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Zusammenfassung

Wasserstoff ist das häufigste Element im Universum. In der uns vertrauten baryonischen Materie
macht es einen Massenanteil von etwa 73% aus, gefolgt von Helium mit etwa 25%. Alle weit-
eren Elemente müssen sich die restlichen 2% teilen, die häufigsten unter ihnen sind wiederum
Kohlenstoff, Stickstoff, Sauerstoff und Eisen.

Nicht nur für uns Menschen und das Leben auf der Erde sind aber genau diese Spurenelemente
von essentieller Bedeutung. Sie haben auch einen erheblichen Einfluß auf die physikalischen
Eigenschaften der Sterne, besonders auf die in ihnen stattfindenden radiativen Prozesse. Be-
merkbar machen sich die Metalle dann wieder in den beobachteten Spektren, wo sie ihre Spuren
in Form von Absorptions- oder Emissionslinien hinterlassen. Dementsprechend ist es möglich
mithilfe dieser Linien die genauen Häufigkeiten der einzelnen Elemente zu rekonstruieren.

Eine solche Elementhäufigkeitsanalyse ist allerdings nicht trivial, sie erfordert die genaue Ken-
ntnis der physikalischen Prozesse, die an der Entstehung der Spektrallinien beteiligt sind, sowie
die Bedingungen unter denen sie entstehen. In der Korona, der äußersten Atmosphärenschicht
eines sonnenähnlichen Sterns, werden Temperaturen von mehreren Million Kelvin bei gleichzeitig
relativ geringen Dichten erreicht. Das Spektrum der Korona ist vorrangig im Röntgenbereich
beobachtbar, es ist dominiert von Emissionslinien der schwereren Elemente. Hochauflösende
Röntgenspektroskopie mit Hilfe der Satelliten Chandra und XMM-Newton hat in den letzten
Jahren die Untersuchung der Spektren stellarer Koronen in bislang unerreichter Genauigkeit
ermöglicht.

Zur Modellierung des Koronaspektrums werden Informationen wie Temperatur, Dichte oder
Druck über das koronale Plasma, das diese Linien aussendet, benötigt. Diese Parameter lassen
sich allerdings nicht direkt beobachten und werden durch das differentielle Emissionsmaß DEM
zusammengefaßt. Es verknüpft den gemessenen Fluß in einer Linie direkt mit der Elementhäufig-
keit und den atomaren Daten, die die Linie charakterisieren.

Es gilt daher, zunächst das differentielle Emissionsmaß unabhängig von den Häufigkeiten der
Elemente zu bestimmen. In dieser Arbeit wurden zwei entsprechende Methoden angewandt,
bei denen das differentielle Emissionsmaß mithilfe von häufigkeitsunabhängigen Verhältnissen
von Linien jeweils desselben Elementes bzw. ausschließlich mit Eisenlinien über Polynome ver-
schiedener Ordnungen angenähert wird. Im Anschluß wurden mit diesem differentiellen Emis-
sionsmaß die gemessenen Linienflüsse der zugrundeliegenden Linien synthetisiert und somit die
entsprechenden koronalen Elementhäufigkeiten bestimmt.

Diese Methode wurde auf mehrere Datensätze verschiedener Sterne angewandt. Vergleiche des
jeweils ermittelten differentiellen Emissionsmaßes und der daraus resultierenden Elementhäufig-
keiten mit entsprechenden Daten aus der Literatur zeigen eine gute Übereinstimmung.
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Abstract

Hydrogen is not only the simplest and lightest but also by far the most frequent element in the
universe. In the baryonic matter we are familiar with it amounts to a mass fraction of about
73%, followed by helium with approximately 25%. The remaining elements, summarized by
astrophysicists as ”metals”, have to share the residual 2%. From these, the most abundant are
carbon, nitrogen, oxygen and iron.

These trace elements are not only of vital importance for life on earth, they also have a serious
influence of the physical properties of stars, especially on radiative processes running inside. The
metals become later visible in observed spectra, where they leave their marks as absorption or
emission lines. It is thus possible to reconstruct the precise abundances of the indivual elements
from these lines.

Such an analysis of the elemental abundances is nontrivial though, a detailed knowledge
of the physical processes and underlying conditions determining the formation of the spectral
lines is required. Hence it is not surprising that in recent years even for the Sun, which can
be considered as well-known and comparatively easy to study, on occasion revised numbers
– sometimes noticeably deviating from the previous ones – for the abundances of individual
elements have been released. A corresponding analysis of stars other than the Sun is much more
difficult, there is however clear evidence that their abundances only seldom correspond to the
solar values.

In the corona, the outermost atmospheric layer of a solar-like star, temperatures of several
million Kelvin and comparatively low densities are reached. The coronal spectrum is primarily
observable in X-rays, it is dominated by emission lines of the heavier elements. High-resolution
X-ray spectroscopy with the Chandra and XMM-Newton satellites presently enables the analysis
of stellar coronae with unrivaled accuracy.

Parameters like temperature, density or pressure of the coronal plasma emitting these emission
lines determine the modeling of a coronal spectrum, they are however not directly observable.
Instead, they were combined to the soo-called differential emission measure DEM , that connects
measured line fluxes directly with the elemental abundance and the atomic data characterizing
the line emissivity.

The differential emission measure has thus to be determined independently of the abundances.
In this study I applied two methods that approximate the DEM with polynomials of different
orders. One approach makes use of abundance-independent line ratios of lines originating from
the same element, the other makes use solely of iron lines. Subsequently, the measured line
fluxes are reproduced with the underlying DEM and thus the coronal elemental abundances
are determined.

This method was applied to several datasets of different stars. A comparison of the differential
emission measure and the resulting abundances with corresponding data from the literature
shows a good agreement.
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1 Introduction

1.1 The corona of the Sun

The Sun has been observed from time immemorial. Many ancient cultures were aware of its
importance for life on earth; the life of the people was centered on the daily recurrence of the
Sun and the cycle of seasons. The Sun therefore embodied a divine power and was regarded
with awe. Even in Christian Europe up to the end of the middle ages it was a symbol for the
perfection of creation and had to be unblemished and unchanging. Thus early observations of
sunspots being visible with the naked eye at sunrise or sunset perished or were forgotten.

The invention of the telescope early in the 17th century led, among other things, to definite
observations of sunspots. Many scientists of that time, e.g. Galileo Galilei, saw the dark spots in
front of the solar disc, but there was disagreement about the nature of this phenomenon. Was it
perhaps an illusion, feigned by the telescope? While Galilei was already convinced that the spots
were structures on the solar surface, the Jesuit Christoph Scheiner at first thought to see shadows
of a planet by then unknown to pass by the Sun. Systematic observations disenchanted the divine
and unblemished face of the Sun: The coming and going of the sunspots, their evolution in size
and shape, and the changing frequency of their occurrence resulted in momentous conclusions.
The Sun had to be rotating for instance to explain these observations. The German pharmacist
Heinrich Schwabe deduced in 1843 the 11-year solar cycle from long-term monitoring (Schwabe,
1844). Between Schwabe’s observations and the ones of Galilei occurred a period, approximately
between 1645 and 1715, where only very few sunspots could be observed. This so-called Maunder
Minimum is today associated with a global cold spell (”little ice age”). The changing activity
of the Sun on all timescales preoccupies scientists to this day. The term ”activity” comprises in
this context not only the occurrence of sunspots, but summarizes anything indicating that the
Sun is ”alive”, and not just quiescently shining for eternity.

Other phenomena in connection with the Sun puzzled the astronomers for a long time as
well. They wondered for instance whether the corona and prominences visible during total
solar eclipses had actually to be assigned to the Sun itself; or whether they were phenomena
of the earth’s atmosphere, artifacts, or even an atmosphere of the moon that scatters the light
of the occulted Sun towards the earth. The new technique of photography helped to exclude
the latter possibilities and to assign corona and prominences to the Sun. Admittedly, both
of them do not belong anymore to the visible ”surface” of the Sun, the so-called photosphere
(from Greek phōs, phōtós: ”light”). Almost the whole visible solar irradiation comes from the
photosphere. This layer of the Sun has a thickness of only a few hundreds of kilometers, but all
lower-lying layers are not accessible to direct observations because the radiation can not leave
them directly. The sunspots are phenomena of the photosphere, but prominences belong to a
layer above, the chromosphere (from Greek chrōma: ”color”). The chromosphere is – without
any additional means – only visible at total solar eclipses, where it shows up as small, reddish
flame-like structures (”spicules”) covering the whole solar limb. The same applies for the weak,
white-shimmering corona, that lies again above the chromosphere.

The breakthrough in the identification of the nature of chromosphere and corona came with the
application of spectroscopic methods. Moreover it is safe to say that spectroscopy changed the
previously phenomenological and observational astronomy to astrophysics. William Wollaston
discovered in 1802 that few dark lines divide the colors in the solar photospheric spectrum.
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12 years later Josef von Fraunhofer cataloged several hundreds of these absorption lines. The
correct identification of Fraunhofer’s lines and their assignment to certain elements was enabled
by the foundation of spectral analysis by Gustav Kirchhoff and Robert Bunsen in 1859.

First spectroscopic measurements during a solar eclipse were performed in 1868. Norman
Lockyer and Pierre Janssen observed for the first time the emission line spectrum of prominences
and discovered a bright yellow line whose wavelength did not exactly fit the sodium D line; and it
could not be assigned to any other element known at that time. Lockyer proposed the discovery
of a new element and called it ”helium” (after the Greek sun deity Helios), since it apparently
only existed on the Sun. Not until 1895 helium was found on earth, in laboratory experiments
with pitchblende, a uranium ore. In the following years Janssen was able to measure Fraunhofer’s
absorption lines also in the faint continuous spectrum of the corona, an explicit verification of
the solar nature of the corona. In 1870 Charles Young noticed that most of the emission lines
observed in the spectra of prominences and in the so-called flash spectrum of the chromosphere
appear in the photospheric spectrum as dark absorption lines. In the year before though, he had
found a green emission line in the spectrum of the corona this finding did not apply to. This
green coronal line, among others discovered later, puzzled the spectroscopists the same way as
the helium line. They tried to solve the problem also the same way: The new-postulated element
got the name ”coronium”; and after the discovery of helium on earth the scientists anticipated
also the detection of the ominous coronium very soon.

It was not until 1939 that the search for the origin of the coronal emission lines ought to
be crowned with success. The elements responsible for them proved indeed to be well known:
mainly iron, but also calcium and nickel. The reason why the spectroscopists had not been able
to assign the lines to these elements earlier was that they belonged to forbidden transitions in
highly ionized states of these elements that were not observable in the laboratory. Inspired by
the detailed and elaborated measurements of highly ionized iron by the spectroscopist Bengt
Edlén, Walter Grotian derived a very improbable but existent transition in ninefold ionized
iron (Fe x) that could explain the red coronal line at a wavelength of 6374 Å (Grotian, 1939).
Correspondingly he was able to identify another line, and Edlén himself determined with the
same method the appropriate element for many other coronal lines. In this manner the green
coronal line at 5303 Å of coronium was eventually assigned to Fexiv, thus thirteen times ionized
iron (Edlén, 1943).

A big amount of energy – thus a very high temperature – is needed to wrest 13 of the 26
electrons of an iron atom: More than one million degrees is the coronal gas required to have.
Since the temperature of the photosphere does not exceed 5800 K, the temperature of the outer
layers of the Sun must steeply increase again outward. Such a rise of the temperature was
completely unexplainable at that time, and even today the mechanisms that heat chromosphere
and corona are not understood in detail and are a matter of research and debate.

Hints for extremely high temperatures in the corona have indeed been noted before. Only
very high particle velocities – caused by high temperatures – can explain why the coronal gas
– contrary to gravitation – is located that far away from the surface of the Sun: On photos of
total eclipses the corona appears to be extended to several solar radii. Even with the naked eye
the corona seems to have an elongation of about half of the solar radius.

The spectral energy distribution of the coronal light following Planck’s law suggested signif-
icantly lower temperatures. This is due to the fact that the coronal light consists for the most
part of scattered light coming originally from the photosphere. The visible light observed from
the solar corona is composed of several components: There is the so-called F-corona (named af-
ter the Fraunhofer lines) whose spectrum shows the typical absorption lines of the photosphere.
The F-corona is effectively photospheric light, scattered by dust particles in the ecliptic plane.
These dust particles also add their own thermal radiation to the coronal light, this so-called
T-corona shows up mainly in the infrared. The K-corona (from German kontinuierlich) exhibits
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Figure 1.1: Slitless spectrum of the solar chromosphere (top) and corona (bottom) recorded
during the eclipse of 11 August 1999. The coronal Fe xiv line at 5303 Å can be distinguished
from the lower-temperature hydrogen, helium and calcium lines by the absence of images of the
prominences that have a considerably lower temperature than the corona. Pictures taken from
http://www.eurastro.de/webpages/MRSPECT.HTM

a continuous spectrum without any lines. Again this is scattered light, this time by the particles
of the coronal plasma, mostly electrons. Since they move very fast because of the high temper-
atures in the corona, the absorption lines of the scattered light blur by the effect of Doppler
broadening. The only component whose light actually comes directly from the corona itself is
the E-corona that shows those emission lines of highly ionized atoms mentioned before.

As a result of the high temperatures the corona radiates essentially in the extreme ultraviolet
and in soft X-rays, but the marginal transmission of the earth’s atmosphere in this spectral region
rules out observations from ground level. Although ground-based observations of the corona in
visible light are possible – for instance with narrowband filters centered on the wavelength of
one of the coronal lines or with coronagraphs that generate artificial eclipses by covering the
solar disk – substantial progress in the investigation of coronal physics started therefore with
space flight. Already at test flights with V2 rockets equipped with X-ray detectors in 1949, the
Sun – more precisely the corona of the Sun – was detected as an X-ray source. Anyway, it was
a long road from the simple verification to detailed analysis with imaging X-ray telescopes and
corresponding spectroscopic devices. It was not until the early seventies that the first imaging
instruments flew with balloon experiments and sounding rockets, after a decade of successfull
monitoring of the solar radiation from UV to Gamma rays by satellites with plain detectors.

X-ray and UV images display a completely different view of the Sun: Chromosphere and
corona prove to be much more structured than the photosphere. The dark sunspots seen in
visible light become X-ray-bright ”active regions”, consisting of complex structures of arches
(”loops”) that can arise several thousands of kilometers above the surface. (See for instance
the picture on the title page.) The loop-like structures of the corona were found to follow the
uttermost complex solar magnetic field (see Section 2.1). Furthermore, there are the so-called
coronal holes – widely extended regions that appear X-ray dark.

In May 1973 the space station Skylab was inserted into orbit, equipped with several ex-
periments for analyzing chromosphere and corona, amongst others a coronagraph, an X-ray
telescope and spectrographs for the near and far UV and the X-ray spectral range. These in-
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Figure 1.2: A sequence of ten X-ray images of the solar corona from 1991 to 1999, obtained with
the Soft X-ray Telescope (SXT) on board the Yohkoh satellite. The images, covering almost an
entire solar activity cycle, show how the corona changes over the years. From the solar maximum
in 1990 to solar minimum in 1995 the brightness in X-rays changes by a factor of 100. Image
taken from http://solar.physics.montana.edu/sxt/

struments collected data during the nine months of the mission.These data allowed monitoring
of the time-dependent evolution of coronal holes and active regions. Outbursts in brightness,
so-called flares, that occur quite often in the high-energy spectral region, could be traced. The
analysis of the huge amount of data from Skylab resulted in a plethora of new insights not only
about the corona itself and the solar magnetic field but also about their influence on the earth:
Just the coronal holes turned out to be the sources of a steady stream of solar particles, the
so-called solar wind, which react with the earth’s magnetic field. This leads not only to aurorae,
but during periods of increased solar activity interferences in the communication network, radio
transmissions or the power supply system may also occur.

In the following a series of satellites was designed to explore the Sun and its outer layers. In
contrast to the former mainly spectroscopic missions such as SMM and Hinotori, the Yohkoh

(”sunbeam” in English) satellite launched in August 1990 provided again impressive images of
the solar corona.Yohkoh observed the solar corona for more than ten years, during a complete
solar cycle, and was therefore able to track changes in the coronal structure over long timescales.
Actually the eleven-year cycle appears even more pronounced in X-rays, the contrast between
the bright active regions and loop-like structures at solar maximum and the large-area coronal
holes covering nearly the complete solar surface at minimum is eye-catching.

In December 1995 the Solar and Heliospheric Observatory (SOHO) was launched, equipped
with a variety of instruments, amongst others a coronagraph, an imaging XUV telescope and
several spectrometers as well as experiments to analyze the solar wind and for helioseismology,
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Figure 1.3: Three images of the solar corona in different passbands obtained on 30 August
2005 at intervals of a few minutes with the Extreme ultraviolet Imaging Telescope EIT on
board SOHO. The sequence corresponds to a temperature series in ascending order from
left to right: The left image, taken at a wavelength of 171 Å corresponding to tempera-
tures of ≈1 MK, shows best the fine structure of loops and other features. In the central
image, at 195 Å and 2 MK, coronal holes emerge. The active regions appear brightest in
the right image (284 Å, 2.5 MK) indicating even higher temperatures. Images taken from
http://sohowww.nascom.nasa.gov/data/realtime-images.html

a technique which gains information about the solar interior by the analysis of surface waves.
The Transition Region And Coronal Explorer (TRACE) observes the Sun with a small XUV
telescope similar to the SOHO instrument EIT in multiple narrowband filters centered around
strong spectral lines like Fe ix at 171 Å, Fexii at 195 Å, Fexv at 284 Å, the hydrogen Lyman
α line at 1216 Å or C iv at 1550 Å, or in unfiltered white light in high temporal and spatial
resolution. Emission at these wavelengths is associated with certain plasma temperatures in
the solar corona – the very temperatures where the mentioned ions form and the associated
atomic transitions occur. In the named sequence they correspond to approximately 1 000 000 K,
2 000 000 K, 2 500 000 K, 30 000 K and 100 000 K. The images of TRACE and SOHO show thus
not only the topology but also the temperature structure of chromosphere and corona.

