The curious case of the anti-correlation between the sub-100 au solar-type binary frequency and metallicity

MNRAS 482, L139–L144 (2019) Advance Access publication 2018 November 03

dependence at a < 200 au

Kareem El-Badry $^{\odot 1} \star$ and Hans-Walter Rix²

Binary frequency f_{bin} at fixed separations vs. stellar metallicity

 $s \ge 250$ au => flat f_{bin} vs [Fe/H] $s \leq 100 au => anti-correlation f_{bin} vs [Fe/H]$

Wolfgang Brandner, MPIA

see also Moe+ 2018, 2019

doi:10.1093/mnrasl/sly206

The wide binary fraction of solar-type stars: emergence of metallicity ~8400 binaries within 200 pc with spec. [Fe/H] primary mass between 0.45 and 1.5 M_o

Anti-correlation of the sub-100 au G-dwarf binary frequency and metallicity

Puzzle: why do I call it "curious"?

1. Is there a causation underlying the anti-correlation?

Wolfgang Brandner, MPIA

or

2. Does the metallicity act as a proxy for the formation time and formation environment?

Anti-correlation of the sub-100 au G – dwarf binary frequency and metallicity

1. Causation

higher metallicity ~ higher (ISM) opacities: a) external heating and ionisation fraction of molecular cloud cores are anticorrelated with metallicity => shorter ambipolar diffusion timescale

MNRAS 484, 2341–2361 (2019) Advance Access publication 2019 January 10

The statistical properties of stars and their dependence on metallicity

Matthew R. Bate ⁶

School of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, Devon EX4 4QL, UK

starting conditions:

- •500 M_{\circ} spherical molecular cloud of uniform density with r=0.4 pc
- •Supersonic turbulence field
- Interstellar Radiation Field, dust and gas in respective thermal equilibria

Wolfgang Brandner, MPIA

=> puzzles present by Alice Nucara, Henrik Beuther, Maria Jose Maureira, Arshia Jacob ...

SPH+RT+<u>diffuse ISM model</u> with simple H,C chemistry

Increased metallicity affects binary formation pathways: i) reduced disk fragmentation ii) longer collapse times, more time for close "binary" first hydrostatics cores to merge

for a strong dependence of stellar properties when varying the metallicity from 0.01 to 3 times the solar value." => puzzle solved?

Wolfgang Brandner, MPIA

Anti-correlation of the sub-100 au G-dwarf binary frequency and metallicity

- 2. Metallicity as a proxy for age
- lower metallicity ~ older age => higher fraction of baryonic mass in ISM, less in stars => Milky Way star formation history: star formation rate stellar initial mass function ? iii) older stars originate at different Galactocentric distances? iv) halo vs thick disk vs thin disk stars? lower-Z stars are slightly hotter (opacity of stellar atmospheres) V) vi) Interstellar Radiation Field (SN rate, etc.) formation?

<=> what other astrophysics might be important?

Wolfgang Brandner, MPIA

<=> how does the formation environment affect cloud core fragmentation and binary <=> puzzles present by Thomas Henning: environment is important", ... The Puzzles of Star Formation II, May 7, 2025

