (and @) increases until p/py=14.1,
corresponding to the dimensionless radius £,=6.5.




Gravitational stability

Gravity
dominated

2.0 3.0
Density Contrast log (p./po)

- Low density-contrast cloud: Increasing outer pressure P, - rise of m & p./po.
- With internal pressure P=pa;? and p~1/r2 decreasing outward - inner P rises
more strongly than P, > cloud remains stable.

- High-density contrast: following the Boyle-Mariotte law for an ideal gas:
PV = const > P*4/3nr3 = const
—> core shrinks with increasing outer pressure P.

- All clouds with p/py> 14.1 (§,=6.5) are gravitationally unstable, the critical
mass is the Bonnor-Ebert mass (eq. 4, 2 slides ago, Ebert 1955, Bonnor 1956)
Mge = (m;ac*)/(PoY/2G32)




Gravitational stability: The case of B68

£y=6.9 is only
marginally about the
critical value 6.5

—> gravitational

stable or at the verge
of collapse
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Basic rotational configurations I

Adding a centrifugal potential @, the hydrodynamic equation reads
-1/p grad(P) - grad(®y) - grad(®cen) = 0

With @, defined as

Deen = - f (_]2/ (,03) do j: spe_cific_: angulgr momentum
o: cylindrical radius
and j=wu with u the velocity around the rotation axis

Rotation flattens cores and may be additional support against collapse.




Basic rotational configurations II

Isothermal sphere, 3=0
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Rotational models: in addition to the density contrast p./py 2 B

B defined as ratio of rotational to gravitational energy:
B = To/W

B > 1/3 corresponds to breakup speed of the cloud. So 0 < B < 1/3




Basic rotational configurations III

For flattening: T../W > 0.1

Examples:

Toot & I1Q2 = mr2Q2
/ (I: moment of inertia, Q: rotational velocity)
0 05 10 15 20 25 30 W =~ GmZ/r

Density Contrast log (p./py)

2> Tt/ W = 1x103 (Q/(1km sipct))? (r/(0.1pc))® (m/(10Mgyn))

- Cloud elongations do not arise from rotation, and centrifugal force
NOT sufficient for cloud stability!

Other stability factors are necessary - Magnetic fields




Specific angular momentum

Specific angular momentum j=]/M is reduced from molecular cloud to star.
J/M(cm?/s)

Molecular clump

Binary (P~10%r) 4x1020-1021
Binary (P~10yr) 4x101°-1020
Binary (P~3d) 4x1018-1019
T Tauri star 10%/

Sun 1015

- Specific angular momentum reduced by 6 orders of magnitude
from molecular cloud to T Tauri star scale.
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Magnetic fields I

The equation for magneto-hydrodynamic equilibrium now:
-1/p grad(P) - grad(®g) -1/(pc) jxB =0

Numerical solving - solutions with 3 free parameters:

the density contrast ratio p./py,
the ratio o between magnetic to thermal pressure
o = BOZ/(STCP())
and the dimensionless radius of the initial sphere *Mndude
& = (4nGpo/a?)/2* R, magnetic field

£,=4.8, 0=5.0

T

=
[=]

£,=48, a=10

Cloud Mass m

Cloud Mass m

o
o

§o= 2.4, a=10

Isothermal sphere

0
0 1.0 2.0 3.0

1.0 2.0 3.0 . Vo
0 0.5 1.0 1.5 2.0 25 3.0

DenSity Contrast IOQ (Pc/Po) Density Contrast log (p./p,) Density Contrast log (pc/po)

Fit to numerical results: mq; = 1.2 + 0.15 al/2 £42




Magnetic fields II

Conversion to dimensional form (multiply by a:%/(P,1/2G3/2)):
- first term equals the Bonnor-Ebert Mass: Mgz = mya?/(Py1/2G3/2)

Meit = Mge + IVlmagn

With Mpagn = 0.15 al/? &x?at/(Pol/2G3/2)
= 0.15 2/sqrt(2n) (BynRy%/GY/2) o« B,

--> magnetic mass M,,4, proportional to the B-field!
Qualitative difference between thermal and magnetized clouds.
If increase of outer pressure P, around core of mass M

- Bonnor-Ebert mass decreases until Mgz < M - then cloud collapse

However, in magnetic case: if M < My,,qn = cloud remains stable
because M4, COnstant as long a flux-freezing applies.




Ambipolar diffusion I

- Lower density GMCs, large ionization degree - ions & neutrals strongly

collisionally coupled.
- Dense cores: lower ionization degree - neutrals & ions easier decouple.

Neutrals stream through ions

accelerated by gravity.

- drag force between ions & neutrals from
collisions.

- Furthermore, Lorentz force acts on ions.

- Drift velocity between ions and neutrals: vgi = V; - Vv,
- Drag force between ions and neutrals is: Fyag = Ny <6inVarig™>MnVarift
(average number of collision per unit time n,<c;, V4> times the transferred momentum m,vy.ir)

- equation of motion with drag & Lorentz force:

n,: neutral density

i n;: number of ions
NiFarag = J X B/c = 1/(4n) (rot B) x B ot ion-neutral cross section

(with Ampere’s law: rot B = 4n/c * j) m,: mass of neutral
2 Varire = (rot B) x B / (4nninym,, <cinVarie™>)




Ambipolar diffusion II

Dense core with size L - time-scale for ambipolar diffusion:
tag = L/ |Varire| = (4nningm,, <oinVgrie>)L / ([(rot B) x B|)
Approximating (rot B = B/L): |(rot B) x B| = B2/L

-2 tad = (4nninnmn <Gianrift>)|—2/ BZ

- ambipolar diffusion time-scale proportional to:
ionization degree, density & size of the cloud; inversely prop. to mag. field

> t,q ® 3x10%yr (ny,/10%cm3)32 (B/30uG)2 (L/0.1pc)?

Still under discussion whether this time-scale sets the star formation rate
or whether it is too slow and other processes like turbulence are required.




Ambipolar diffusion caveat

- Star Formation timescale: Observations indicate rapid star formation
on the order 1-2 million years.
- Ambipolar diffusion usually requires longer cloud life-times.

- Maybe gravo-turbulent fragmentation necessary ...




Ambipolar diffusion caveat
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Magnetic reconnection

- Field lines of opposite direction are dragged together.
- antiparallel B field lines annihilate and
- magnetic energy dissipates as heat.

- This process was first invoked to explain large luminosities observed
in solar flares.




Summary

- Hydrostatic equilibrium between thermal pressure and gravitational force.

- Bonner Ebert mass for gravitationally stable cores.

- Can rotation support cloud stability?

- Magnetic cloud support and ambipolar diffusion

- Observational signatures of infall motions
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