A detailed account of the history of solar observations in general is given in ’The sun. A

biography.’ by Whitehouse, and solar coronal observations are treated in more detail in ’The

Solar Corona’ by Golub and Pasachoff.

1.2 Coronae of other stars

The Sun is a rather ordinary star. Rated as G2 V in the common spectral classification scheme
of the Hertzsprung-Russel diagram, it turns out to be a middle-aged low-mass star – meanwhile
one of many with planets. So what about other stars? Do they also have coronae which could
be detected in X-rays?

In 1974 the binary star Capella was identified as the first stellar coronal X-ray source – with
an X-ray luminosity orders of magnitude higher than the Sun (Catura et al., 1975). Indeed
the Sun turned out to be a rather moderate X-ray source in comparison to most of the other
stars detected later. Early surveys with the Einstein satellite from 1978-81 found stars of almost
every spectral type and luminosity class to emit X-rays (Vaiana et al., 1981). The optically
faint M-dwarfs turned out to be very active stars, with frequently occurring flares and strong
X-ray variability. Moderate to high X-ray emission and therefore stellar coronae seemed to be a
common phenomenon among solar-like stars. Main-sequence stars in general emerged to be good
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candidates for X-ray emission, with the exception of late A- and early B-type stars, suggesting
the absence of coronae for these classes. Furthermore the observed X-ray emission of O- and
early B-type stars is assumed to be caused by shocks in stellar winds and not to be of coronal
origin. The strongest X-ray emitters were found among the peculiar RS CVn systems – Capella
being one of them – very active evolved binary systems, typically consisting of G- or K-type
components that are detached but close by. Only a few normal giants are found to show X-ray
emission.

Systematic studies of complete samples of nearby stars performed with ROSAT in the nineties
showed that stellar coronal X-ray emission is ubiquitous among late-type stars (Schmitt (1997),
Schmitt and Liefke (2004)), with the minimum X-ray surface flux detected corresponding to the
flux level observed in solar coronal holes. The range covered in surface flux however extends to
three orders of magnitude beyond. The Sun thus represents just one data point at the lower end
of a broad distribution. So how do the coronae of other stars compare to the Sun – and how do
they differ and why?

Unfortunately stars other than the Sun cannot directly be observed with spatial resolution –
neither in the optical nor in X-rays. Images like Figures 1.2 and 1.3 or even the cover picture
are thus unavailable for stars, so alternative ways have to be adopted to gain information about
stellar coronae – to ascertain their physical parameters like extent, temperature, density or
elemental abundances. Spectroscopic methods – that proved to be very useful in many fields of
astronomy – suggest themself. For the Sun high-resolution UV and X-ray spectra that resolved
individual emission lines have been available for decades, the instruments to obtain them have
been developed even before high-resolution X-ray imaging techniques existed.

Pottasch (1963) introduced the concept of emission measure as a link between the flux ob-
served for these lines and a conceptual model of the emitting plasma. The expression ”emission
measure”, in short EM , characterizes – in simple terms – the amount of material available to
produce the measured flux, and is mathematically the product of the square of the electron
density integrated over the volume of emission. Apart from elemental abundances of the plasma
the other parameters entering the model calculations – excitation and transition probabilities of
the atomic transition underlying the particular emission lines – arise from atomic physics.

Gabriel and Jordan (1969) devised a method to infer the density of the solar coronal plasma –
the basis of the emission measure – from line ratios of the forbidden lines of helium-like ions. The
measurement of line fluxes of single emission lines in the solar coronal spectrum thus enabled
indirect determinations of parameters like density, temperature or pressure.

The spectrometers of Einstein, the CCD detectors of ASCA, and the proportional counters
Einstein, ASCA and ROSAT had on board allowed spectroscopy of stellar coronal sources only
with low to medium resolution, without the ability to resolve single emission lines. Nevertheless
already the thus obtained spectra gave first hints to the properties of the coronal plasma from
the investigated stars: Model spectra composed of a vast number of lines can be convolved with
the instrumental response and spectral resolution to fit the observed spectra.

Spectral models containing the atomic physics of huge databases of lines are based on an
isothermal temperature and a set of elemental abundances. An isothermal temperature is of
course a very rough approximation of the actual temperature structure of stellar coronae. A
temperature distribution can be approximated by a model consisting of multiple temperature
components. The different emission measure values of the single components as represented by
respective normalization factors thus give an idea of the temperature structure of the coronal
plasma, i.e. the amount of plasma at a certain temperature.

Such ”global fits” to the low-resolution spectra of stellar coronal X-ray sources usually con-
tained two or three temperature components; and often temperatures essentially higher than
those found in the solar corona or strongly deviating abundances were found to match the data
well. Nevertheless, multi-component isothermal models are still an oversimplification of the ac-
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tual temperature structure of the coronal plasma. The large uncertainties (arising from both
the atomic physics and the quality of the data) and ambiguities (spectral inversion problems are
not unique) of these models must be considered as well, so that only rough ideas of the ”real”
coronae could be devised.

Scaling laws applying to the coronal structures on the Sun allowed the assessment of filling
factors and loop lengths also for stars from the values of pressure and temperature derived from
the spectral models, assuming the stellar coronae being of similar structure than that of the Sun
(Rosner et al., 1978).

The idea of emission measure has been enhanced a lot in the following. Emission measure
distributions binned in small temperature intervals provide a more refined temperature struc-
ture. This culminates in the application of a differential form of the emission measure in terms
of temperature, the ”differential emission measure” or DEM . The reconstruction the differen-
tial emission measure is an inversion problem even more complex than simple emission measure
reconstruction, and is subject to similar mathematical constraints. Reasonable DEM recon-
struction requires on the one hand measurements of individual line fluxes and therefore high-
resolution spectroscopy and on the other hand detailed and reliable knowledge of the underlying
atomic data.

The abundances of the elements that generate the lines serving as input are important param-
eters entering the calculations. The solar coronal abundances were very early found to deviate
strongly from the corresponding photospheric ones, and to scatter over a wide range depend-
ing on whether active or quiescent regions of the corona were observed. The general result is
that elements with a low first ionization potential (i.e. the energy needed to ionize the neutral
atom once) or in short FIP, are overabundant in comparison with those with a high FIP. The
separation between low and high FIP is around 10 eV and thus, for example, Fe, Mg and Si are
considered low-FIP elements and Ne and Ar are considered high-FIP elements. This abundance
anomaly pattern is generally referred to as the ”FIP Effect”.

Abundances derived from low-resolution spectra of stellar coronae were often inconsistent
with both the solar coronal and photospheric abundances. Of course there is no need that they
match, since stellar photospheric abundances in many cases deviate also from the solar ones.
Moreover stellar photospheric abundances as a reference are hard to measure as well, mostly
even harder than those of the corona.

With the current X-ray observatories XMM-Newton and Chandra the high-resolution spectra
required for DEM reconstructions with the methods originally developed for the analysis of the
Sun described above and more reliable abundance determinations are now available for stars as
well, where investigations involving spatially resolved imaging are still a distant prospect. The
topic of stellar coronal research with recent results from XMM and Chandra were reviewed by
Güdel (2004) and Favata and Micela (2003).

In the course of this study I developed and refined two different line-based methods to derive
the differential emission measure distribution independently from the abundances, and to de-
duce these abundances afterwards from the calculated DEM . I applied these methods to the
four stars AB Dor, Algol, AU Mic and UX Ari that represent different types of coronal X-ray
sources. The basic physics of stellar coronal plasmas and a derivation of the equations needed
for emission measure analysis are sketched in Chapter 2. Chapter 3 briefly describes the two
X-ray observatories Chandra and XMM-Newton with which the spectra were obtained this work
is based on. My approach on reconstructing the differential emission measure and abundances is
explained in detail in Chapter 4, while Chapter 5 presents general results. I also note constraints
and limitations as well as feasible future improvements. Chapter 6 gives the detailed results for
the individual stars. The appendix contains the source code of the method as implemented in
IDL.

13



2 The physics of stellar coronae

What do we learn from the analysis of the coronae of other stars? Studies like the ”Sun in time”
project (e.g., Güdel et al. (1997), Ribas et al. (2005), Telleschi et al. (2005)) examined solar-like
stars of different ages and arrived at the conclusion that the Sun was much more active in its
youth – which must have had serious influence on the conditions in our planetary system at that
time. Investigations of stellar coronae therefore provide the opportunity to learn more about
the solar corona – and vice versa.

Coronal physics is the subject of intensive current research. There are still several basic
aspects of both solar and stellar coronae that are not fully understood. This applies for in-
stance to the details of the heating mechanisms that generate the high temperatures measured
in coronal plasmas (Section 2.1). Knowledge of the prevailing conditions for the heating process
expressed in physical parameters like pressure, temperature or density is required to develop a
self-consistent model of the corona. Emission measure analysis is a tool of fundamental impor-
tance to deduce this information from observational data. High-resolution spectroscopy in turn
provides the best possible spectra serving as input for the reconstruction of the emission measure
(Section 2.2). Another issue is the anomalous coronal abundance pattern of the Sun mentioned
above, and – in this context – the abundance patterns of other stars again deviating therefrom
(Section 2.3). Again, high-resolution spectroscopy allows detailed studies of abundances mea-
sured for individual stars and therefore the comparison of stars of different luminosity, age, and
so on; or abundance variations seen during flares.

2.1 Magnetic fields and coronal heating

In the cores of solar-like stars temperatures up to several millions of Kelvin are reached. Ther-
monuclear reactions convert hydrogen to helium and produce the energy that keeps the star in a
state of equilibrium. The high-energy photons released in these fusion reactions travel through
the layers sourrounding the core and eventually reach the surface, where they escape softened
to mainly visible light. In the radiative zone surrounding the core the material is hot and dense
enough that thermal radiation is sufficient to transfer the energy produced in the core outward.
In the successive convection zone this mechanism is not efficient, instead the temperature gradi-
ent outwards is strong enough to drive convective motions. Packages of hot material (convective
cells) ascend to the surface where they cool off and subsequently plunge back downward to the
base of the convection zone where they heat up again; and the circuit starts over. At the pho-
tosphere the temperatures have cooled down to several thousands of Kelvin, according to the
spectral type of the star.

A central question is therefore what mechanisms heat the corona back to temperatures of
several million degrees and enables the emission of X-rays. Compared to the bolometric lumi-
nosity over all wavelengths – released mainly from the photosphere – the coronal X-ray emission
comprises a thousandth part at maximum. Only a small portion of the overall produced energy
is therefore needed to heat the corona.

A star is an accumulation of plasma – ionized gas consisting of charged particles – that rotates
not as a solid body but differentially, i.e. at the surface the higher latitudes rotate slower than
the equator as it can be observed on the Sun. In addition to this latitudinal rotational pattern,
helioseismology has revealed that the rotation period of the Sun also changes radially, again with
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Figure 2.1: The α-ω-dynamo cycle. (a) The initial poloidal field. (b) and (c) Differential rotation
wraps the magnetic field around the rotational axis, the ω-effect. (d) A toroidal field emerges. (e)
Convective motions lift the field lines up, the Coriolis force twists them so that they experience
a magnetic buoyancy, the α-effect. (f) The thus created loops coalesce to the original poloidal
field. Figure taken from Love (1999).

different latitudinal patterns. Now magnetic fields come into play since moving charged particles
display a current that generates magnetic fields. Changing magnetic fields in turn induce electric
fields that govern the motion of charge. The interaction of convective motion and the differential
rotation with magnetic fields therefore enables dynamo processes that amplify existing magnetic
fields. The fundamental ideas of coronal heating are based on the α-ω-dynamo model, but a
complete and self-consistent dynamo theory is still to be developed.

Magnetic fields are – in the approximation of ideal magnetohydrodynamics – embedded
(”frozen”) in the material, they participate in the motions of the plasma. An initially poloidal
field (i.e. oriented parallel to the rotation axis) is stretched and eventually wrapped up by differ-
ential rotation because the rotation period further inside is shorter than further outside. Thus
a toroidal field (i.e. of helical, annular shape) with increased field strength is generated, this is
called the ”ω-effect”. The convective motions take the field lines along on their way upwards,
and eventually the Coriolis force makes the plasma perform a spiral motion that twists the field
lines. This results in a poloidal field with reversed polarity, and is called the ”α-effect”. Together
both effects constitute the α-ω-dynamo. See Figure 2.1 for an illustration.

The twisted magnetic fields experience a buoyancy force that lets them frequently ”break”
trough the surface. The coronal plasma follows the irregularly shaped structure of these magnetic
field lines, forming loops and arches as those displayed on the titlepage. At the location of
footpoints of these loops the sunspots can be found, marking the positions where the field lines
emerge and re-enter the photosphere. Thus arises the connection of visible phenomena on the
Sun like sunspots or prominences (cool material caught in flux tubes above the photosphere)
with the solar magnetic field.

The scenario of the α-ω-dynamo with its alternating polarity offers an approach to explain the
solar cycle which is actually a 22-year cycle of twice the 11-year sunspot cycle but with exchanged
polarity of the solar magnetic fields. Also the solar X-ray emission reflects this global change (see
Figure 1.2): As the sunspot cycle progresses from maximum to minimum, the Sun’s magnetic
field changes from a complex structure (the twisted toroidal field) to a simpler configuration
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(essentially the poloidal field) with fewer field lines penetrating through the surface that form
the X-ray bright active regions.

These active regions are the places of origin of flares. These eruptive processes, leading to
high levels of radiation over broad wavelength ranges appear in X-rays usually as a steep rise
in luminosity accompanied by spectral hardening. An exponential decay phase follows. The
standard model devised for solar flare events (the ”two-ribbon flare”) starts with motions of the
footpoints of magnetic fields emerging from the photosphere. Neighboring field lines of opposite
directions start to shear and eventually re-arrange themselves to a simplified configuration in
a process called ”magnetic reconnection”. The abrupt reconnection process transforms mag-
netic energy into heat and leads to an eruption where the material is heated to extremely high
temperatures greater than 107 K. Thus flares contribute to the release of magnetic energy. A
similar effect on small scales is discussed to contribute significantly to the heating of the corona
(nano-flare heating) and therefore to counteract the ever-amplifying dynamo processes.

Since the α-ω-dynamo is based on differential rotation, a connection between magnetic activity
and the stellar rotation rate can be expected. Instead, early surveys revealed a quadratic relation-
ship between the X-ray luminosity LX and the projected rotational velocity v sin i (Pallavicini
et al., 1981). However, for very fast rotators the ratio of LX to the overall luminosity Lbol

converges to a constant value of 10−3 independent of rotation. This effect is called ”saturation”.
The dependence between stellar activity and rotational velocity leads also to an indirect depen-
dence of the former with the age of the star, because young stars rotate faster. When a star
ages the rotation rate slowly diminishes due to angular momentum loss by magnetized winds.
The reduction of the rotation rate in turn weakens the dynamo processes and therefore magnetic
activity decreases.

The concept of the α-ω-dynamo is though not applicable to all stars: Early-type stars (from
spectral type A5 on) should – following model calculations of the stellar interior – have a con-
vective core but no outer convection zone which is essential for the amplification mechanism.
These stars should therefore have no possibility to heat up a corona, which is consistent with
the observation that essentially no late B- and early A-type stars show X-ray emission. On the
other side of the stellar mass scale M-stars later than M3 are expected to be fully convective.
Since the toroidal fields generated by the ω-effect arise preferably in the so-called convective
overshoot region where radiative and convection zone merge, the α-ω-dynamo should collapse
for these stars. However, no fading in X-rays or in activity in general is observed for them, late
M-dwarfs are usually even more active and exhibit very distinct flaring. Suggestions to solve
this problem must consider the many uncertainties in the models of both the stellar structure
and the α-ω-dynamo. A different dynamo mechanism involving turbulent motions has been
proposed for these stars as well. After all, at the very bottom of the main sequence, for very
low-mass stars and brown dwarfs of spectral types L and T, X-ray emission and other activity
indicators seem to decline.

2.2 X-ray emission from coronal plasmas

Photosphere, chromosphere and corona constitute the stellar atmosphere, i.e. the layers of a star
emitting electromagnetic radiation. Compared to photosphere and chromosphere, the corona
is much hotter and much more tenuous. The underlying conditions have a basic influence on
the radiative properties of a plasma and thus the calculation of radiative processes in a corona
differs significantly from that of the photosphere and the chromosphere; it is in a sense even
easier.

Hot plasmas usually radiate energy very efficiently by emission in isolated spectral lines. In
case of a coronal plasma the temperature is so high that the most abundant elements in cosmic
matter, hydrogen and helium, are completely ionized. Thus these elements do not contribute to
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line emission (i.e. an atomic transition involving an electron bound all the time) and this task is
fulfilled by trace elements that are not yet fully ionized but have one or more of their electrons
left, like carbon, nitrogen, oxygen, or iron. When extremely high temperatures (> 107 K) are
reached more and more elements are completely ionized and continuum processes involving free
electrons contribute significantly to the emission of the plasma.

The radiation of the coronal plasma can schematically be computed as follows: Assume the
plasma to consist of a certain mixture of elements at a certain temperature T . Then calculate
the number density of the atoms of certain ionization stages and the population of certain energy
levels for these ions. The atomic transitions from excited levels to lower-lying levels and thus the
emitted photons (together with photons originating from continuum processes) then constitute
the coronal spectrum.

The details of this calculation are more complicated though, and usually require numerical
approaches. The interplay of ionization and recombination processes at a certain temperature
determines the ion fraction of a certain ion and has therefore also an influence on the population
of a certain level that is additionally determined by excitation and de-excitation processes. The
strengths of certain transitions are therefore not independent.

Usually an equilibrium situation is assumed to describe all these countervailing processes
within a consistent framework. This assumption is questionable at least for rapidly changing
situations with timescales too short for the involved processes to adjust, for example during
flares. A first equilibrium condition affects the ionization stage. A certain ion can be created by
ionization from a lower ionization stage and eliminated in the same way by ionization to a higher
stage. In return the ion can be re-created by recombination from a higher ionization stage but
also recombine to a lower stage. In the low-density, high-temperature coronal plasma ionization
processes are usually induced by collisions, mostly with free electrons. The thus required energy
increases with ionization stage and atomic number, so the degree of ionization is a function
of temperature since the ionization energy must apply to the thermal velocity of the colliding
particles. There are essentially two balancing recombination processes. Radiative recombination
describes the capturing of a beforehand free electron (usually to an excited level) in combination
with the release of a photon (which contributes to the continuum emission) corresponding to
the redundant energy. Dielectronic recombination involves an inner electron of the ion that is
excited parallel to the recombination process. As a result the ion ends up in a state with two
electrons in excited levels.

