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17.10  Today: Introduction & Overview                      (H.B.) 
24.10 Physical processes I                                        (H.B.) 
31.10 no lecture – Reformationstag 
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14.11 Molecular clouds as birth places of stars            (H.L.) 
21.11 Molecular clouds cont., virial & Jeans Analysis    (H.B.) 
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19.12 Pre-main sequence evolution & outflows/jets      (T.H.) 
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16.01 Accretion disks II                                             (T.H.) 
23.01 High-mass star formation, clusters and the IMF  (H.B.) 
30.01 Planet formation                                              (T.H.) 
06.02 Examination week, no star formation lecture 
              Book: Stahler & Palla: The Formation of Stars, Wileys 

More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws1718.html 
             beuther@mpia.de, henning@mpia.de  



Last week 

-  Virial theorem and applications to cloud (in)stabilty  

-  Jeans analysis and applications to fragmentation 

-  Magnetic fields on clouds scales 

-  Turbulence 



Topics today 

-  Isothermal sphere, hydrostatic equilibrium,  
             grav. stability, Bonnor-Ebert spheres 
 
 
-  Rotational support 
 

-  Magnetic support and ambipolar diffusion 

-  Infall signatures 



Star formation paradigm 

Turbulenz 



Isothermal Sphere I 

P: Pressure 
ρ: density 
Φg: grav. Potential 
at: sound speed



Isothermal Sphere II 

Boundary conditions: 
φ(0) = 0 
φ’(0) = 0 
Gravitational potential and 
force are 0 at the center. 

à Numerical integration: gravitational potential versus radius … then density 



Isothermal Sphere III 

 - Density and pressure (P=ρa2) drop monotonically away from the center. 
              à important to offset inward pull from gravity for grav. collapse. 
 - After numerical integration of the Lane-Emden equation 
              à density ρ/ρc approaches asymtotically 2/ξ2. 
 - Hence the dimensional density profile of the isothermal sphere is:     
                                            ρ(r) = a2/(2πGr2) ~ 1/r2.  

φ
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Motte et al. 1998 



Isothermal Sphere IV 

With: 
r = √(at

2/(4πGρc))*ξ
ρ  = ρc exp(-φ) 
Subscript 0 at cloud edge 



Isothermal Sphere IV 

With: 
r = √(at

2/(4πGρc))*ξ
ρ  = ρc exp(-φ) 
Subscript 0 at cloud edge 



Isothermal Sphere V 

The beginning is for a radius ξ0=0, hence ρc/ρ0=1 and m=0. 
  
For increasing ρc/ρ0,  m (and Φ) then increases until ρc/ρ0=14.1,  
    corresponding to the dimensionless radius ξ0=6.5. 



Gravitational stability 

-  Low density-contrast cloud: Increasing outer pressure P0  à rise of m & ρc/ρ0. 
-  With internal pressure P=ρat

2 and ρ∼1/r2 decreasing outward à  inner P rises  
                                   more  strongly  than P0 and the cloud remains  stable. 
 
-  Following the Boyle-Mariotte law for an ideal gas:  
                        PV = const à P*4/3πr3 = const 
   the core actually shrinks with increasing outer pressure P0. 
  
- All clouds with ρc/ρ0> 14.1 (ξ0=6.5) are gravitationally unstable, the critical 
  mass is the Bonnor-Ebert mass (eq. 4, 2 slides ago, Ebert 1955, Bonnor 1956) 
                                     MBE = (m1at

4)/(P0
1/2G3/2) 

Pressure dominated & confined 

Gravity  
dominated 



Gravitational stability: The case of B68  

 
 

ξ0=6.9 is only  
marginally about the 
critical value 6.5 
à  gravitational 
  stable or at the verge 
  of collapse

Optical                     Near-Infrared 



Topics today 

-  Isothermal sphere, hydrostatic equilibrium,  
             grav. stability, Bonnor-Ebert spheres 
 
 
-  Rotational support 
 

-  Magnetic support and ambipolar diffusion 

-  Infall signatures 



Basic rotational configurations I 

Adding a centrifugal potential Φcen, the hydrodynamic equation reads 
-1/ρ  grad(P) - grad(Φg) - grad(Φcen) = 0 

 
With Φcen defined as 

          Φcen = - ∫ (j2/ω3) dω             j: specific angular momentum 
                                                 ω: cylindrical radius 

                                                                              and j=ωu with u the velocity around the rotation axis 

 
Rotation flattens cores and may (?) be additional support against collapse. 



