Are star-forming molecular clouds really hierarchical and scale-free?

Ph. André and M. Mattern CEA - Lab. AIM Paris-Saclay

PoSFII: Puzzles of Star Formation – Ringberg, 4-7 May 2025

The structure of molecular clouds is hierarchical and ~ scale-free over a wide range of scales

Hierarchical gravitational fragmentation and fragmentation "cascade" in molecular clouds

Example of a « fragmentation cascade » in *isothermal* hydro (M)HD simulations

In isothermal simulations, the median core mass (~ the CMF peak) tends to scale ~ linearly with numerical resolution $M_{J,0}$

Global Hierarchical Collapse/Fragmentation

t R

Scenario

 $M_J \propto \rho^{-1/2} T^{3/2} \searrow$ and $n_J = M/M_J$ during isothermal collapse

M_~3M_

Hoyle 1953; Vazquez-Semadeni+2019

<u>Question</u>: In *real* clouds, does the fragmentation cascade continue all the way to the « opacity limit », i.e., « Larson first cores » (R ~ 5 a.u., M~0.01 M_{\odot})?

Ph. André & M. Mattern - PoSFII - Ringberg – 5 May 2025

But "universal" IMF suggests there is a mass scale in the SF process...

Ph. André & M. Mattern - PoSFII - Ringberg - 5 May 2025

Observational evidence of departures from self-similarity in molecular clouds

Surface Density of Companions vs Separation

Normalized Antenna Temperature Histograms in ¹³CO maps of molecular clouds

+ Transition to Coherence in Dense Cores Goodman+1998; Pineda+2010

Ph. André & M. Mattern - PoSFII - Ringberg - 5 May 2025

Herschel observations suggest that dense molecular gas is primarily structured in the form of filaments with typical half-power width ~0.1 pc

Example of a filament radial profile

D. Arzoumanian+2011 & 2019 [see also Koch & Rosolowsky 2015]

May correspond to the magneto-sonic scale of turbulence & turbulence correlation length (cf. Padoan+2001; Federrath 2016; Jaupart & Chabrier 2021)

Challenging for numerical simulations but very promising recent results (cf. R. Smith+2014; Ntormousi+2016) (Abe, Inoue, Inutsuka+2024, 2025)

Recent JWST/MIRI observations of infrared-dark filaments suggest that this typical filament width ~0.1 pc is not restricted to nearby clouds

JWST has revealed the fine structure of the NGC6634M filament and the presence of (magnetically-aligned?) side filaments with a projected spacing of ~0.1 pc

Convergence tests suggest that Galactic SF filaments have a common density profile with a typical half-power width ~0.1 pc

> A single model density profile (in blue/yellow) can account for nearby filaments (e.g, Taurus/Orion) and Galactic Plane filaments (e.g., N6334, Hi-GAL)

Ph. André & M. Mattern - PoSFII - Ringberg - 5 May 2025

Comparison of JWST and *Herschel* results in NGC 6334 indicates a clear departure from self-similarity at a scale comparable to the filament width

NGC6334: Herschel/HOBYS column density map 20 Offset (arcmin) 10²⁸ 10²² -20 Russeil+2013 -50 50 JWST column density map Offset (arcmin) 10²³ 10²² -2 0 -1

Ph. André & M. Mattern - PoSFII - Ringberg - 5 May 2025

Change in the slope of the power spectrum of (N_{H2}) density fluctuations at about ~0.1-0.2 pc

André, Mattern, Arzoumanian+2025, ApJL (arXiv:2503.24316)

Hints that B fields and non-ideal MHD effects (e.g., ambipolar diffusion) may play a key role in setting this typical filament width scale

→ Non-ideal MHD simulations show that the combination of the slow-shock MHD instability and ambipolar diffusion (AD) allow massive accreting filaments to retain a HP width ~ 0.1 pc (~ AD scale) while evolving.

 \rightarrow Magnetic fields are key in this process

Ph. André & M. Mattern - PoSFII - Ringberg - 5 May 2025

Fragmentation and Turbulence in Filaments

Isothermal Jeans fragmentation (Jeans 1902)

$$\lambda_J = c_s \left(\frac{\pi}{G\rho}\right)^{0.5}$$
$$c_s = \sqrt{\frac{kT}{\mu m_p}}$$

Cylindrical fragmentation (Nagasawa 1987)

Isothermal

$$\lambda \approx 22 \cdot c_s (4\pi G\rho_c)^{-0.5} \approx 4 \cdot w_{\rm fil}$$
Turbulent

$$\lambda \approx 22 \cdot \sigma_v (4\pi G\rho_c)^{-0.5}$$

$$\sigma_v = A \cdot \lambda^{0.5}$$
Linewidth-Size Relation

$$\lambda^{0.5} \approx 22 \cdot A (4\pi G\rho_c)^{-0.5}$$

Linewidth – Size Relation

The incompressible energy cascad model of Kolmogorov (1941) predicts a linewidth-size relation:

 $\sigma_v \propto L^{0.33}$

Observational results show a steeper relation.

Linewidth – Size Relation

- Falgarone+2009 +2log $\sigma_{\rm FWHM}$ (km s⁻¹) +1 Linewidth -2 -2 -1 0 +1 +2 +3Diameter $\log L$ (pc) $\sigma_v \propto L^{0.33}$ $\sigma_v \propto \dot{L}^{0.5}$
- The relations of single clouds show a similar behavior.
- The cloud to cloud variations are small.
- This suggest similar processes within the clouds.

Deviation from the Linewidth-Size relation?

Thin (~mpc) layers of gas seen in ¹²CO in the Polaris flare.

Turbulent – Thermal transition

Turbulent – Thermal transition

- Star forming cores have a coherent velocity, e.g. are dominated by thermal motion
- Different density regimes are traced only by specific molecules.
- The transition scale is around 0.1 pc

Linewidth – Size Relation

Shetty+2012 100.0 N₂H HCN **Galactic Center** σ (km s⁻¹) 01 10.0 σ (km s⁻¹) H¹³CN HCO+ $\sigma \text{ (km s^{-1})}$ 1.0 10 Perseus 0. 100 1 10 10 100 1 0.1 1.0 10.0 R (pc) R (pc) R (pc) $\sigma_v = A \cdot L^b$ The normalization coefficient is dependent on the column density HCN H¹³CN HCO⁺ Tracer N_2H^+ of the cloud Power-law index b 0.67 0.78 0.64 0.46 $A = \sigma_v / L^{0.5} = (\pi G \Sigma / 5)^{0.5}$ Coefficient A 2.6 3.8 2.62.1

^{*a*}The formal 1σ errors in *b* and *A* are all ≤ 0.06 and 1.2, respectively.

(Heyer+2009)

100.0

Line-of-sight velocities

Line-of-sight velocities

- The density/velocity of the cold ISM is hierarchical and ~scale-free over wide range of scales, from ~ 100 pc to ~ 0.1 pc or less
- At what scale does the self-similarity of ISM structures break down? At a few a.u. (opacity limit for fragmentation) or at the larger ~0.1 pc scale of dense cores / typical filament transverse size?
- > What is/are the physical reason(s) for the observed departures from self-similarity?
- > Transition from supersonic to subsonic turbulence at the sonic scale?
- Ambipolar diffusion scale below which short-wavelength MHD waves can no longer propagate in the mostly neutral gas?