The population of the individual energy levels of an ion is subject to another equilibrium con-
dition. Again, in coronal plasmas the excitation process is most frequently caused by collisions,
here the differentiation of the particle colliding with the ion (electrons, protons or even heavier
nuclei are worth considering) is somewhat more important. As mentioned above, recombination
processes also contribute to the population of excited levels. Radiative processes, i.e. radiative
ionization and excitation, are usually neglected for both equilibrium conditions, the plasma is
considered ”optically thin”. In turn there are various mechanisms de-populating an excited
level. Spontaneous emission of a photon together with the transition to a lower level will be the
most probable process (stimulated emission is also possible, but very improbable and is thus
usually neglected). Collisional processes may lead to a de-excitation to a lower level or to further
excitation to an even higher level.

2.2.1 Line emission

The emission of a photon in a certain spectral line corresponding to the transition from an upper
level j to a lower level i of the Z times ionized element X is described by the reaction

XZ+
j → XZ+

i + hνji bound-bound emission with the photon energy hνji
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The emissivity ε, i.e. the total power emitted in this transition per unit volume is

εji = hνji Aji nj(X
Z+) (2.1)

where the Einstein coefficient for spontaneous emission Aji corresponds to the inverse radiative
decay time and nj(X

Z+) is the number density of atoms of element X in ionization stage Z+
that are in the excited state j. The units of ε are erg cm−3 s−1.

The unknown number density nj(X
Z+) can be reduced to the electron density ne and a set

of dimensionless multiplicative factors that can be calculated instead:

nj(X
Z+) =

nj(X
Z+)

n(XZ+)

n(XZ+)

n(X)

n(X)

n(H)

n(H)

ne
ne (2.2)

nj(X
Z+)

n(XZ+)

is the fraction of the specific ion with the outer electron located in level j, or in
short the level population. It is determined by solving the statistical equilibrium
equations, taking into account all relevant excitation and de-excitation processes
mentioned above for ideally all levels but in practice often only for the most
important, lower-lying levels.

n(XZ+)

n(X)

is the fraction of atoms of element X located in ionization stage Z+, or in short
the ion fraction of the specific ion. Similar to the level population the ionization
balance is determined by solving the coresponding equilibrium equations.

n(X)

n(H)

is the abundance of element X relative to hydrogen.

n(H)

ne

is the hydrogen abundance relative to the electron density, also called the proton-
to-electron ratio. Since most electrons originate from hydrogen and helium that
are completely ionized it is usually set to a constant value of ≈ 0.83. Due to
the remaining electrons from the other elements it is actually a weak function of
temperature and abundances.

The energy flux measured with any arbitrary detector is proportional to εji integrated over
the emitting volume

Fji =
1

4πd2

∫

εji dV (2.3)

with the distance d. The units of Fji are erg cm−2 s−1. With Equation 2.2 this becomes

Fji =
hνij

4πd2

∫

Aji
nj(X

Z+)

n(XZ+)

n(X+Z)

n(X)

n(X)

n(H)

n(H)

ne
ne dV

which can be summarized to

Fji =
hνij

4πd2

∫

G(T )DEM(T ) dT (2.4)

with the so-called contribution function G(T )

G(T ) = Aji
nj(X

Z+)

n(XZ+)

n(XZ+)

n(X)

n(X)

n(H)

n(H)

ne

1

ne
(2.5)

and the differential emission measure DEM(T )

DEM(T ) = n2
e

dV

dT
(2.6)
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Figure 2.2: Emission measure loci curves for HR 1099 calculated with CHIANTI 5.0 applying
the ionization balance of Mazzotta et al. (1998). H-like and He-like lines of various elements
(left) have broad contribution functions while iron lines (right) from most ionization stages have
a narrower shape. Both graphs also show a corresponding curve arising from continuum between
2-3 Å (see below). Note the logarithmic scale of the y-axis.

The contribution function G(T ) contains the atomic physics parameters of the particular
transition and has the units erg cm3 s−1. G(T ) describes in simple terms the efficiency of the
formation of the particular line as a function of temperature and is usually sharply peaked. Its
overall shape (in terms of slopes and width) depends essentially on the ionization equilibrium
(the formation temperature of the corresponding ion determines the temperature range where
the line can occur) but also on the level population. Figure 2.2 shows emission measure loci
curves, i.e. inverse contribution functions multiplied by the measured line flux from two different
sets of lines.

The DEM in turn describes the properties of the emitting plasma and is a function unique
for each line. It comes in cm−3 K−1. The exact physical meaning of the differential emission
measure is though not that straightforward. Mathematically one deals with a temperature-
gradient-weighted electron density ne. The applied electron density is a value averaged over
the whole emitting volume, i.e. in case of a star the whole corona towards the observer. In
reality different coronal structures (for instance active regions vs. coronal holes) may of course
have different densities and a different temperature structure (see Figure 1.3). A certain coronal
region may thus contribute to the emission in a certain temperature interval and another one
may not while both may contribute at another temperature; i.e. the ”filling factor” varies. Even
for the Sun, where different regions can be observed separately, the DEM cannot distinguish
between a large low-density volume and a small high-density volume emitting a certain flux.

A reconstruction of the DEM from measured line fluxes and theoretical calculations of the
atomic physics included in G(T ) is based on the inversion of the integral equation 2.4. The
fundamental problems arising from this approach have been analyzed by many authors, e.g.
Craig and Brown (1976), Craig (1977); see Kashyap and Drake (1998) for a recent discussion. To
obtain a reliable DEM covering an appropriate temperature range a set of lines with contribution
functions widely distributed over the temperature interval is required. While few lines will
result in a DEM with poor resolution in temperature, the problem becomes ill-conditioned
when using many lines with contribution functions overlapping in temperature. As a result the
solutions are ambiguous and unstable to perturbations, i.e. there is a strong dependence on the
particular lines serving as input data. Further limitations concern the atomic data entering the
calculations, i.e. the ionization balance, the level population and collision strengths (see below).
Therefore additional constraints like artificial smoothness or positivity must be forced or further
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simplifications often must be made.
The emission measure EM(units cm−3) corresponding to the DEM is

EM =

∫

n2
e dV =

∫

DEM(T ) dT (2.7)

The isothermal approximation thus would simplify Equation 2.4 to

Fji =
hνij

4πd2
〈EM〉

∫

G(T ) dT

with an averaged emission measure 〈EM〉

The coronal approximation

A frequently used simplification is the so-called coronal approximation. This includes a strict
compliance of the equilibrium conditions and the assumption that the plasma is optically thin.
Furthermore level j is assumed to be populated exclusively from the ground level g by collisions
with electrons. Radiative decay to lower levels should be the only process to de-populate level j.
Less frequent processes like collisional de-excitation and population of level j by radiative cas-
cades from higher levels are neglected. In ”normal” coronal plasmas, i.e. at lower temperatures
and densities, the coronal approximation may be applied, but e.g. during flares these conditions
are not fulfilled.

The statistical equilibrium of processes populating and de-populating level j is thus described
by

ne ng(X
+Z)Cgj = nj(X

+Z)
∑

k<j

Ajk (2.8)

where the collision rate coefficient Cgj determines the excitation from the ground state to level
j. The definition of the collision rate coefficients is similar to that of the Einstein coefficients,
but a reasonable calculation of the Cgj requires further assumptions: Usually the velocities of
the electrons are assumed to follow a Maxwellian distribution. It is then possible to approximate
Cgj via a ”collision strength” deduced from cross sections.

The excitation rate depends on the density of the colliding counterparts, i.e. electrons and
ions of the ground state. It is balanced by radiative decays from the upper level to all lower-lying
levels k. Inserting Equation 2.8 into Equation 2.1 gives

εjg = hνjg Ajg nj(X
Z+) = hνjg

Ajg Cgj
∑

k<j

Ajk
ng(X

Z+)ne

together with Equation 2.2 one has

εjg = hνjg
Ajg Cgj
∑

k<j

Ajk

ng(X
Z+)

n(XZ+)

n(XZ+)

n(X)

n(X)

n(H)

n(H)

ne
n2

e

Further simplifications include that the decay back to the ground state dominates the sum of
possible radiative decays, i.e.

∑

k<j Ajk ≈ Ajg, and that almost all ions are located in the ground

state g, i.e. ng(X
Z+)/n(XZ+) ≈ 1. Together with the assessment of the proton-to-electron ratio

to a constant factor (see above), this results in

εjg = hνjg Cgj
n(XZ+)

n(X)

n(X)

n(H)
· 0.83 · n2

e

and thus it can be pointed out how the collisional excitation rate enters the contribution function.
Equation 2.5 becomes

G(T ) = 0.83Cgj
n(XZ+)

n(X)

n(X)

n(H)
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Other definitions

The derivation of the DEM and related quantities given here follows essentially Mason and Fossi
(1994). Various other definitions of the differential emission measure DEM , the corresponding
emission measure EM and the underlying contribution function can be found in the literature.
It is quite common to define the DEM as

DEM(T ) = ne n(H)
dV

dT

i.e. the proton-to-electron ratio is excluded from the contribution function and assigned to the
differential emission measure. Equation 2.5 thus becomes

G(T ) = Aji
nj(X

Z+)

n(XZ+)

n(XZ+)

n(X)

n(X)

n(H)

1

ne

In solar physics where individual structures can be spatially resolved and observed separately
an emission measure over height or a column emission measure instead of the volume emission
measure (Equations 2.6 and 2.7) is applied:

DEM(T ) = n2
e

dh

dT

has in turn the units cm−5 K−1. The corresponding EM has accordingly cm−5. Instead of
fluxes the line intensity (units erg cm−2 s−1 sr−1) may be measured:

Iji = hνij

∫

G(T )DEM(T ) dT

Especially in X-rays there is no need to normalize and convert spectra to energy units since
the measured counts directly correspond to single X-ray photons. Instead of the energy flux
given in Equation 2.4 a photon flux without the factor hνij (units photons cm−2 s−1) can be
considered:

fji =
1

4πd2

∫

G(T )DEM(T ) dT (2.9)

2.2.2 Continuum emission

Free-free emission, free-bound emission and two-photon radiation are the three main processes
contributing to continuum emission in a hot plasma. Figure 2.3 shows their emissivity for
two diffreent coronal temperatures. Free-free radiation or bremsstrahlung originates from the
interaction of free electrons with heavier charged particles, mostly with protons (due to their
high abundance), but also with alpha particles and rarely heavier ions. The main fraction of
these electrons arise from hydrogen and helium which are fully ionized in X-ray emitting plasmas.
Only a small number of them is determined by the other elements. The impact of the abundance
of these elements on the free-free emission is therefore minor. Free-free radiation produces a
featureless spectrum with a maximum shifting to lower wavelengths for higher temperatures.

Free-bound emission rises from recombination processes of electrons with heavier ions. The
frequency of these recombinations is of course dependent on the abundance of these ions. The
shape of a free-bound spectrum is dominated by edges whose wavelengths are determined by
the level energy of the captured electron. The strength of these features depends not only on
the elemental abundance but also on the level population (and therefore on the temperature).

Two-photon radiation is a possible and sometimes the only way to return to the ground state
for excited metastable states in low-density plasmas where collisions that depopulate these levels
are rare. Instead of a single photon with a discrete energy two photons may be emitted with
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Figure 2.3: Theoretical continuum emissivity from 1-50 Å at 2 MK (left) and 10 MK (right)
respectively with solar photospheric abundances after Asplund et al. (2005), calculated with
CHIANTI routines. The relative fractions of the three constituents are also shown, the dotted
line represents free-free emission, the dashed line free-bound, and the dash-dotted line two-
photon emission. At higher temperatures, the emission is dominated by free-free processes while
at lower temperatures free-bound and two-photon processes control the shape of the continuum
at certain wavelengths.

the sum of both photon energies being equal to the energy difference between the two levels.
The particular energies of the two photons follow a certain distribution that can be modeled.
Two-photon processes arise essentially from H-like and He-like ions: The hydrogen-like 21S1/2

state (in contrast to the 21P1/2
and 21P3/2

states) is a metastable level with a very long direct
decay time to the ground state 11S1/2

so that two-photon processes are possible. For He-like ions
a two-photon process is the only possibility (apart from collisional de-excitation) for the 21S0

state to return to the 11S0 ground state since a transition with a single photon would require a
strictly forbidden J = 0 → J = 0 transition. The distinctness of structures in the two-photon
continuum also depends on the abundances.

In principle, a mathematical formalism similar to the one presented above for line emission
can be derived for the processes contributing to continuum emission

XZ+ + e → XZ+ + e′ + hν free-free emission

X(Z+1)+ + e → XZ+
j + hν free-bound emission

XZ+
j → XZ+

i + hνjk∗ + hνk∗i two-photon emission, k∗ is a virtual level

The total continuum emissivity in a certain wavelength interval as a function of temperature
can be calculated analogously to the line emissivity. A corresponding continuum contribution
function can be defined that – convoluted with the differential emission measure – gives the con-
tinuum flux in the respective wavelength interval. The shape of such a continuum contribution
function differs though from that of an emission line. It is a function monotonically increasing in
temperature without extrema since an increase in temperature will always result in an increase
in continuum emission. The same DEM applies to both line and continuum emission.

2.3 Coronal abundances

As can be seen from Equations 2.4 and 2.5 the amount of flux emitted in a certain line of a
particular element is proportional to the abundance of that element. At first glance one would
assume that the elemental abundances are uniformly distributed at least in the atmosphere of
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a certain star or the Sun. Pottasch (1964a) adopted the emission measure method to deduce
the abundances of several elements in solar coronal UV and XUV spectra and found significant
deviations from the photospheric composition. (See also Pottasch, 1964b)

Further measurements established what is today called the FIP effect as mentioned in the
introduction, i.e. that elements with a low first ionization potential show an enhancement
relative to high-FIP elements. Furthermore variations in the magnitude of the FIP effect where
found, dependent on the coronal regions observed. See Feldman and Laming (2000) for a review
on solar observations and corresponding pre-Chandra and XMM investigations of solar-like
stars. There are different ways to explain the fractionation process underlying the FIP effect,
for instance a draining of high-FIP elements of the coronal material or a process easing the
enhancement of low-FIP elements. Its actual cause must originate in the cooler, lower lying
layers of the solar atmosphere, where the affected elements are not ionized so that the first
ionization potential can have a great importance. See Laming (2004) for a recent approach.

For stellar coronal sources the situation is even more sophisticated. Inactive, solar-like stars
show abundance patterns similar to the solar FIP effect (e.g. Raassen et al., 2003) or no FIP bias
(e.g. Raassen et al., 2002), while the coronae of more active stars, especially RS CVn binaries
seemed to show an inverse FIP effect (e.g. Brinkman et al. (2001), Audard et al. (2003)). The
discussion is nevertheless somewhat meaningless since stellar coronal abundance determinations
are usually carried out relative to solar photospheric abundances, lacking appropriate stellar
photospheric abundances as a reference. Sanz-Forcada et al. (2004) find that for the stars in
their sample, the abundance patterns differ considerably when stellar photospheric abundances
are consulted.

Even the solar photospheric abundances are subject to continuous modifications. A standard
set of solar photospheric abundances, still the most prevalent in use in the literature, was devised
by Anders and Grevesse (1989). A revision by Grevesse and Sauval (1998) resulted in notably
reduced abundances for nitrogen, oxygen and iron. In the recent past further approaches of
improvements by many authors have been undertaken and the new set compiled by Asplund
et al. (2005) can be considered to be the most suitable matching both observational data and 3D
hydrodynamical modeling although some discrepancies with helioseismological data occurred.
Drake and Testa (2005) proposed to solve this problem by adjusting the solar neon abundance
to the level found in most stellar coronae. A measurement of the abundances of noble gases
like helium, neon and argon for the solar photosphere is difficult since these elements show
no photospheric lines. Estimates are therefore based on coronal data. A neon overabundance
relative to these solar values is indeed found for most stars analyzed with the Chandra and
XMM-Newton gratings. (See e.g. Drake et al., 2001)
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3 High-resolution X-ray spectroscopy with

Chandra and XMM-Newton

More than 25 years ago, the Focal Plane Crystal Spectrometer on board the Einstein satellite
observed a few bright celestial X-ray sources with high spectral resolution but low efficiency.
The FCPS was a Bragg crystal spectrometer, restricted to small wavelength segments centered
on specific spectral features. Capella was the only coronal X-ray source observed with the FCPS
(Vedder and Canizares, 1983) and barely resolving individual spectral features also with Ein-

stein’s Objective Grating Spectrometer OGS (Mewe et al., 1982), but these early measurements
only made the stellar X-ray astronomers look forward to the wealth of high-resolution broad-
band X-ray spectra now available from the currently operating Chandra and XMM-Newton

satellites. Both constitute the next generation of X-ray observatories – Chandra being the suc-
cessor of Einstein – and high-resolution spectroscopy of stellar coronae is one of their central
points. The corresponding spectra are generated with diffraction and reflection gratings respec-
tively that follow essentially the same functional principle as gratings for optical spectroscopy
and can be manufactured in a similar manner.

X-ray imaging devices, however, must be built differently from optical telescopes, because
X-ray photons – due to their high energy – would penetrate the lenses or mirrors the telescopes
are made of. Only when hitting a mirror with very small incidence angles (a few degrees at
most), X-rays could be reflected. Several difficulties arise from this ”grazing incidence”: The
mirror reflectivity with small incidence angles is not very high, also strong abberations occur off
the principal axis.

A system invented by the German physicist Hans Wolter solves these problems. Two mirrors
are arranged successively, the first of paraboloidal, the second of hyperboloidal shape. The
twofold reflection on this two-mirror system focuses an infinitely far-off object and simultaneously
minimizes abberations. The X-rays encounter at first the paraboloid and then the hyperboloid,
each time in grazing incidence. To increase the efficiency of such an X-ray telescope several of
these mirror pairs can be nested, increasing the effective reflecting area. The quality of X-ray
optics depends heavily on the smoothness of the mirror surface – the fabrication tolerance is
much lower than for ”normal” optics because the surface roughness must be small against the
wavelength.