Basic rotational configurations II 

Compared to previous Bonnor-Ebert models, these rotational models have  
(in addition to the density contrast ρc/ρ0) the parameter β quantifying the  
degree of rotation. β defined as ratio of rotational to gravitational energy: 
  
                                                 β = Trot/W 

  β > 1/3 corresponds to breakup speed of the cloud. So 0 < β < 1/3 

Isothermal sphere, β=0 



Basic rotational configurations III 

              à Trot/W ≈ 1x10-3 (Ω/(1km s-1pc-1))2 (r/(0.1pc))3 (m/(10Msun))-1 
Dense cores: à  Trot/W ~ 10-3 

GMCs: Velocity gradient of 0.05km/s representing solid body rotation, 200Msun 
          and 2pc size imply also Trot/W ~ 10-3 
           à Cloud elongations do not arise from rotation, and centrifugal force 
                 NOT sufficient for cloud stability! 
 
Other stability factors are necessary --> Magnetic fields 

In realistic clouds, for flattening to appear, 
the rotational energy has to be at least  
10% of the gravitational energy. Trot/W  
equals approximately β. 
 
 
 
Examples: 
Trot ≈ IΩ2 = mr2Ω2 
(I: moment of inertia, Ω: rotational velocity) 

W ≈ Gm2/r 
 



Specific angular momentum 
Specific angular momentum J/M (=Iω/M=Mr2ω/M=r2ω) must be reduced  
from molecular cloud to star. 
 
                                                              J/M(cm2/s) 
                                                              -------------- 
            Molecular clump                           1023 
            Binary (P~104yr)                          4x1020-1021 
            Binary (P~10yr)                           4x1019-1020 

                  Binary (P~3d)                              4x1018-1019 
            T Tauri star                                  1017 
            Sun                                             1015 
       
      
à Specific angular momentum needs to be reduced by 6 orders of magnitude 
    from molecular cloud to T Tauri star scale. 



Topics today 

-  Isothermal sphere, hydrostatic equilibrium,  
             grav. stability, Bonnor-Ebert spheres 
 
 
-  Rotational support 
 

-  Magnetic support and ambipolar diffusion 

-  Infall signatures 



Magnetic fields I 
The equation for magneto-hydrodynamic equilibrium now is: 
                      -1/ρ  grad(P) - grad(Φg) -1/(ρc) j x B = 0 
 
Solving the equations again numerically, one gets solutions with 3 free  
parameters: the density contrast ratio ρc/ρ0,  
the ratio α between magnetic to thermal pressure 
                                       α = B0

2/(8πP0) 
 and the dimensionless radius of the initial sphere 
                                      ξ0 = (4πGρ0/at

2)1/2 * R0 

Include 
rotation 

Include 
magnetic field 

Isothermal sphere 

A good fit to the numerical results is given by:  mcrit = 1.2 + 0.15 α1/2 ξ0
2 



Magnetic fields II 
Converting this to dimensional form (multiply by at

4/(P0
1/2G3/2)), the first term 

equals the Bonnor-Ebert Mass (MBE = m1at
4/(P0

1/2G3/2)) 
 
                                      Mcrit = MBE +  Mmagn 
 
                             with Mmagn = 0.15 α1/2 ξ0

2at
4/(P0

1/2G3/2) 

                                             = 0.15 2/sqrt(2π) (B0πR0
2/G1/2) ∝ B0  

 
                 -->  the magnetic mass Mmagn is proportional to the B-field! 
 
