
Example Sheet 2

5 Weighted mean with Gaussian errors

Let measured data values y1, y2, . . . , yN be given with Gaussian measurement errors σ1, σ2, . . . , σN .
Our goal is to estimate the mean µ. The (i.i.d.) log-posterior reads:

logP (µ|D) = −1
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(a) Interpret the conjugate prior, what does it mean?

(b) Write down explicitly what the constant terms are in logP (µ|D). (Contributions from
likelihood and prior.)

(c) Differentiate the log-posterior with respect to µ, equate with zero and solve analytically for
the maximum a-posteriori estimate µ̂MPE. (Do not use matrix notation.)

(d) µ̂MPE has the form of a weighted mean value. What are the weights? Discuss how individual
measurement values of low or high measurement errors influence the mean estimate.

(e) How does the prior enter into µ̂MPE? What happens to µ̂MPE, if we have no data at all
(N = 0)?

(f) What happens if we discard the prior and assume that all measurement values have identical
errors σ1 = σ2 = . . . = σN?

6 Fisher analysis

A posterior P (θ|D) can be approximated by a Gaussian PDF at its maximum. The mean of
the Gaussian is found by maximising the posterior. The width of the Gaussian is found by the

Fisher analysis. For a single parameter, the variance is 1
σ2 = −∂2 logP (θ|D)

∂θ2
.

(a) For the weighted mean estimate with Gaussian errors from the previous problem, give an
error estimate using the Fisher analysis. How does the error σ scale with number of data
points N?

(b) For the mean estimate with Poisson errors from the lecture, give an error estimate using
the Fisher analysis. How does the error σ scale with number of data points N?

(c) For the fraction estimate with binomial errors from the lecture, give an error estimate using
the Fisher analysis. How does the error σ scale with number of data points N?

7 Galaxy luminosity function

The distribution of galaxy luminosities is usually described by a so-called Schechter function
f(L) = c(L/L∗)

αe−L/L∗ , where L∗ is an exponential cut-off luminosity, α < 0 is the faint-end
slope, and c is a normalisation constant such that

∫∞
0
f(L)dL = 1.

(a) What is the (mathematical) name of distribution functions of the kind P (x) ∝ xαe−x?
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(b) Show that the Schechter function with α = −1.25 (field galaxies) has finite mean but
infinite variance.

(c) Convert the Schechter function f(L) from luminosities to magnitudes f(M) where M =
−2.5 log10 L+M0.

(d) Let a set of N galaxy luminosities L1, L2, . . . , LN be given with no errors. Write down the
likelihood function.

(e) Show that for given data L1, L2, . . . , LN and fixed value of α, the best-fit value of L∗ can
be found analytically.

(f) Show that the Schechter function is a generalised linear model and find the corresponding
functions a(η), b(y), and T (y). What does that imply for the likelihood and parameter
estimation?

8 Loss functions

Sometimes we are facing data where we know next to nothing about its origin. In particular, we
sometimes do not know the data’s measurement error distributions, such that we cannot define
any likelihood function. Instead of a likelihood function, we perform regression by minimising
the expected loss

〈L〉 =
1

N

N∑
n=1

L(yn, f(xn, θ))

where L(y, f(x, θ)) is called the loss function and f(x, θ) is some model function at position x
with parameters θ.

(a) Consider the quadratic loss function L(y, f(x, θ)) = (y − f(x, θ))2 and the absolute-error
loss function L(y, f(x, θ)) = |y − f(x, θ)|. Draw a sketch of both loss functions over the
interval −4 ≤ y−f(x, θ) ≤ 4. Which of the two loss functions is more sensitive to outliers?
Which of the two loss functions is not differentiable and thus cannot possibly have any
analytic minimisation?

(b) Consider the following loss function:

L(y, f(x, θ)) =

{
(y − f(x, θ))2 ⇔ |y − f(x, θ)| ≤ 1
1 + 2 log |y − f(x, θ)| otherwise

Draw a sketch of this loss function over the interval −4 ≤ y − f(x, θ) ≤ 4. Compare the
robustness of this loss function against outliers to the quadratic and the absolute-error loss
functions. Is this loss function differentiable? Is an analytic minimisation possible?

(c) In classification settings, one often uses the zero-one loss function

L(y, f(x, θ)) =

{
0 ⇔ y = f(x, θ)
1 otherwise

where y and f(x, θ) are integers (i.e. class labels). Give an interpretation of what the
expected loss 〈L〉 means in simple words.
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