Another important aspect affects the detection of X-rays. Astronomical detectors for visible
light operate (usually) in a ”photon-collecting” mode, i.e. the detector is illuminated for the
entire exposure time; the resulting image has lost any temporal information and the contribution
of a single photon to the overall signal cannot be distinguished. X-ray detectors instead operate
in a ”photon-counting” mode, they are recurrently read out and are therefore normally able to
measure individual photons that are recorded afterwards in so-called event lists. The timing
resolution of such a detector of course depends on read-out and dead times.

The American mission Chandra and its European counterpart XMM-Newton are complemen-
tary in terms of scientific objectives. While the former is adjusted to accomplish the highest
spatial resolution, the latter focuses on sensitivity. Nevertheless both satellites are allround
observatories, with high-end imaging and spectroscopy capabilities.
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Figure 3.1: A typical CCD image of an HETGS spectrum on the ACIS-S detector. The two
HEG and MEG spectra (upper left to lower right and lower left to upper right respectively) of
positive and negative orders form an X-shaped figure with the 0th order image in the center.
Note the slightly varying instrumental background on the six CCD chips.

3.1 Chandra

The Chandra X-ray observatory, named after the late astrophysicist Subrahmanyan Chandrasek-
har, was launched in July 1999. Its telescope system, the High Resolution Mirror Assembly
(HRMA), consists of four nested pairs of Wolter-type mirrors with a focal length of 10 m and
made of iridium-coated Zerodur, a glass-ceramic famous for its very low thermal expansion and
therefore predestined as a material for telescope mirrors. Great care was taken on grinding,
polishing and coating their surfaces as well as on their exact alignment. Together with the large
diameter of the outermost mirror shell of 1.20 m this allows for X-ray imaging of the highest
quality reached so far, with an angular resolution of 0.5′′.

Two different types of instruments serve as detectors in the focal plane: The Advanced
Charged Couple Imaging Spectrometer (ACIS) consists – as the name suggests – of 10 CCD
chips with 1024 × 1024 pixel each, arranged in two arrays. An array of 2 × 2 chips (ACIS-I) is
optimized for X-ray imaging, six chips arranged in-line (ACIS-S) for recording dispersed spec-
tra. A CCD is basically a semiconductor electronic device composed primarily of silicon pixel
cells. Photoelectric absorption of an X-ray photon in silicon results in the release of a number of
electrons proportional to the photon energy absorbed. Immediately after the charge is confined
by electric fields to a small volume near the interaction site, a gate structure allows the confined
charge to be passed down to a serial readout at one edge by clocking the applied voltages. An
X-ray CCD detector provides therefore, additional to the imaging capabilities and the recording
of the photon arrival time, the ability to measure the energy of each incoming X-ray photon
with intermediate resolution without additional means. The spectral resolution depends upon
an accurate determination of the total charge deposited by a single photon. This in turn is deter-
mined by the efficiency of the charge collecting material and the readout amplifiers, the fraction
of charge lost in the transfer from pixel to pixel during read-out (charge transfer inefficiency
CTI), as well as on read-out noise.

The second kind of detector on board Chandra is the High Resolution Camera (HRC) made
of microchannel plates (MCP). Again, there are two detectors, one for imaging and the other
one for recording dispersed spectra, HRC-I and HRC-S. The HRC-I consists of a quadratic
cluster of 10 cm edge length with 69 million tiny lead-oxide glass tubes with 10 µm in diameter,
covering a field of view of 31′×31′ in total. Three separate 27×100 mm rectangular segments of
identical design form a narrow and long device optimized as a detector for grating spectra. The
microchannel plate tubes act like miniatures of a photomultiplier: Electrons are released when
the tubes are struck by X-rays, they are accelerated down the tube by high voltage, releasing
more electrons when hitting the sides of the tube. Thus a single X-ray photon is amplified to
millions of electrons. A crossed grid of wires detects this electronic signal and allows the position
of the original X-ray to be determined with high precision. The HRC provides the highest spatial
resolution imaging, it has essentially no energy resolution but a good time resolution of about
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Figure 3.2: Left: Representative effective area of the instrument combination HETG + ACIS-S
in first order. Effective areas for positive and negative orders are summed up. Right: Instancing
HEG and MEG count spectra of HR 1099. The steep rise of the source continuum at 6 Å reflects
the rise of the effective area.

16 µs instead. Unfortunately a technical defect of the HRC-S results in high background count
rates for this instrument that induces an additional background noise in the spectra.

Eventually there are two additional gratings dedicated to high-resolution spectroscopy: the
High Energy Transmission Grating (HETG) and the Low Energy Transmission Grating (LETG).
Either of them can be positioned in the optical path behind the mirrors. The two gratings in
combination with the different detectors have complementary capabilities.

3.1.1 The High-Energy Transmission Grating Spectrometer HETGS

The HETG is usually operated with the ACIS-S, both form the High-Energy Transmission
Grating Spectrometer (HETGS). The HETGS achieves a resolving power E/∆E up to 1000 in
the energy band between 0.4 keV and 10.0 keV (corresponding to wavelengths of ≈ 1.5 Å to
30 Å).

The HETG itself consists of two sets of gratings with different periods. The first set, the
Medium Energy Grating (MEG), intercepts the X-rays from the two outer HRMA shells and
– as its name implies – is optimized for medium energies. The second one, the High Energy
Gratings (HEG), accordingly intercepts the X-rays from the two inner shells and is optimized
for high energies. The resolution is 0.015 Å FWHM and 0.025 Å FWHM for HEG and MEG
respectively. (See also Figures 4.3 and 4.4 for a comparison of the spectral resolution of the
grating spectra used in this study.)

Both grating sets, consisting of 192 and 144 small facets, are mounted on a single support
structure and therefore used concurrently, but both sets are mounted with their dispersion
directions being offset by 10◦; the dispersed spectra can therefore be easily distinguished on the
detector (see Figure 3.1).

The MEG gratings have a period of 0.4 µm, the corresponding period of the HEG gratings is
0.2 µm. The gratings are composed of gold bars; their height and width are nominally chosen to
maximize the first-order intensities and to simultaneously reduce the intensity of higher spectral
orders and of the zeroth-order image, similar to the ”blazing” technique of reflection gratings.

An important parameter describing the efficiency of a combination grating + detector (or one
of them alone) as a function of energy or wavelength of the infalling X-rays is the effective area,
the functional equivalent to the aperture. The HEG effective area in first order combined for
both gating arms starts rising at ≈ 1.5 Å with a decline towards ≈ 5.5 Å followed by a new rise
to maximum values of ≈ 70 cm2 at ≈ 7 Å. From that on, the effective area basically decreases,
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Figure 3.3: Central portion of a typical detector image of an LETGS spectrum on the HRC-S.
The whole spectrum covers the three equal sized microchannel plate elements. The broad gaps
between the detector elements are easily visible as missing parts in spectrum and background.

arriving at zero at ≈ 19 Å. The shape of the effective area of the individual arms is similar, but
slightly shifted in wavelength due to the offset position of the zeroth order image on the ACIS-S
detector (a centered image would fall on the gap between the chips).

The MEG effective area has a similar shape, with a small shift to longer wavelengths at
the short-wavelength boundary but a much steeper increase at ≈ 6 Å to maximum values of
≈ 150 cm2. Zero values after the decline are therefore reached at wavelengths of ≈ 29 Å. Some of
the larger structures in the effective area are caused by absorption edges in the detector material
(e.g. the Silicon K-edge at 6.76 Å). The exact wavelength position of small-scale features caused
by bad pixels and chip gaps depends on the location of the 0th order image and is different for
each observation. (See Figure 3.2 for a graph of the HETGS effective areas and corresponding
spectra.)

The wavelength or energy of each photon from the spectrum imaged on the detector is deter-
mined by its dispersion angle (corresponding to the radial distance from the zeroth order image
on the detector) and its spectral order. The different orders overlap on the detector and thus
photons originating from higher orders would be assigned to the wrong wavelength when they
are considered as first order photons. The intrinsic energy resolution of a CCD detector like
ACIS provides the opportunity to distinguish between the orders: A plot of the dispersion angle
of the detected photons versus their energy leads to an order-sorting image (though it is rather
a schematic plot than a real image) where the single orders are easily resolved, the so-called ba-
nana plot. See also the right panel of Figure 3.5. The application of narrow extraction regions
to the banana plots provide an additional background filtering technique for grating spectra so
that HETGS spectra usually have a negligible background.

3.1.2 The Low-energy Transmission Grating Spectrometer LETGS

The Low Energy Transmission Grating Spectrometer LETGS comprises the LETG and a focal
plane imaging detector. The HRC-S is the primary detector designed in particular for use with
the LETG but ACIS-S can also be used. In combination with the HRC-S wavelengths from 5 Å
to 175 Å are observable, with ACIS-S the accessible wavelength range is limited from 5 Å to 45 Å
due to the smaller dimensions of the ACIS-S and its low sensitivity at lower energies. The long-
wavelength part of the initially available spectrum is thus lost. Usage of ACIS-S would however
allow for order separation via the intrinsic energy resolution of the CCDs as described above
for the HETGS. This is not possible with microchannel plates, so that a first order spectrum
obtained with the HRC-S will always suffer from a contamination with higher orders. In this
study only LETGS spectra obtained with the HRC were used, the term LETGS will therefore
always denote the instrument combination LETG + HRC-S in the following.

The LETGS provides high-resolution spectroscopy (E/∆E > 1000) for XUV wavelengths
(≈ 80− 175 Å or 0.07− 0.15 keV) and a more moderate resolving power at shorter wavelengths
for soft X-rays, the nominal resolution is ≈ 0.06 Å FWHM.

The LETG gratings are made of fine gold wires with a period of 1 µm. Similar to the HETGS,
the thickness of the wires is designed to maximize the first order intensity and to suppress higher
orders. The strongest contaminations from higher orders arise from 3rd and 6th order, even
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Figure 3.4: Left: Representative effective area of the instrument combination LETG + HRC-S.
Effective areas for positive and negative side are summed up. Right: An instancing LETG count
spectrum of HR 1099. The shape of the source continuum follows clearly the effective area.

orders are generally weaker than odd orders. The gratings of the LETG, just like those of the
HETG, consist of small facets that are mounted onto a toroidal ring structure matching the
Chandra mirrors, both grating assemblies thus look very similar.

The three segments of the HRC-S are divided by relatively broad gaps that cover wavelength
intervals of approximately 8 Å. In standard operation, the position of the central zeroth order
image is put slightly offset so that different spectral regions fall onto these gaps on the positive
and negative sides. The total wavelength interval covered thus ranges from approximately 165 Å
on the negative side to 175 Å on the positive side in first order. This wavelength range can be
shifted somewhat by offset pointing, and thus wavelength coverage up to 210 Å can be forced
but is accompanied by a steep decline in spectral resolution.

The effective area of the LETGS (Figure 3.4) in the described standard operation and added
up for a combined first order spectrum is low for wavelengths between ≈ 2 and 5 Å. Considering
the low resolving power for short wavelengths measurements of individual lines are practically
impossible and this part of the spectrum is normally unusable. A steep rise follows at ≈ 5.5 Å
and maximum values of ≈ 45 cm2 are reached. The LETGS effective area then decreases like
those of HEG and MEG, but with a different shape. A minimum is reached at ≈ 43 Å, where
the carbon edge is located. Another steep rise to values of ≈ 35 cm2 succeeds. The following
smooth decline is interrupted by two dips caused by the detector gaps that are usually located
around 54 Å and 63 Å. The effective area eventually reaches zero at ≈ 175 Å.

The LETGS is the only instrument taken into account in this study that covers additional to
the soft X-ray range also part of the XUV. Unfortunately the wavelength calibration degrades
for the longer wavelengths. The enhanced instrumental background of the HRC-S also affects
especially wavelengths greater than 100 Å.

More technical details about Chandra and its instrumentation can be found in the ”The
Chandra Proposers’ Observatory Guide”, Version 7.0 (2004)

3.2 XMM-Newton

XMM-Newton, launched in December 1999, is equipped with three identical co-aligned X-ray
telescopes with a diameter of 70 cm and a focal length of 7.50 m. Contrary to Chandra, they do
not consist of a few thick mirrors but of thin gold-coated nickel shells. Each of the telescopes has
58 of these reflecting shells. The large mirror surface area thus provides XMM ’s large effective
area and high sensitivity. The disadvantage of the thin metal mirrors is that their surface cannot
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be manufactured as precisely as that of customary mirrors. As a result, the point spread function
(PSF) that describes the instrumental broadening of the image of a point-like source is much
broader for XMM compared with Chandra.

The three telescopes are equipped with imaging CCD detectors (European Photon Imaging
Camera, EPIC) of two different types. One of the telescopes comes solely with the EPIC PN
camera, the other two that come with the EPIC MOS detectors also have integrated reflective
gratings and corresponding detectors (Reflection Grating Spectrometer, RGS) for high-resolution
spectroscopy. In addition to the X-ray telescopes the Optical Monitor (OM), a 30 cm Ritchey-
Chrétien telescope provides observations in the UV or in visible light to monitor the observed
X-ray sources simultaneously at longer wavelengths and to ease the identification of unknown
X-ray sources with optical counterparts. All six instruments (the EPIC PN, the two EPIC MOS
and RGS, and the OM) can be operated simultaneously and thus provide multiple measurements
of the same target at once.

3.2.1 The European Photon Imaging Camera EPIC

The EPIC CCDs have an intrinsic energy resolution of E/∆E ≈ 20 − 50 in the energy range
between 0.2 and 15.0 keV and therefore provide imaging spectroscopy with intermediate spectral
resolution (similar to Chandra ACIS). Several operation modes allow to adjust the size of the
imaging frame and accordingly optimize the read-out time. Three filters of different thickness
block optical and UV radiation. The field of view of all EPIC instruments extends to ≈ 30 ′

The EPIC PN is named after its fully depleted p-n junction and consists of 12 chips integrated
on a single wafer with 6× 6 cm in size, each with 200× 64 pixels with an edge length of 150 µm,
and thus a nominal angular resolution of 3.3′′. The PN operates in the energy range of 0.2 to
15.0 keV and offers the best quantum efficiency of the EPIC instruments. For an example of
an EPIC PN spectrum see Figure 4.11. Since no additional grating retains part of the infalling
photons it also has the highest effective area, reaching ≈ 900 cm2 at maximum. The PN together
with its mirror module is therefore by far the most sensitive X-ray imaging device available at
all. Additionally it has a very good timing resolution.

The other two EPIC instruments on XMM-Newton consist of arrays of Metal-Oxide-Silicon
(MOS) technology. Seven CCD chips with one in the center of the field of view and the other
six surrounding it, each with an imaging area of 2.5 × 2.5 cm and 600 × 600 pixels with a pixel
size of 40 µm, corresponding to 1.1′′ nominal resolution. The angular resolution of the two
MOS detectors is better than that of the PN, with MOS 1 surpassing MOS 2 somewhat. The
MOS CCDs can operate in the energy range of 0.2 to 12.0 keV, with a slightly better spectral
resolution than that of the PN. However, quantum efficiency and effective area (that reaches
only ≈ 400 cm2 at maximum due to obscuration by the gratings) and therefore the sensitivity
are lower. The two MOS detectors are offset by 90◦ so that sources falling on chip boundaries
in one of the exposures are imaged without problems in the other one.

Due to the high sensitivity of the EPIC instruments the effect of pile-up must at any rate be
considered for sources with higher count rates. The term pile-up describes the phenomenon that
two or even more photons are detected as a single event when they arrive within one read-out
interval on the same pixel. This effect applies to all X-ray CCD detectors (therefore as well for
Chandra ACIS) and falsifies count rate measurements and especially spectra extracted for these
sources because the energy of the spuriously measured piled event corresponds to the sum of the
energies of the individual photons of which it is comprised. The spectra thus ”loose” events at
lower energies and get a high-energy tail instead. The first step to deal with pile-up is of course
to avoid it, i.e. for XMM to choose an operating mode with adequate timing resolution or for
Chandra to insert an additional grating. Subsequent pile-up correction is based on the fact that
the central pixels of the point-spread function are affected more often and that piled events often
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Figure 3.5: Left: RFC image of the RGS 1 spectrum of Capella from dataset 0134720801. Right:
Banana plot corresponding to the spatial image with the dispersion angle increasing from left to
right and the intrinsic energy increasing from bottom to top. The distinct orders split up and
become bent-shaped. Three orders can easily be recognized, but the photons are concentrated
in first and second order.

cover more pixel than single-photon events. The exclusion of events with such pixel patterns
is one possibility, another one is to adopt an annular source extraction region and therefore to
exclude the central portion of the PSF.

3.2.2 The Reflection Grating Spectrometer RGS

The two X-ray telescopes with a MOS imaging detector are also equipped with Reflection Grating
Spectrometers (RGS). Each RGS incorporates an array of reflection gratings (the Reflection
Grating Array, RGA) that are placed in the optical path behind the mirror modules and a strip
of CCD elements (the RFC) to record the dispersed spectra.

An RGA contains 182 identical diffraction gratings, each measuring about 10 × 20 cm. The
gratings are mounted in a configuration where the incident and diffracted rays lie in a plane
which is perpendicular to the grating grooves. These have a period of ≈ 1.5µm and a blazed
profile that corresponds to a blaze wavelength of 15 Å in the negative first order. The grating
facets were replicated from an identical set of master gratings onto thin substrate and covered
with a thin gold coating.

The gratings intercept roughly half of the X-ray photons, while the undeflected photons pass
through and are intercepted by the MOS detectors in the focal plane. The diffracted X-rays are
detected with the RFC, a strip of nine CCD chips (similar to ACIS-S). The CCDs have an area
of 384 × 1024 pixels with a pixel size of 27 µm. The pixels are binned on-chip by 3 × 3.