 
Qualitative difference between purely thermal clouds and  magnetized clouds.  
If one increases the outer pressure P0 around a low-mass core of mass M, the  
Bonnor-Ebert mass will decrease  until MBE < M, and then the cloud collapses.  
 
However, in the magnetic case, if M < Mmagn the cloud will always remain  
stable because Mmagn is constant as long a flux-freezing applies.   



Ambipolar diffusion I 

The drift velocity between ions and neutrals is vdrift = vi - vn  
And the drag force between ions and neutrals is: Fdrag = nn<σinvdrift>mnvdrift 
(average number of collision per unit time nn<σinvdrift> times the transferred momentum mnvdrift) 
The equation of motion with the Lorentz force is then: 
 
    niFdrag = j x B/c = 1/(4π) (rot B) x B        
                          (with Ampere’s law: rot B = 4π/c * j) 
à  vdrift = (rot B) x B / (4πninnmn <σinvdrift>) 

Neutrals stream through the ions  
accelerated by gravity.  
- There is a drag force between ions and  
   neutrals from collisions. 
- Furthermore, Lorentz force acts on ions. 

In less dense GMCs, the ionization degree is relatively large and ions and 
neutrals are strongly collisionly coupled. Going to denser molecular cores,  
the ionization degree decreases, and neutrals and ions can easier decouple. 

 nn: neutral density 
 ni: number of ions 
 σin: ion-neutral cross section 
 mn: mass of neutral 

z 



Ambipolar diffusion II 
For a dense core with a size L, the time-scale for ambipolar diffusion is: 
 
 tad = L/|vdrift| = (4πninnmn <σinvdrift>)L / (|(rot B) x B|) 
 
Approximating (rot B = B/L):  |(rot B) x B| = B2/L we get 
 
 tad = (4πninnmn <σinvdrift>)L2 / B2 
 

Hence ambipolar diffusion time-scale is proportional to ionization degree,  
density and size of the cloud, and inversely proportional to magnetic field. 
 

à tad ≈ 3x106yr (nH2/104cm-3)3/2 (B/30µG)-2 (L/0.1pc)2 
 

 
It is still much under discussion whether this time-scale sets the rate where 
star formation takes place or whether it is too slow and other processes  
like turbulence are required.  

  



Ambipolar diffusion caveat 

 
Star Formation timescale: Observations indicate rapid star formation 
on the order 1-2 million years. Ambipolar diffusion usually requires 
longer cloud life-times.  
 
 
à  Maybe gravo-turbulent fragmentation necessary … 
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Girart et al. 2006 



Magnetic reconnection 

-  Field lines of opposite direction are dragged together 
  à antiparallel B field lines annihilate and magnetic energy is 
        dissipated as heat. 
-  This process was first invoked to explain large luminosities observed 
   in solar flares. 



Topics today 

-  Isothermal sphere, hydrostatic equilibrium,  
             grav. stability, Bonnor-Ebert spheres 
 
 
-  Rotational support 
 

-  Magnetic support and ambipolar diffusion 

-  Infall signatures 



Infall signatures I 

1.  Rising Tex along line of sight 
2.  Velocity gradient 
3.  Line optically thick 
4.  An additional optically thin line peaks at center 

From Evans 1999 

Ovals are loci of constant 
line-of-sight for  
v(r) ∝ r-0.5 



Infall signatures II 
Models                            Spectra and fits        (Myers et al. 1996) 

Model with two uniform regions along the line of sight with velocity  
dispersion σ and peak optical depth τ0 à infall velocity vin: 
 
                  vin ≈ σ2/(vred-vblue) * ln((1+exp(TBD/TD))/(1+exp(TRD/TD))) 
 
In low-mass regions vin is usually of the order 0.1 km/s. In high-mass regions 
Vin can exceed 1km/s and hence be supersonic. 



Summary 

-  Hydrostatic equilibrium between thermal pressure and gravitational force. 
   à Bonner Ebert mass for gravitationally stable cores. 
 

 
-  Can rotation support cloud stability? 

 

-  Magnetic cloud support and ambipolar diffusion 

-  Observational signatures of infall motions 
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