Images of RGS spectra differ somewhat from Chandra LETGS or HETGS spectra since the
RFC only records the negative orders of the spectrum, the zeroth order image is also not included
(see Figure 3.5). Thus the wavelength scale of the resulting spectrum has no fixed point and its
lower and upper limits depend sensitively on the source position. Usually a wavelength interval
from 5 Å to 38 Å is covered in first order, corresponding to energies between 0.35 and 2.5 keV.
A resolving power of E/∆E of 200 to 800 and a spectral resolution of ≈ 0.06 Å is reached, the
latter one being comparable to Chandra LETGS. The blazing angle concentrates the intensity to
the negative first order but higher orders are not suppressed as with the Chandra gratings. Their
separation is accomplished the same way as for Chandra ACIS-S, by using the intrinsic energy
resolution of the CCDs. For brighter sources the second order spectra provide additional useful
data, with an improved spectral resolution of ≈ 0.03 Å but lower effective area. Furthermore
the usable wavelength range covered is smaller, lasting from ≈ 5 Å to 19 Å, the exact upper
limit depends again on the source position. (As a result, the Oviii line at 18.97 Å is sometimes
included in the spectra, and sometimes not, see Figure 3.6.)
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Figure 3.6: Effective area (upper panel) and spectra (lower panel) of the coronal X-ray source
HR 1099 for RGS 1 (left panel) and RGS 2 (right panel) in first and second order. Note the
slight shift in wavelength of the effective area.

Unfortunately, in both RFCs one of the nine CCD chips failed shortly after XMM started
operating. In RGS 1 this affects CCD 7 and in RGS 2 CCD 4. This is unfavorable since both
CCDs cover wavelength intervals usually including important emission lines in first order, for
CCD 3 these are the Ne ix and x lines, and for CCD 6 this concerns the Ovii triplet. In addition
to the gaps between the single CCDs the RGS spectra suffer from a great number of bad pixels
that must be excluded from the data, these gaps in the spectra strongly affect the analysis
of single lines or even make a reasonable measurement impossible like with the Oviii line at
18.97 Å in RGS 2. The gaps and bad pixels determine the fine structure of the effective area of
the RGS as shown in Figure 3.6. Apart from that the effective area is a smooth function that –
in first order – starts rising at ≈ 6 Å, with a maximum at 15 Å followed by a slow decline and
a drop to zero at ≈ 38 Å. The exact maximum values reached depend strongly on the off-axis
angle of the source. Values between 45 cm2 and 60 cm2 at 15 Å are typical for small positional
offsets, the RGS 2 has always a slightly higher effective area. The effective area for the second
order is of similar shape, the maximum though is reached at 11 Å and does not exceed 30 cm2.

XMM -Newton and its instruments are described in more detail in the ”XMM-Newton Users’
Handbook”, Issue 2.3 (2005).
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4 Modeling abundances and differential

emission measure

The aim of this work is to reconstruct differential emission measures from a set of measured line
fluxes and an inversion of the corresponding set of equations (see Equation 2.9). The recon-
struction should be independent from the elemental abundances to reduce the number of free
parameters; and the abundances should be determined afterwards. I applied two different meth-
ods based on different sets of X-ray and XUV lines described in Sections 4.3.1 and 4.3.2, the first
approach involves abundance-independent ratios of two lines of the same element (Section 4.5),
the second approach makes use exclusively of iron lines so that only the iron abundance enters
the calculation (Section 4.6).

4.1 Data processing

The X-ray data used in this study are entirely archival and were downloaded from the correspond-
ing online data archives, the Chandra Data Archive (http://cxc.harvard.edu/cda/) and the
XMM-Newton Science Archive (http://xmm.vilspa.esa.es/external/xmm data acc/xsa/).

In case of Chandra HETGS and LETGS data, X-ray spectra were created directly from the
pipeline-processed data products. Two scripts, heggarf and leggarf, originally provided by
Jan-Uwe Ness and slightly modified for my purposes, were used to compute the response matrices
and effective areas for each individual observation by means of the Chandra Interactive Analysis
of Observations (CIAO) software package, Version 3.2 (in the course of this work patched to 3.2.2
without resulting in significant changes). The scripts apply the two tools mkgrmf and fullgarf

on the positive and negative 1st orders of the spectra. Both were combined afterwards by
two IDL scripts (read hetg and read letg) which generate ASCII files containing wavelength,
source and background counts and corresponding errors as well as the effective areas and the
exposure time. These ASCII files serve as input to the CORA line fitting program.

Since the wavelength grid of Chandra grating observations is fixed, it is quite simple to add
up several datasets of the same source to a combined spectrum with higher signal-to-noise.
The count numbers in each wavelength bin are summed, and a joint effective area is calculated
by averaging the effective areas, weighted by the corresponding exposure times. Thus it was
possible to create for example LETGS and HETGS spectra of Capella with total exposure times
of 431.6 ks and 326.6 ks respectively. Ness et al. (2003a) used accordingly generated spectra for
their analysis of iron contamination of the Ne ix triplet.

A greater deal of work had to be done concerning the XMM data. Pipeline-processed
XMM RGS spectra are inappropriate for an analysis with CORA because they are background-
subtracted, apart from that the calibration applied to these data is often obsolete and the
proposal coordinates of the targets are occasionally shifted. The observation datafiles (ODF) of
the particular datasets were therefore reprocessed with the XMM-Newton Science Analysis Sys-
tem (SAS), version 6.0. The metatask rgsproc was used to create non-background-subtracted
spectra and the corresponding response matrices. A way round through xspec must be gone to
create the spectrum files for the analysis since there is no easy way to compute count spectra
and matching effective areas for a specified wavelength grid. xspec is able to output the desired
data as ancillary ASCII files from the FITS files produced by rgsproc. The CORA spectrum
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files for 1st and 2nd order each have been created from these ancillary files with another IDL
script (read rgs), which was as well as the method via xspec developed by Jan-Uwe Ness and
later highly modified by myself.

Medium resolution spectra obtained from XMM EPIC images were used to obtain continuum
measurements at higher energies. The EPIC data have also been reprocessed: Newly created
event lists with high-background periods resulting from proton flares excluded were used instead
of the pipeline products to extract the spectra. The main reason for the reprocessing was again
the insufficient calibration status of the archival data. The images were produced with the
SAS metatasks epproc and emproc using standard settings. Spatial images have been created
and spectra from the source and adjacent background regions were extracted. The objects I
have concentrated on in this work are rather strong X-ray sources and pile-up in their EPIC
exposures is quite common. I therefore used the SAS tasks epatplot to inspect the created
source spectra for pile-up contamination; I changed the shape of the extraction region from
a circle to an annulus to exclude the pile-up contamined center of the line spread function
if necessary. Response matrices and lightcurves were created afterwards. The SAS tasks for
EPIC analysis were performed semi-automatically by the two scripts EPIC check and EPIC ana,
provided by Jan Robrade.

4.2 Line fitting with CORA

The emission lines in the high-resolution HETG, LETG and RGS spectra were fitted with the
stand-alone version of CORA line fitting tool (Ness and Wichmann, 2002), versions 3.2 and
3.4. The CORA program fits analytical line profiles to discretized, non-background-subtracted
count spectra, using a maximum likelihood algorithm and applying Poisson statistics as it is
most convenient for the analysis of low-count spectra.

CORA provides a lot of possibilities to constrain the fit, various parameters can be varied
or fixed, included in the fit or excluded. I usually treated the central wavelength of the line as
a free parameter since small wavelength shifts within the scope of the wavelength calibration
are always possible, additional to the uncertainty in the absolute calibration of the wavelength
scale for RGS data. Although the line widths of the four gratings are well-known and it is quite
common to fix them I decided to treat them as free parameters as well. I took them as a quality
indicator for the fit instead: Much to small or much to large fitted line widths indicate that other
parameters, usually the source background, are erroneous. Lines whose fits did not converge in
line width were thus rejected. If multiple lines were fitted at once I fixed the wavelength spacing
and demanded an identical line width. CORA includes a χ2 minimization and a parameterized
median function to fit the source background underlying the emission lines. Both methods have
their field of application as described in Ness et al. (2004), nevertheless from time to time they
fail and the source background must be determined by eye.

The line fitting procedure is usually unproblematic with HETG and LETG spectra. The line
spread function of the Chandra gratings can as a first approximation be described by a simple
Gaussian; detailed investigations have lately revealed that a ”β-model”

I(λ) = Imax

(

1 +

(

λ − λ0

∆λ

)2
)−β

(4.1)

reproduces the measured line profile slightly better (see the Proposer’s Observatory Guide). The
β-model corresponds to a modified Lorentzian, with an exponent β = 1 resulting in a normal
Lorentzian profile. For the Chandra gratings β was found to have a value of 2.5, and I adopted
this value and the modified Lorentzian line profile. Admittedly – at least with the naked eye –
I could not recognize a difference between the two fits or their quality.
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Figure 4.1: Wavelength interval from 7 Å to 10 Å in the RGS 1 spectrum of Capella in 2nd
order. Additional to the Mgxii and vi lines, the pile-up caused features at 7.5 Å and 8.5 Å with
a peculiarly small line width can easily be recognized.

HEG spectra often contain only few counts per bin as a result of the small binsize with many
bins sampling the high spectral resolution. Multiple rebinning even for strong sources is therefore
often required to get a reliable number of counts per bin. The same applies often to the XUV
part of the LETGS spectra or to RGS in 2nd order and of course in general to underexposed
spectra.

RGS spectra were for several reasons less easier to fit. On the one hand there are the many
bad pixels on the RFC CCDs already mentioned in Chapter 3 that disturb the fitting process.
Sometimes CORA can handle them, but there are several fatal cases where the resulting fit is
bad or does not even converge. In the worst case the central portion of the line spread function is
located on bad pixels what makes the fit impossible. On the other hand there is the instrumental
line profile itself. A simple Lorentzian, i.e. β = 1, is usually considered for RGS spectra. Such a
Lorentzian has broad wings complicating the assessment of the source background. Uncertainties
and errors in the source background do not enter the error calculated by CORA, and thus it must
be clearly stated here that the error introduced to the measured line counts due to an erroneous
background level can exceed the statistical error by far. The full extent of this problem becomes
clear in spectral regions with lots of lines like the wavelength range from 10 Å to 17 Å. The sum
of the broad wings of the many lines there result in a ”pseudo-continuum” as it can be recognized
for instance by comparison of the fluxed HETG and RGS spectra of AU Mic (Figures 6.17 and
6.19), a source that has a rather weak true continuum. Such a pseudo-continuum arises – due
to the finite line width and the wealth of unresolved weak lines – also for the Chandra gratings
but the effect is much smaller.

When investigating the RGS second order spectra of a smaller sample of stars I discovered
three at first sight unidentifiable lines at 7.5 Å, 8.53 Å, and 9.5 Å in the spectra of Capella. These
lines were recognized to be caused by pile-up: Two simultaneously arriving photons from the
strong Fexvii lines at 15.01 Å or 17.05/17.09 Å or Oviii at 18.97 Å were detected as one event
with the double energy. The order sorting mechanism by the intrinsic energy resolution of the
CCDs therefore assigns these photons, whose location on the chip would attribute them to their
original wavelength in first order, to the second order and half the wavelength. The resulting
effects on the measured line fluxes in first order are small however: The doubled number of
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counts contained in these lines (corresponding to the number of counts missing in the first order
spectra) constitute less than 3% of those measured in first order for Capella, which is the only
star from the sample where this effect was clearly visible at all. Pile-up in grating spectra is not
topical in the literature, probably because the effects are very small for most sources, and few
authors ever analyze the 2nd order spectra.

4.3 The lines used in this study

The strongest lines in astronomical X-ray spectra are associated either with iron lines of ion-
ization stages suitably to the prevailing temperatures or with lines of the hydrogen and helium
isoelectronic sequences of the most abundant elements.

Hydrogen is the simplest atom, consisting just of a proton – the nucleus – and a single electron.
Its atomic transitions can as a first approach be calculated even with semi-classical physics.
Quantum mechanics is needed to do this for helium, the next element in the periodic table
of elements, possessing a second electron and a more massive nucleus. The equations yielding
energy levels and describing atomic transitions can still be solved analytically for hydrogen and
helium – this is too sophisticated for any other atom possessing more than two electrons and
thus numerical methods are required.

The physics of hydrogen and helium atoms – especially concerning atomic transitions – is
assumed to be well-known. For hydrogen- and helium-like ions, i.e. ions stripped up to one
or two electrons respectively, similar considerations should apply. While hydrogen and helium
themselves are totally ionized in X-ray emitting plasmas, H- and He-like ions of elements such
as carbon, nitrogen, oxygen, neon, and so on exist and are actually quite frequent.

Theoretical emissivities for the lines I used in this study rest upon the CHIANTI database for
emission lines developed by Dere et al. (1997) and extended to X-ray wavelengths in version 3.0
(Dere et al., 2001). For calculations in the development and verification phase of the methods
used in this study CHIANTI version 4.2 (Young et al., 2003) was applied. The final calculations
were made with the then available version 5.0 (Landi et al., 2005) that includes extended level
population calculations considering dielectronic recombination and resulting radiative cascades
especially for several iron ions, resulting in much longer times needed to calculate the emis-
sivities but accordingly better results. The database contains wavelengths, radiative transition
probabilities and excitation rate coefficients for a large number transitions of ions used in astro-
physics as well as ionization equilibrium calculations; see the corresponding papers for further
references.

4.3.1 H-like Ly α lines and He-like resonance lines

The energy needed to ionize elements to hydrogen- and helium-like states rises with increasing
atomic number, this is also and in particular valid for the ionization process transforming the
He-like ion to the H-like ion. Since these energies are realized in coronal plasmas by high
temperatures, ratios measured of emission lines from both the He-like and the H-like states are
a monotonic function of temperature. These ratios were utilized in the first DEM modeling
approach.

The strongest emission lines arising from H-like ions belong to the Lyman series, and the
strongest one of them is the Lyman α line, corresponding to the transition from the first ex-
cited level to the ground state. For the He-like ions a similar resonance line exists which forms
in low-density plasmas a line triplet with two metastable lines, the intercombination and for-
bidden lines. The ratio formed by the two metastable lines was recently extensively used for
density diagnostics. I concentrated my measurements and modeling attempts instead on the
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Figure 4.2: Theoretical temperature dependence of the photon flux ratio of H-like and He-like
lines of several elements together with measured data points from AB Dor.

hydrogen- and helium-like resonance lines and therefore the terms ”H-like” and ”He-like line”
and corresponding ratios refer to these lines in the following if not stated otherwise.

Typical stellar coronal sources exhibit too low temperatures to form hydrogen-like iron, apart
from the fact that both the H-like Ly α line and the He-like resonance line are difficult to
measure with the XMM and Chandra gratings (see also Section 4.3.2 below), this makes the
measurement of a corresponding H-like to He-like ratio impossible.

The Ly α lines of Caxx and Arxviii have wavelengths of 3.02 Å and 3.73 Å, the corresponding
He-like resonance lines of Caxix and Arxvii are found at 3.18 Å and 3.95 Å. These lines cover the
high-temperature tail of the emission measure distribution since temperatures of at least 10 MK
are needed even to form the corresponding ions. Chandra HEG and MEG exclusively provide
the ability to detect these lines but measurements are still problematic: Their emissivity is low
due to the generally low abundances of calcium and argon and the high required temperatures,
resulting in low signal-to-noise. Thus even with the high spectral resolution of the HEG it is
impossible to resolve the three components of the He-like triplets (the intercombination and
forbidden lines of Ca and Ar being located at 3.19 Å and 3.21 Å, and 3.97 Å and 3.99 Å
respectively). I therefore measured these lines where possible but only for later abundance
assignments. Resulting ratios did not enter the DEM determinations.

Similar but less fatal problems arise for sulfur and aluminium, so that ratios of these two
elements could hence serve as input for the DEM fitting. Sulfur is one of the more abundant
elements, allowing often the measurements of the Sxvi Ly α line at 4.73 Å and the Sxv resonance
line at 5.04 Å with HEG and MEG. Aluminium, though less abundant, benefits from the high
effective area especially of the MEG at the corresponding wavelengths of 7.17 Å and 7.76 Å for
the Alxiii Ly α line and the Alxii resonance line. Measurements with RGS and LETGS are
not possible because both He-like triplets would not be resolved, the same applies for Alxiii and
the neighboring Mgxii Ly β line at 7.11 Å. Furthermore, the effective area of both instruments
is too low for the sulfur lines.

The aluminium and sulfur lines share a problem with the calcium and argon lines: Features
corresponding to these lines are often clearly visible in the spectra but the noise level and
therefore the underlying background is easily underestimated. This has on the one hand a
non-negligible influence on the deduced ratios, on the other hand it leads to systematically
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overestimated abundances for these elements.

Silicon H-like and He-like ions are in their formation arranged between sulfur and aluminium
on the temperature scale. Measurements of the Sixiv Ly α line or the Sixviii resonance line
at 6.18 Å and 6.65 Å profit from both an increased effective area with now all four gratings
and instruments and a relative high abundance level. Problems with silicon lines arise primar-
ily through detector calibration issues: Absorption edges and other features caused by silicon
contained in the detector material have to be well-modeled in the instrumental response.

Mgxiv at 8.42 Å is a single, unblended line easy to measure in all detectors. Testa et al. (2004)
examined the contamination of the Mgxi triplet with lines arising from iron and the neon Lyman
series with Chandra HETGS data. Since the resulting effects limited on the resonance line are
small compared to other error sources I neglected any blending of this line in my measurements
and calculations. It must be noticed that the Sixiii and Mgxi triplets are still difficult to resolve
with RGS and LETGS.

Neon lines cover intermediate temperatures of ≈ 6 MK. The Nex Ly α line at 12.134 Å is
frequently one of the strongest lines in stellar coronal X-ray spectra. In RGS and LETGS it
is blended with Fexvii at 12.124 Å, but the resulting effects can normally be neglected. The
whole Ne ix triplet suffers from strong contamination with several iron lines, even the resonance
line at 13.447 Å is severely blended, mostly with lines from Fexix.

A special treatment is necessary to get a reliable measurement for this line, especially with
the RGS and the LETGS that can not resolve all the emerging lines. Ness et al. (2003a) tackled
this problem for Capella, where the blending effects are extremely strong due to a relatively
high iron abundance in combination with low temperatures. In order to get reliable density
measurements – the weak Ne ix intercombination line at 13.55 Å suffers most from the blending
– they fitted all lines (about 20 iron lines, arising from ionization stages xvii to xxii, and some
nickel lines) in that spectral region they could identify in a combined Chandra HEG spectrum
composed of most of the Capella HETGS datasets available at that time. The measured line
fluxes of the contamining lines where then artificially broadened to fit the spectral resolution of
the other instruments, and the fit of the neon lines was performed leaving the relative strengths
of the contamining lines fixed. A good agreement between the different datasets was achieved.

This method could in principle also be applied to other stars. The problem is though to
obtain the basic HEG spectrum with a satisfactory signal-to-noise level. Instead the Capella
HEG spectrum could be taken – assuming the temperature structure of Capella and the new
star being the same when leaving the relative strengths of the lines constant. The single three
neon lines as well as an overall normalization factor for all the contamining lines in total could
then be fitted to the observed spectrum. Jan-Uwe Ness incorporated this approach with the
IDL version of CORA and made the script available to me. I generalized and automated the
routine (called thereafter ne fit) and in particular added the possibility to remove part of the
initial lines from the fit, since I was not interested in fitting the whole triplet but only in the
resonance line. It is therefore possible to concentrate only on the neighboring Fe xix lines to
abandon the assumption of the coinciding temperature structure. Figures 4.3 and 4.4 show that
this worked very well.

Oxygen H- and He-like lines mark the transition to lower temperatures around 2 MK in
stellar coronae such as they are typical for the sun. Both the Oviii Ly α line at 18.97 Å and
the whole Ovii triplet with the resonance line at 21.6 Å are easy to measure and are relatively
unblended apart from some satellite lines, the Oviii line is usually one of the strongest lines in
the spectrum similar to Nex Ly α. Unfortunately the effective area of the HEG drops to zero in
this wavelength region, it is impossible to measure Ovii with the HEG and also Oviii is only
rarely measurable despite the high emissivity of the line.

The same applies for nitrogen, which can be accounted to even lower temperatures, in combi-
nation with the MEG, also because the Nvii line at 24.78 Å and the Nvi triplet lines located at
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Figure 4.3: Output of the ne fit routine for Chandra spectra. The left panel shows the fits to
the Ne ix triplet for Capella, where the iron contamination is very strong. For HR 1099 (right
panel), the effects are less momentous. Part of the lines were excluded from the fit (especially
the Fexvii line at 13.83 Å that is strong in Capella, leaving essentially only Fexix lines) to
account for the differing temperature structures of the two stars. The upper panel gives the
HEG spectra, so the upper left plot shows the initial Capella HEG fit all further measurements
are based on. Middle and lower panel display the MEG and LETG spectra. While it is still
possible to distinguish between the single lines with the MEG, they merge to an unresolved
conglomerate in the LETGS.
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Figure 4.4: Same as in Figure 4.3 but for XMM-Newton RGS 2 spectra in first and second
order. Only a very low iron abundance would allow reasonable measurements of the neon lines
without additional means. In second order the advantage of smaller line width is compensated
by the lower effective area, so that measurements in the second order seldomly lead to improved
measurements.

28.787 Å, 29.082 Å, and 29.534 Å are in general not that strong compared to oxygen and neon.
Only RGS in 1st order and LETGS allow the measurement of the very low-temperature

carbon lines, i.e. Cvi Ly α at 33.74 Å and the Cv triplet with the resonance line at 40.268 Å.
The latter is even only measurable with the LETGS where it suffers from low effective areas
and contamination with the Ne ix triplet in 3rd order. The Cv resonance line itself is heavily
blended with the Ne ix resonance line and the sourrounding iron lines. The results of the ne fit

routine described above were therefore enlisted to assess the degree of contamination of the
carbon triplet by the neon and iron lines. The estimated blending, deduced by scaling the
counts measured in the Ne ix triplet, is subtracted from the source counts and assigned to the
instrumental background. The Cv lines are fitted afterwards, whenever they are measurable.
This method was in a more simplified manner and including less iron lines applied to Capella
by Ness et al. (2001). The procedure was generalized to adopt the results of the corresponding
fit to the neon triplet for any arbitrary LETGS dataset and became part of the ne fit routine.

4.3.2 Iron lines

In general, the atomic data for iron lines are not as reliable as for H-like and He-like lines.
Vast improvements have been achieved by incorporating the calculations of Gu (2003) including
among other things dielectronic and radiative recombination processes. When I switched from
CHIANTI 4.2 to 5.0 (the latter includes the data from Gu, the older version did not) several
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Figure 4.5: Fit to the Cv triplet of Capella with all available Chandra LETGS obserations
summed up. The underlying fit to the Ne ix triplet is shown in the lower left plot of Figure 4.3.
The fit reproduces whole triplet quite well, when it is considered that the Fe xvi line visible at
40.15 Å and the Sixii line at 40.91 Å are not included in the fit.

Figure 4.6: Ionization equilibrium for Fe ix to Fexxvi after Mazzotta et al. (1998), as imple-
mented in the CHIANTI database. The ions having noble gas configuration, i.e. Fe ix, Fexvii,
and Fe xxv, comprise the main fraction of occurrence and form over broad temperature ranges
while the other ionization stages are less frequent and persist at smaller temperature intervals.

inconsistencies disappeared, theoretical line ratios of certain lines fitted the measured ones much
better but are still far from perfection.

Fig. 4.6 shows that H-like Fexxvi does not form until extremely high temperatures (' 50 MK,
peak formation temperature ≈ 100 MK) are reached. Furthermore, up to 80 MK the dominant
ion species is He-like Fexxv with a peak formation temperature of approx. 40 MK, so it is very
unlikely to detect Fe xxvi lines such as Ly α at 1.78 Å in the spectra of stellar coronae since
such high temperatures are quite unusual and only reached in flaring states. Given this fact
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Figure 4.7: Iron lines at the boundaries of the temperature range. Left: The Fe XXV triplet at
1.86 Å. Right: Fe IX and Fe X at 171.1 Å and 174.5 Å respectively.

it is not very remarkable that I was never able to distinguish the Fexxv Ly α line from the
background in Chandra HEG spectra.

The Fexxv triplet at 1.86 Å can be observed however, if temperatures exceed 15 MK and the
signal-to noise is high enough in the HEG and sometimes also in the MEG spectra. The triplet
must be measured as a whole, the individual resonance, intercombination and forbidden lines can
not be resolved. The right panel of Figure 4.7 shows the Fe XXV triplet in the HEG spectrum
of Algol. The line is clearly visible but some issues affect the measurement of the line flux: First,
the effective area of the HEG just starts to increase to reasonable values which raise the line
over the noise level. The instrumental background is not a problem but the correct placement of
the continuum level because of the steep slope resulting from the increase of the effective area.
Furthermore, the triplet itself is severely blended by a multitude of weaker lines of highly ionized
iron whose contribution to the line complex can not be assessed. A simple measurement of the
counts contained in the line will therefore overestimate the flux of the triplet. The treatment of
this line was thus the same as for the calcium and argon lines described above. MEG spectra
sometimes also show the Fexxv triplet, but measurements are even more dubious because of
the very low effective area of the MEG at that wavelength. All other lines of Fexxv are too
weak to measure.

Fexxiv has a much lower peak formation temperature of 18 MK, but the ion fraction reaches
27% at maximum. The strongest lines of Fe xxiv appear in the wavelength range of 10 Å to
12 Å, e.g. at 10.619 Å, 11.029 Å, 11.171 Å, and 11.426 Å. Unfortunately this spectral region is
quite crowded with other lines of highly ionized iron (see Figure 4.8), and the line at 11.171 Å
is the only one that is hardly affected by blending. I included this line in my calculations, but
measurements with the LETGS and the RGS are somewhat questionable.

The strongest lines of Fexxiii are also found in the wavelength domain around 11 Å, namely
at 10.981 Å, 11.018 Å, 11.736 Å, and 12.175 Å. None of these lines is without blending, but with
HEG and MEG it is possible to separate the line at 11.736 Å from the Fexxii line at 11.769 Å,
both lines will in this case be included in the calculations. In LETGS spectra a strong line
can be found at 132.91 Å. Unfortunately, it is blended with a strong Fe xx line at 132.84 Å,
and this blend is usually unresolvable. It is possible to calculate the contribution of the Fe xx

line to the blend: Its theoretical photon flux ratio relative to the Fe XX line at 121.84 Å stays
constant at ≈ 0.7 independent of density and temperature (see the left panel of Figure 4.9).
The corresponding ratio of the effective area of the LETGS at the two wavelengths is ≈ 1.45.
The measured counts of the line at 121.84 Å had therefore to be multiplied by 0.98 and the
result to be subtracted from the measured counts at 132.9 Å to obtain the fraction of Fexxiii
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Figure 4.8: The crowded wavelength region from 10 Å to 12 Å. Left: HETGS spectra of the high-
temperature RS CVn binary HR 1099. The strongest line is Nex Ly β at 10.239 Å, the other
lines arise from higher ionization stages of iron. Right: The same spectral region for Capella,
which exhibits a higher iron abundance and lower temperatures than HR 1099. Additional strong
lines from lower-temperature ionization stages of iron such as Fexvii and Fexix as well as lines
from nickel appear and complicate the isolation of individual lines; adequate measurements with
LETGS and RGS become impossible.

to the blend. I applied this method to several spectra and it led to consistent results (the iron
abundance calculated from the Fexxiii line at 132.91 Å applying a DEM calculated from the
H-like / He-like ratios matched that of the other iron lines) but it should be kept in mind that
the indirect measurement of this line introduces new uncertainties to the iron line DEM fit at
higher temperatures.

The peak formation temperature reduces to 12 MK for Fe xxii. Strong lines in the short
wavelength range include the ones at 11.427 Å, 11.769 Å, 11.921 Å, 11.936 Å, and 12.757 Å.
All of them are blended, the treatment of the 11.769 Å line is described above. In the long
wavelength range two strong lines can be observed with the LETGS at 117.15 Å and 135.79 Å.

Some of the XUV lines of Fexxi can be used as density indicators (cf. Ness et al., 2002a).
I used the two strongest ones which can can be found at 128.75 Å and 117.5 Å. At shorter
wavelengths, stronger lines can be found at 9.475 Å, 12.282 Å, 12.327 Å, 12.395 Å, 12.499 Å,
13.507 Å and 14.008 Å. Again, all of suffer from blending. The strongest one of them is the line
at 12.282 Å, its blend with an Fexvii line at 12.264 Å can sometimes be resolved with MEG
and HEG, therefore I included this line in my calculations.

Three strong lines of Fexx at 12.812 Å, 12.827 Å and 12.845 Å group to a blend that can
be measured with all instruments. In my calculations I neglect the contribution of a line of
Fe xxi 12.823 Å to that conglomeration. The strong line at 121.84 Å was already mentioned in
connection with the treatment of the XUV Fe xxii line. I also selected this one together with
another line at 118.68 Å for the calculations.

As described above, many Fexix lines are found within and in the immediate vicinity of the
Ne ix triplet, the strongest ones are found at 13.456 Å, 13.506 Å, 13.525 Å and 13.799 Å (see
also Figure 4.3). Some of these lines may be fit directly in HEG and MEG spectra but this is
impossible for LETGS and RGS spectra. The best alternative is to use the global fit to the iron
lines by the ne fit routine, but this introduces similar problems to the calculations as does the
treatment of the XUV Fexxiii line. In particular theoretical ratios of some of these lines do not
exactly fit the measured ratios in the Capella reference spectrum (see the right panel of Figure
4.9), even with CHIANTI 5. Nevertheless, I applied this method, because the other stronger
lines in the short wavelength range, located at 14.669 Å, 15.081 Å, 15.208 Å and 16.11 Å, are

42



Figure 4.9: Left: Theoretical line ratio of the two FeXX lines at 121.84 Å and 132.84 Å and its
variation with density and temperature, calculated with CHIANTI. The ratio as a function of
temperature is calculated over the temperature range where Fe xx forms (cf. Figure 4.6). Note
the very small range of the ordinate, the ratio is next to constant. Right: Theoretical line ratios
of the three Fe xix lines at 13.506 Å, 13.525 Å and 13.799 Å. While the ratio 13.799 Å / 13.525 Å
fits the measured ratio of 0.44 in the combined Capella HEG spectrum (used as a reference in
the ne fit routine) quite well, the 13.506 Å / 13.525 Å ratio deviates from the measured value
of 0.64.

also affected by blending. In the long wavelength range, Fe xix lines at 101.55 Å and 108.36 Å
can be taken instead. The differences between theoretical and predicted fluxes for these lines
have been investigated by Ness et al. (2003a) and more recently by Desai et al. (2005).

With a further decrease in the peak formation temperature from 8 MK for FeXIX to 6.5 MK
Fexviii is reached. The two strongest lines of this ion are found at 14.207 Å and 16.007/16.076 Å.
Measurements of the two lines near 16 Å are strongly affected by Oviii Ly β at 16.006 Å. Fe xx

at 14.26 Å is in RGS and LETGS unresolvable from the line at 14.2 Å but gives only a minor
contribution, therefore this line will be included in the calculations. At longer wavelengths, the
strongest Fexviii line is found at 93.92 Å, but a blend with FeXX at 93.78 Å may not be
resolved in case of low signal-to-noise. Therefore I preferred the measurement of the somewhat
weaker line at 103.94 Å whereever possible. Desai et al. (2005) also investigated the reliability
of recent atomic data for Fexviii.

The Ne-like Fe xvii is the most frequent iron ion in stellar coronae and the strongest iron lines
in coronal spectra normally come from Fexvii. It forms over the broad temperature range from
2 to 8 MK, with a peak formation temperature of 4 MK. Five very pronounced lines located
at 15.015 Å, 15.262 Å, 16.777 Å, 17.05 Å and 17.095 Å can be detected, and because in RGS
spectra they are, together with the Fexviii line at 14.2 Å, often the only iron lines that can be
measured with reasonable accuracy, I included all of them in the calculations. I summarized the
measured counts of latter two, since they are not resolvable in the LETGS and in RGS 1st order.
Fexvii benefits in particular from the inclusion of the calculations by Gu (2003). While test
fits based on CHIANTI 4.2 resulted in considerable discrepancies between these lines, the final
calculations done with CHIANTI 5.0 give a much more consistent view. Several authors, e.g.
Ness et al. (2003c) and Matranga et al. (2005), used ratios of these lines as an opacity indicator.
Ness et al. (2003c) arrive at somewhat contradictory results with the atomic data available at
that time. It would be interesting to adopt their results to the new atomic data.

With Fexvi and its peak formation temperature of ≈2.5 MK the domain of lower coronal
temperatures is definitely reached. The much less frequent Fe xvi has its strongest lines at
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Figure 4.10: Transmission coefficients as a function of wavelength for different values of hydrogen
column density increasing from 1 × 1018 cm2 to 5 × 1021 cm2. The solid lines correspond to a
multiplicative factors of 1, the dashed lines to a factor of 2, and for the dash-dotted lines the
factor is 5. Note the pronounced oxygen edge at 22.9 Å for column densities around 1021 cm2,
the carbon edge is also visible at lower column densities.

54.71 Å, 62.87 Å, 63.71 Å and 66.36 Å, so they are exclusively observable with the LETGS.
Each of them is located in one of the two detector gaps of the HRC-S though, and therefore
they suffer from a significant decrease in effective area. (See Figures 3.3 and 3.4). The line at
66.36 Å is contamined by the forbidden line of the Ovii triplet in 3rd order. I measured the
stronger one at 63.71 Å whereever possible but it is usually not included in the calculations;
I suspect the either the atomic data of the Fe xvi lines or the LETGS calibration to be poor
because these lines provide systematically lower iron abundances.

Seldomly Fexv allows the measurement of the only stronger line in the available wavelength
range at 69.68 Å. The low-temperature ions Fexi to Fe xiv instead do not show strong lines
measureable with the XMM and Chandra gratings. The measurement of the Fex line at 174.5 Å
despite the very low effective area and the high instrumental background of the LETGS at that
wavelength (see the right panel of Figure 4.7) is an indicator for low temperature plasma, since
the peak formation temperature reduces to 0.9 MK for Fe x.

The Ar-like Fe ix line at 171.1 Å, although at first sight suggesting even lower temperatures
because of the peak formation temperature of 0.65 MK, is nonetheless easier to measure because
of the higher ion fraction and the broader temperature range covered. Unfortunately, the Chan-

dra LETGS is not particularly suitable to observe in that wavelength range. Due to the low
effective area (cf. Figure 4.7 and Chapter 3) count statistics are not very good which introduces
large errors to the calculations.

4.3.3 Interstellar absorption

Although the objects I studied in the course of this work are close by in the sense of astronomical
distances, attenuation by interstellar absorption must be taken into account for the lines with
longer wavelengths, especially for iron lines in the XUV range. The measured column densities
for the stars treated in Chapter 6 range from ≈ 1 − 5 × 1018 cm2, so noticeable effects become
visible for wavelengths ' 100 Å as can be read off from Figure 4.10.

44



CHIANTI does not provide the facility to compute the interstellar absorption for certain wave-
lengths, thus I adopted the IDL routine ismtau from the Package for the Interactive Analysis
of Line Emission (PINTofALE, Kashyap and Drake, 2000) that computes the absorption cross
sections of the ISM in the X-ray and XUV range as a function of wavelength. This routine
combines the calculations of several authors and is described in more detail in Chapter 3.2 of
the PINTofALE User’s Book, Version 2.0, 2004.

4.4 Continuum measurements

Continuum measurements are necessary to provide a normalization to the reconstruction of
theDEMM. There are essentially two methods to assess the level of the source continuum for a
stellar coronal X-ray source whose spectral emissivity is in general dominated by emission lines:
On the one hand one could look for regions in the spectrum that are free of strong lines and
take the average level of measured counts per Ångstrøm as a measure of the continuum flux at
a certain wavelength, on the other hand the line fluxes and the underlying continuum fluxes can
be fitted in one step.

Both possibilities suffer essentially from the same problem: the treatment of the pseudo-
continuum produced by weak, unresolved lines. Concerning the first method, there are no
spectral regions that are totally free of lines, and even in those regions where no strong lines ap-
pear, weaker lines are known and should actually be considered by an additional but unassessed
level of emission. Also the current atomic databases include a wealth of weaker lines but another
bulk of them must be considered unidentified or even unknown, apart from the uncertainty of
the atomic data of the already incorporated lines. Hence global fitting routines based on the
second method such as xspec or SPEX are also affected. Both methods would of course improve
from a combination with each other or iterative fitting procedures.

My own continuum measurement methods are rather simple and somehow primitive. Spectral
regions where only few weak lines are listed in CHIANTI are found at wavelengths of 2-3 Å,
19-20.5 Å and around 25.5 Å. The latter two regions are at lower temperatures dominated
by free-bound emission with striking edges from the oxygen K series (see Figure 2.3), so the
continuum flux there is slightly abundance dependent. Chandra HEG spectra provide enough
effective area for a reliable measurement in the first mentioned region while for LETG spectra
one of the latter two can be selected. I chose the region from 19.5-20.5 Å because there are fewer
lines listed than in the region around 25.5 Å. I cut the range from 19.0-19.5 Å since the emission
there is dominated by the wings of the strong Oviii line. The continuum flux is computed
by summing the measured source counts in these spectral regions, subtracting the background
counts and dividing by exposure time and the effective area at the central wavelength. The
contamination by existing lines is not considered, and no iterative steps to account for them are
applied. Of course, this procedure will always overestimate the true continuum flux.

I did not apply this technique to RGS spectra since the first wavelength interval is unelig-
ble due to low effective area and the latter two were considered to be heavily contamined by
the neighboring stronger lines because of the broad wings of the lorentzian-shaped line spread
function of the RGS. Instead, I tried a different approach here: Medium-resolution spectra were
created from the corresponding EPIC images as described above. These spectra were fitted in
xspec with APEC models with two or three temperature components and variable elemental
abundances. After successful and reliable fitting the abundances of the elements S, Ar, Ca, Fe
and Ni were set to zero, leaving the model flux at energies >2 keV limited to pure continuum
emission. Fluxes between 1-2 Å, 2-3 Å, and 3-4 Å (corresponding to the energy ranges 3.098-
4.131 keV, 4.131-6.198 keV, and 6.198-12.396 keV) were calculated. This method to assess the
continuum flux is of course heavily dependent on the prior fitted spectral model.
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Figure 4.11: Medium-resolution EPIC PN spectrum of Algol and the adapted model with the
abundances of S, Ar, Ca, Fe and Ni set to zero. The most significant deviations occur due to iron
lines, as well at lower energies around 0.7-1.0 keV (≈ 10 − 17 Å) which are not of importance
here, and at 6.7 keV (1.7-1.9 Å, Fexxv and Fe xxvi).

4.5 Differential emission measure from ratios of H-like to He-like

lines

Various methods to reconstruct the differential emission measure from high-resolution X-ray
and UV spectra can be found in the literature, see Güdel (2004) for an overview. Actually
most approaches make use of ”emission measure distributions”, i.e. discrete emission measures
binned in temperature. In this respect probably the most refined technique is the MCMC DEM

routine incorporated in the PINTofALE software package (Kashyap and Drake, 2000). It is
based on a Monte Carlo method developed by Kashyap and Drake (1998) and provides also the
statistical uncertainties of the best-fit emission measure distribution. More details can be found
in the PINTofALE User’s Book.

The mathematical realization of the inversion problem introduced by a set of equations in the
form of Equation 2.9 can be achieved with several techniques. Most of them bring along addi-
tional constraints to improve the stability of the fit and to avoid ambiguities, such as positivity,
artificial smoothness or a certain shape. The physical meaning and validity of these constraints
must be critically evaluated though. Many of these methods make use of iterative optimization
techniques.

One basic approach is to apply matrix inversion methods, usually involving regularization, to
the set of equations. Another one is to fit analytical functions to the DEM or to parts of it (e.g.
their slopes), for instance power laws with certain cutoffs in temperature have been discussed
to approximate the DEM of coronal structures. A way inbetween is realized by spline-fitting
techniques interpolating a smooth DEM between measured data points, see for instance the
routine CHIANTI DEM that is part of the software package appended to the CHIANTI database
and described in more detail in the CHIANTI Users Guide, Version 5.0, 2005.

All these DEM reconstruction techniques are usually – parallel to the integral inversion
problem – also confronted with a set of additional free parameters in the fit: the elemental
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abundances. Schmitt and Ness (2004) adopted the idea to make use of abundance-independent
line ratios applied for example by McIntosh (2000) before and thus to separate DEM recon-
struction and abundance fitting. Schmitt and Ness (2004) approximated the DEM determined
by H-like to He-like ratios by a sum of Chebyshev polynomials and assumed several boundary
conditions such as a maximum and a minimum temperature. Garćıa-Alvarez et al. (2005) and
Argiroffi et al. (2004) used such abundance independent ratios as input to the Monte Carlo
method of Kashyap and Drake (1998). Unfortunately they refer to a publication for a detailed
description of their method that is not existent.

The first of my approaches also makes use of the abundance-independent H-like to He-like
ratios and is in general similar to the one of Schmitt and Ness (2004).

4.5.1 Implementation

In the following calculations I used another notation for the contribution function and the
photon flux (Equations 2.5 and 2.9) to consider the specification of the abundances in terms of
solar photospheric ones. While other authors sometimes detach the abundance totally from the
contribution function, I split it up into the solar photospheric value and a multiplicative factor
describing the deviation from this value

n(X)

n(H)
= Ab(X)

n(X)

n(H)�
(4.2)

The solar photospheric value is included in the contribution function

G(T ) = Aji
nj(X

Z+)

n(XZ+)

n(XZ+)

n(X)

n(X)

n(H)�

n(H)

ne

1

ne
(4.3)

while the multiplicative factor Ab(X) enters the flux as an additional parameter:

fji =
1

4πd2
Ab(X)

∫

G(T )DEM(T ) dT (4.4)

The contribution function as defined in Equation 4.3 was calculated by the CHIANTI routine
g of t, see the CHIANTI User Guide for further details. It requires the specification of the
underlying abundances, an ionization equilibrium and a value for the electron density ne. I
adopted the solar photospheric values of Asplund et al. (2005) and the ionization equilibrium
computed by Mazzotta et al. (1998) that has been extrapolated to temperatures up to log T = 9.
The electron density was set to 1010 cm−3.

Practical considerations concerning the inversion of Equation 4.4 resulted in the application
of logarithmic scales. At first T was substituted by log T to handle smaller numbers. Besides,
g of t computes the contribution functions in a log T grid. With

d log T

dT
=

1

T · ln 10

Equation 4.4 alters to

f =
ln 10

4πd2
Ab(X)

∫

G(log T ) · T · DEM(log T ) d log T (4.5)

Second, I decided to model log DEM(log T ) instead of DEM(log T ). This ensures positivity
of the DEM ; a negative DEM would definitely be unphysical. The application of Chebyshev
polynomials as an approximation of the DEM as undertaken by Schmitt and Ness (2004) has
certain mathematical advantages like orthonormality and a simple normalization. Anyway, other
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functions may be used instead. I decided on simple polynomials of order N , with N varying from
2 to 8. Contrary to the Chebyshev polynomials such a simple polynomial has the disadvantage
that the higher order coefficients are not necessarily small, ”their sequence does not converge”.
Furthermore I tried to avoid setting further constraints and boundary conditions on the DEM
as maximum and minimum temperatures. Instead I denoted confidence ranges in log T for each
computed DEM where the measured line ratios and continuum fluxes were well-reproduced by
the corresponding theoretical values.

log DEM(log T ) = a0 + a1(log T ) + a2(log T )2 + ... + aN (log T )N =
N
∑

i=0

ai(log T )i (4.6)

and thus

DEM(log T ) = 10

N
P

i=0

ai(log T )i

(4.7)

The flux ratio of two H-like and He-like lines of a certain element becomes

rtheo =
fH

fHe
=

∫

GH(log T ) · T · DEM(log T ) d log T
∫

GHe(log T ) · T · DEM(log T ) d log T
(4.8)

where the multiplicative factor Ab(X) cancels down together with the star’s distance. Consid-
ering the components of Equation 4.3, the electron density, the proton-to-electron ratio and the
solar abundances also cancel down when assuming them to be temperature-independent so that
they can be taken out of the integral, leaving only the Einstein coefficient Aji, the ion fractions
of the H-like and He-like ions and the level population of the upper level of the atomic transition.

Inserting Equation 4.7 in Equation 4.8 gives

rtheo =

∫

GH(log T ) · T · 10

N
P

i=0

ai(log T )i

d log T

∫

GHe(log T ) · T · 10

N
P

i=0

ai(log T )i

d log T

(4.9)

The constant coefficient a0 makes a factor of 10a0 turn up in both integrals that can be truncated.
The coefficient a0 that provides a ”normalization level” can thus not be deduced from the ratios
and the resulting polynomial is undetermined. Instead of a0 the factor T enters the exponent
as 10log T

rtheo =

∫

GH(log T ) · 10
log T+

N
P

i=1

ai(log T )i

d log T

∫

GHe(log T ) · 10
log T+

N
P

i=1

ai(log T )i

d log T

(4.10)

The missing normalization is provided by the continuum measurements that have only a weak
dependence on the applied abundances. The flux of the continuum in a certain wavelength inter-
val can in principle be described by Equation 4.4 as well, with Gc(T ) now being the continuum
contribution function.

ctheo =
ln 10

4πd2

∫

Gc(log T ) · T · DEM(log T ) d log T (4.11)

=
ln 10

4πd2

∫

Gc(log T ) · 10
log T+

N
P

i=0

ai(log T )i

d log T (4.12)

CHIANTI provides the routines freefree, freebound and two photon to calculate the emis-
sivities of the three constituents of the continuum as a function of wavelength and temperature.
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The first two routines make use of previous calculations of gaunt factors and cross sections from
the literature. The corresponding references as well as short descriptions of these routines can
be found in the CHIANTI User Guide.

The polynomial coefficients ai are determined by minimization of a χ2-like expression

χ2 =
∑

j

(rj,mes − rj,theo)
2

rerr,j
+
∑

k

(ck,mes − ck,theo)
2

cerr,i
(4.13)

This mathematical formalism (together with additional subroutines that read ASCII files
with measured continuum fluxes and line counts, convert the latter into fluxes, compute error-
weighted means when required and assign the calculation of the contribution functions) was
implemented in an IDL routine called fit dem. The minimization is performed by the Powell
minimization procedure (Press et al., 1992) as implemented in IDL.

4.5.2 Abundance determination

Once a set of polynomial coefficients ai is returned by the Powell procedure, the abundances
Ab(X) can be calculated by forcing the theoretical flux to reproduce the measured line flux for
each line, i.e.

ftheo =
ln 10

4πd2
Ab(X)

∫

G(log T ) · 10
log T+

N
P

i=0

ai(log T )i

d log T
!
= fmes

Thus the abundance is given by

Ab(X) =
4πd2

ln 10

fmes
∫

G(log T ) · T · DEM(log T ) d log T
(4.14)

Assuming that the only variables in this equation having errors are the measured line fluxes, i.e.
neither the distance of the star and the hydrogen column density towards it contain measurement
errors, nor have the polynomial coefficients ai errors, a simple error propagation results in

Ab(X)err =
4πd2

ln 10

ferr
∫

G(log T ) · T · DEM(log T ) d log T
(4.15)

Moreover also the atomic data underlying the calculation of the contribution function, i.e. ion-
ization equilibrium, level population, collision rate coefficients etc. are supposed to be well-
determined and have no errors. These assumptions are of course a massive oversimplification
of the real situation and the thus deduced errors will be systematically too small. A more
comprehensive consideration of possible errors is nevertheless on the one hand not that easy
(for instance concerning the errors of the polynomial coefficients) and on the other hand these
errors are very difficult to assess (especially concerning the atomic parameters). A more detailed
discussion is found in Chapter 5.

Since normally more than one emission line is available for each element (two for those where
ratios could be built, and typically many more in case of iron) a mean value must be calculated.
An error-weighted mean including the lines i of element X is given by

Ab(X) =

∑

i

Ab(X)i

Ab(X)2err,i

∑

i

1

Ab(X)2err,i

=
4πd2

ln 10

∑

i

fmes ·
∫

G(log T ) · T · DEM(log T ) d log T

f2
err,i

∑

i

(
∫

G(log T ) · T · DEM(log T ) d log T )2

f2
err,i

(4.16)
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A minimization procedure leads to the same formula.

It arose that the thus computed absolute elemental abundances have a certain ”normaliza-
tion problem”, i.e. different sets of abundances of the same star, obtained even from the same
observational data differ by a common multiplicative factor. Hence additionally relative abun-
dances avoiding this problem were computed. I chose oxygen that provides usually reliable flux
measurements as the reference element. The relative abundances and their errors are obtained
from

X/O ± X/Oerr =
Ab(X)

Ab(O)
±

√

Ab(X)2err + Ab(O)2err ·
(

Ab(X)
Ab(O)

)2

Ab(O)
(4.17)

Corresponding calculations are appended to the fit dem routine.

To convert later between the thus abundances relative to Asplund et al. (2005) and other
sets of reference abundances used in the literature a simple multiplication with certain conver-
sion factors must be performed. Anyway, sometimes abundances are given in the logarithmic
notation, i.e.

[X/O] ± [X/O]err = log
Ab(X)

Ab(O)
±

√

Ab(X)2err + Ab(O)2err ·
(

Ab(X)
Ab(O)

)2

ln 10 · Ab(X)
(4.18)

4.6 Differential emission measure from iron lines

Preliminary test versions of the fit dem routine based on the H-like and He-like ratios included
additional ratios from iron lines of different ionization stages. These iron line ratios (based on
CHIANTI 4.2 atomic data) were however not compatible with each other and with the H-like to
He-like ratios and therefore they were removed from the fit. The search for an independent cross
check of the differential emission measures and abundances determined with the ratio method
led to a different application of these lines and finally to a second approach to fit the DEMs.

A consistency check for the determined differential emission measure should originate from
similar basic requirements: The DEM should cover a broad temperature range and must be
determined independent from the set of elemental abundances. This can be achieved by using
exclusively lines of a single element but of various ionization stages. Again a normalization
with continuum measurements is required, and the abundance of the used element becomes an
additional fit parameter.

In practice, the only element this method can be applied to is iron, since it is the only heavier
element that – due to its relatively high abundance – provides enough lines that are strong
enough. Lighter elements such as carbon, nitrogen, or oxygen cover only the lower temperatures.
Several authors made use of this approach, e.g. Linsky et al. (2002), Ness et al. (2003a) and
Sanz-Forcada et al. (2002)

Confined to the X-ray spectral range observable with the Chandra and XMM-Newton gratings,
the temperature range of log T = 5.5 to 8.0 is covered by lines of Fe ix to Fexxv. It is however
usually not possible to measure all the available lines, i.e. HEG spectra of stars with very hot
coronae will show the Fe xxv triplet but LETGS spectra of the same star will probably not
show the low-temperature Fe ix line and vice versa. Nevertheless the input to the iron line fit
usually consists of several more lines than ratios are available for the corresponding ratio fit.
The (supposed) greater uncertainties and errors in the atomic data of the single iron lines have
thus the chance to cancel and average out.

The mathematical implementation of the DEM reconstruction follows exactly the same
scheme as applied to the ratio fit, only with different input data. Instead of the ratios a set of
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iron line fluxes from the lines described in Section 4.3.2 is used

fFe =
ln 10

4πd2
Ab(Fe)

∫

GFe(log T ) · T · DEM(log T ) d log T (4.19)

The differential emission measure should again be represented by analytical functions – again
by simple polynomials as defined in Equation 4.7. The coefficients ai – together with the iron
abundance – are determined by the minimization of the corresponding expression

χ2 =
∑

Fe

(fFe,mes − fFe,theo)
2

ferr,Fe
+
∑

k

(ck,mes − ck,theo)
2

cerr,i
(4.20)

As soon as the DEM is determined by the polynomial coefficients the abundances of the
elements other than iron can be determined as described above.

The whole iron line fit method also became part of the fit dem routine that now applies the
two methods concurrently.
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5 Results and discussion

5.1 Stability of the fit

The numerical evaluation of the integrals in Equations 4.10, 4.12 and 4.19 with log T ranging
from 5 to 9 by the Powell procedure requires the numerical handling of high numbers due to
the terms 10(log T )i

, especially for polynomials of higher orders. To prevent the procedure from
being caught into a numerical overflow loop I introduced a shift in the temperature variable
log T . This shifting parameter (called tshift) was usually set to −7 so that the temperature
range was centered around zero. An even greater shift could lead to numerical underflows
instead. Additional to this substitution the routine was assigned to do all calculations in double
precision.

Concerning the fit of the H-like to He-like ratios, lower order polynomials, i.e. the parabola
and the 3rd order polynomial, usually gave a ”reliable” result in the sense that these polynomials
show a maximum somewhere in between T = 1 MK to 15 MK, with log DEM values ranging
from 44 to 47 cm−3 K−1.

Depending on the available number of ratios and continuum intervals, polynomials up to the
8th order could be fitted, but not always a numerically stable fit was possible, i.e. the Powell
procedure ran into an overflow loop or the fit did not converge even with an increased number of
maximum allowed iterations. From 4th order upwards the polynomials should be able to show
a more differentiated structure, i.e. two or later even more maxima. The ratio fits are in this
respect somewhat inert due to the the broad temperature range covered by each ratio and the
small number of ratios available at all. Even if these fits show more features than one maximum
these structures are typically not very pronounced.

The stability of the iron line fit depends extremely on the lines used and on their number
and distribution in temperature, i.e. five lines originating only from Fexvii and Fexviii – in
some RGS datasets the only available iron lines – have most likely not the ability to reproduce
a reasonable DEM . In the HETGS and LETGS spectra typically many more iron lines with
a broad distribution of ionization stages and thus covered temperature can be measured. Thus
polynomials with much higher orders than applied in the ratio fits could be fitted if it had not
been for numerical overflow problems. The individual contribution functions of the iron lines
sample a narrower temperature range than do the H-like to He-like ratios (see Figure 2.2) and
thus the iron line fit easily forms structures at higher temperatures. The question is however
how reliable these structures are since too many lines overlapping in temperature oversample
the temperature range. As a result discrepancies between the individual lines can amplify to
oscillations at higher order N , see e.g. Figure 6.30.

Here also uncertainties in the atomic data come into play because they are most likely the
reason for the initial scatter of the lines and thus the amplification process. This correlation is
clearly revealed by a comparison of the CHIANTI versions 4.2 and 5.0. While the iron line fit
only seldomly converged to reasonable results with CHIANTI 4.2, the same measured line fluxes
gave much more plausible DEMs with version 5.0 in the majority of cases. There are however
some datasets that did not provide a reliable DEM reconstruction even with CHIANTI 5.0
applied, see e.g. Figure 6.21. In this case even the parabola does not have a maximum in the
considered temperature interval, and the normalization of the fitted polynomials from individual
orders varies enormously. The polynomials from the iron line fit tend to oscillate at higher orders
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or the fit did not converge still with CHIANTI 5.0. Thus a restriction to lower orders, at least
to the maximum order of the corresponding ratio fit is advisable.

5.2 Influence of constraints and initial conditions

There are various parameters that enter the DEM and abundance calculations. Most of them
have only minor or even no influence on the final results. For instance, the tshift parameter
mentioned above that has an influence on the fit stability. It results in a shifting of the fitted
polynomial, but as soon as the shift is substituted, different tshift values give identical DEMs.
The contribution functions calculated by the g of t routine are no analytical functions but
tabulated on a temperature grid. The width of this grid is by default ∆ log T = 0.1, but it
can be varied. A smaller width samples the contribution function somewhat better and thus
leads to a more precise computation of the integrals in Equations 4.10, 4.12 and 4.19. Too small
values however just oversample the temperature grid what decelerates the calculation of the
integrals and does not lead to improved results. The chosen temperature grid has therefore a
minor influence.

However, the solution of an integral equation like Equation 2.9 always depends on initial con-
ditions, and iterative processes like the Powell minimization procedure depend on initial values
for the iterated parameters. The resulting effects and discrepancies can be very conspicuous.

5.2.1 Initial values of the polynomial coefficients

The Powell procedure requires initial values of all the parameters entering the minimization, i.e.
the polynomial coefficients a0, a1, . . . , aN , and in case of the iron line fit additionally an initial
iron abundance Ab(Fe). Concerning the polynomial coefficients, I set a0 = 45 and ai = 0 with
i = 1, . . . , N . This gives a reasonable normalization but no other restrictions. The initial iron
abundance in the iron line fit was set Ab(Fe) = 1.

The setting of these parameters has a definite influence on the final set of minimized pa-
rameters returned be the procedure, since the Powell procedure may run into a local minimum
during the iteration it cannot escape from. This problem occurs especially with higher order
polynomials where the parameter space can have various local minima while at lower polynomial
orders usually only few pronounced minima exist. I tested several sets of initial values for the
polynomial coefficients, and parabola and 3rd order fit always gave the same final result. From
4th order on though, different initial values yielded different polynomials.

These polynomials can have very different coefficients but usually look similar restricted to
typical log T intervals. This is a problem arising from the fact that in an approximation by
simple polynomials the higher-order coefficients are not necessary small and converge to zero as
they would do for instance for Chebyshev polynomials or other sets of orthogonal functions. It
is thus difficult to give unambiguous initial values for the higher-order coefficients.

I eventually implemented a successive calculation of the polynomials with increasing order
in the fit dem routine. It takes the parameters resulting from a previous fit as initial values
for a new fit with the order N incremented by one, with the highest coefficient initially set to
zero. A parabola or a 3rd order polynomial (given by the parameter startorder) with initial
values as described above was usually applied as the starting order for this chain. As a result,
the fit sometimes ”converges” to a certain shape (i.e. the highest coefficient was fitted to a very
small number and the other coefficients do not change much, see e.g. the fourth and fifth order
polynomials in Figure 6.2). In some cases however, the fit ”escapes” from this local minimum in
the next higher order, see e.g. the fourth and fifth as well as the sixth and seventh order fits in
Figure 6.15. This method will however not always provide the real minimum set of parameters.
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5.2.2 Constraining the slopes of the DEM at the temperature boundaries

The overall shape of a polynomial is determined by its order, i.e. a parabola will always have a
rising and a falling slope and one extremum, a third order polynomial has two extrema and so
on. The polynomial coefficients ai scale height and width and determine the position of these
features in a certain coordinate plane.

The DEM reconstruction restricts this coordinate plane to a certain area of interest – ranging
in this study from approximately 5.5 to 8 in the log T direction and from 43 to 48 in the
log DEM direction. The shape of the polynomial outside this area is not of interest. The
individual lines, ratios and continuum fluxes in turn cover again only a small portion of the
mentioned temperature interval and can determine the shape of the polynomial representing the
DEM only at these temperatures. A complete coverage of the temperature interval is seldomly
achieved, especially the boundaries are often only poorly determined.

As a result, undesired effects like rising slopes towards the high- and low-temperature edges can
occur. Such an – artifical – increase has unphysical consequences for a real differential emission
measure: Towards very low temperatures (log T � 5) a rise of the DEM is actually possible, the
resulting emission measure is however not related to the corona and though not of interest here.
If such an increase towards lower temperatures starts even at log T = 6 (see e.g. Figures 6.10
and 6.12), the emission measure of the low-temperature corona, of the chromosphere and of the
transition region in between will be overestimated. On the other hand an unceasing increase
of the DEM towards extremely high temperatures cannot reflect real physical conditions since
the coronal plasma must have a maximum temperature above that no emission measure exists
(”cutoff temperature”).

Hence the question arose how to deal with polynomials showing such rising slopes. With
CHIANTI 4.2 the available ionization equilibrium tables were limited from log T = 4 to 8. This
was very unfavorable for the calculation of the differential emission measure at temperatures
higher than log T = 7 because the continuum measurements have a certain influence on the shape
of the DEM at these temperatures. As mentioned in Section 2.2, a real continuum contribution
function is not bounded above in temperature, but the boundary at log T = 8 emulates such a
temperature cutoff. Thus a DEM with less emission measure between log T = 7 and 7.5 but
increasing from log T = 7.5 upwards can artificially reproduce the measured continuum fluxes
since no ratios or iron lines cover the high temperatures of log T > 7.5.

This problem occurred quite often and I attempted to solve it by forcing the slope of the
DEM at log T = 8 to be negative. Following this principle I also introduced the possibility to
constrain the slope at lower temperatures to positive values. This approach did not work though.
Constraining one or even both of the slopes often prevented the whole fit from converging, and
if the fit converged it just gave a poor reproduction of the measured continuum flux instead
of redirecting the emission measures. I therefore abandoned the attempt to force the slopes of
the DEM to a certain shape and decided instead to define a confidence interval in temperature
for each fit that is well-covered by H-like to He-like ratios or iron lines respectively so that the
reconstructed DEM is reliable in between.

The possibility finally to avoid the rising slope towards higher temperatures came unexpect-
edly with CHIANTI 5.0. The new database includes an ionization balance table based on the
calculations by Mazzotta et al. (1998) but extended up to log T = 9. The calculation of the
continuum contribution functions up to these high temperatures prevents the fitted DEMs from
rising towards higher temperatures since this would require a much higher measured continuum
flux. Since this extended ionization equilibrium is applied none of the reconstructed DEMs
shows a rise towards higher temperatures.
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5.3 Quality of the DEM fit and the deduced abundances

A fundamental assumption underlying the fit dem routine is that real-existing differential emis-
sion measures of stellar coronae can be modeled with simple polynomials. The questions in this
respect are if a polynomial is generally able reproduce the shape of a true differential emission
measure and if the fit dem routine provides the ability to perform a reasonable approximation
from the available input data.

The physical information provided at least by low-order polynomials is limited since the
shape of the thus reconstructed DEM is determined by the properties of the polynomial, i.e.
a parabola cannot contain more information than a simple axially symmetric rise and decay.
Nevertheless even such simple analytical functions like a parabola contain the basic information
underlying the DEM , i.e. a temperature of maximum emission measure and a temperature
interval providing a certain level of emission measure at all.

The higher the order N of the polynomial the better existing structures in the differential
emission measure like maxima, minima and slopes can be reproduced. It it however difficult
to assess to what extent real differential emission measures are structured at all, and if so how
pronounced these features are. Other issues are whether the available measurement data – the
high resolution spectra obtained with Chandra and XMM– have sufficient quality to contain
the information about this structuring and whether the atomic data underlying the spectral
modeling – that are at most based on theoretical calculations – have sufficient quality to extract
this information in the modeling process. The current high resolution X-ray spectra have some
calibrational uncertainties, their spectral resolution is of course technically limited, but otherwise
the fundamental limit of Poisson statistics is reached. The assessment of uncertainties in the
atomic data is much more difficult, see the discussion below. An estimate of the arising errors
confirms that the DEM reconstruction is limited rather by the quality the atomic data and not
by the input spectra.

Considering this it makes no sense to fit polynomials with orders higher and higher, since they
will not provide new information. If the reduced χ2 values provided by Equation 4.13 and 4.20
are taken seriously, polynomials with orders ranging between 3 and 5 often provide the best fit
results. From the sample of different stars and datasets I investigated I would conclude that
it is usually not necessary to fit polynomials with orders greater than 6, even if the number of
available H-like to He-like ratios / iron lines and continuum fluxes allows these fits with respect
to the existing degrees of freedom.

In general these fits provide polynomials with a reasonable shape within the confidence interval
in temperature to represent the differential emission measures. The fit to the H-like to He-like
ratios usually reproduces the measured ratios and continuum fluxes within the measurement
errors. The fit to the iron lines provides similar values for the iron abundances deduced from
the individual iron lines lines and reproduces the continuum fluxes. A certain problem arises
however from the fact that continuum measurements at short wavelengths affect the DEM only
at higher temperatures. Thus the shape of a reconstructed DEM may be ”divided”, i.e. at lower
to intermediate temperatures it is determined by ratios or iron lines and at higher temperatures
it depends exclusively on the continuum when corresponding ratios are missing. An alleviated
version of the problem previously leading to the rising slopes towards the high-temperature
boundary could thus occur. Since the normalization of the whole differential emission measure
depends on the continuum measurements it is thus possible to obtain a DEM with a shifted
normalization level.

As a result the complete set of abundances Ab(X) derived from the reconstructed differential
emission measure is systematically deviating by a multiplicative factor corresponding to this
shift in normalization, i.e. if the whole log DEM is too low by 0.3 cm−3

K−1 the resulting
abundances are too high by a factor of 2. It is a priori unknown if such a normalization problem
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biases the determined absolute abundances, and if so by what order of magnitude. I therefore
additionally calculated relative abundances with oxygen as the reference element. These relative
abundance are independent of this normalization problem.

The relative abundances deduced with polynomials of different orders or from different datasets
of the same star usually compare well with each other. Thus even if they do not match the re-
sults from an independent global fit with xspec, or values reported in the literature I consider
the relative abundances in general to be very reliable since the literature values – even when
obtained from the same star and dataset but with different methods – show occasionally also a
broad distribution.

5.4 Error analysis

Errors and uncertainties from various sources enter the DEM reconstruction and abundance
calculation as described in Sections 4.5 and 4.6. Unfortunately only few of them can be con-
sidered when evaluating the errors of the deduced abundances and the only errors I introduced
into error propagation calculations are the statistical uncertainties of the measured line counts
and continuum fluxes. Complicating cases like upper limit measurements have never been taken
into account.

Further values having measurement errors are the distances and column densities taken from
the literature. The stars in the sample studied here are nearby and relatively bright. The
parallax errors listed for these stars in the Hipparcos catalog range from only 1% to 6%, and are
thus more or less negligible. Concerning the adopted hydrogen column densities, Wood et al.
(2005) specify a general uncertainty of 10% for their measurements, the value adopted from
Sanz-Forcada et al. (2002) should have the same order of magnitude. The biggest problems
in this respect arise for Algol, where only contradictory values from various global fits to low-
resolution X-ray spectra were available so that I had to estimate an appropriate value. I did
however not consider these uncertainties in the fit dem routine.

On the other hand there are several parameters that must be set in the course of the fitting
procedure and that have a certain influence on the final results as mentioned in Section 4.5.
There is for instance the density assumed to calculate line and continuum emissivities. I fixed
it to 1 × 1010 cm−3 in all calculations, which is a relatively low value. The H- and He-like
lines and most of the iron lines are resonance lines, the dependence of their line emissivity on
the density is similar and relatively weak for lower densities. Not until extremely high density
values (≥ 1013 cm−3) are reached, the emissivities of these lines start to increase strongly. The
vast number of density measurements for many stars published in the literature in recent years
suggest that such extremely high densities are not common in stellar coronal plasmas in quiescent
state, see for instance Ness et al. (2003b) and Testa et al. (2004). Thus it seems to be justified
to assume such a low density value.

Of course, the densities stated here, also those explicitly contained in the differential emission
measure, are average values assuming the density to be constant in the whole coronal plasma,
although the coronal plasma must not necessarily be in such an equilibrium state. Density and
and also the elemental abundances can vary locally or even with temperature as it is observed
on the Sun. We are however not in a position to distinguish such circumstantial situations from
spatially unresolved stellar measurements. Emissivity calculations with CHIANTI are based on
the ionization equilibrium condition. In case of strong flares, this condition may not be fulfilled.
Calculations outside the ionization equilibrium are difficult to implement and are however beyond
the scope of this work. Nevertheless even individual ionization balance calculations differ, and
the contribution functions depend on the ionization balance adopted. From those available in
the CHIANTI database the one calculated by Mazzotta et al. (1998) is the latest updated and
most commonly used. As mentioned above I made use of an extended version that is new
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in CHIANTI 5, covering temperatures up to log T = 9. Gu (2003) showed that the detailed
consideration of recombination processes can change the ionization equilibrium significantly, it
is therefore questionable whether the one of Mazzotta et al. is still up to date.

The coronal plasma is assumed to be optically thin, i.e. no resonant scattering should occur.
Non-zero optical depths would extremely complicate the calculations and require a treatment
with much more sophisticated coronal model. The question if resonant scattering occurs in stellar
coronal plasmas is still unanswered, Ness et al. (2003c) argued that strong resonant scattering
is unlikely for the stars in their sample but it could not be excluded. Photoexcitation effects
originating from radiation fields can thus clearly considered to be negligible. The resonance lines
are not involved in transitions that can be stimulated by the stellar photospheric radiation field,
the only possible photoexcitation processes correspond would to resonant scattering.

Even the initially assumed set of abundances has a certain influence on the calculations since
they directly enter the continuum contribution functions. The only possibility to avoid this is an
iterative process where the abundances deduced after the DEM fitting enter a new calculation
of the continuum contribution functions. Such an iteration scheme is not yet implemented in
the fit dem routine.

The abundances by Asplund et al. (2005) that I adopted constitute the latest and most
consistent collection of solar photospheric abundances, but they do not necessarily fit stellar
abundances, neither photospheric nor coronal. A comparison of the deduced stellar coronal
abundances relative to the corresponding photospheric ones as it was done e.g. by Sanz-Forcada
et al. (2004) would be the ideal case to give a statement concerning FIP or inverse FIP effects,
but stellar photospheric abundances can also only be determined with great difficulty, especially
for the crucial elements carbon, nitrogen and oxygen, for neon it is even impossible.

The really crucial uncertainties arise however from the atomic physics data underlying the line
emissivity calculations. It is extremely difficult to measure collision rate coefficients, decay rates
and so on for highly ionized atoms under the conditions predominating in stellar coronal plasmas
(i.e. very high temperatures and very low densities) in the laboratory. The only remaining way
to obtain these numbers is to perform theoretical calculations. Such calculations are of course
the more precise the more physical processes are included. Thus the population of a single level
depends on the interplay of various populating and de-populating processes that link thousands
of other levels of the same ion and of the neighboring ionization stages. These calculations
require considerable numerical resources, and they must be restricted to a certain number of
important levels and processes. It is however difficult to assess these relevant processes and
levels and the influence of further extensions of these calculations. As a consequence it is often
unknown how to evaluate the quality of the atomic data now available from databases like
CHIANTI or APED.

I got a feeling of the impact of the quality of the atomic data by the change from CHIANTI
4.2 to 5.0. The significant improvements im my fits due to the application of the new data
and extended calculations were eye-catching, in particular concerning the agreement of results
obtained from different iron lines. However, it is still difficult to assess the absolute level of
goodness and to determine errors. The emissivities of H-like and He-like lines are considered to
have small errors, at least smaller than those of the iron lines, but assumed error ranges reported
in the literature range from 10% to 30%.

Even if one wants to include these errors in the minimization procedure it must be considered
that the uncertainties in the atomic data are systematic errors rather than statistical errors
that do not follow a normal distribution and thus do not fit the mathematical formalism of
χ2 statistics. (Strictly speaking the Poisson distributed errors in the line counts do not either.)
Sanz-Forcada et al. (2003) argued that the uncertainties in their reconstructed emission measure
distributions are dominated by errors in the line emissivities rather than by the errors of the
line counts. Relative Poissionian errors are the smaller the stronger the regarded line, but the
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strongest lines do not necessarily have the better known atomic data. Therefore Sanz-Forcada
et al. rejected a minimization with χ2 and applied a method giving all lines the same weight
instead. Such an approach is worth discussing.

Apart from the consideration of various errors entering the DEM fitting procedure it is just as
difficult to determine the errors resulting from the fitting. As a matter of fact, the polynomial
coefficients returned by the Powell procedure have errors that ought to enter the subsequent
abundance calculations and thus increase the derived errors of the abundances. There is however
no simple way to calculate the errors of the polynomial coefficients, the only reasonable approach
is given by the variation of the input data with a Monte Carlo method as it was done by Kashyap
and Drake (1998) in their emission measure distribution reconstruction method. The application
of a Monte Carlo method to the fit dem routine is however additionally complicated if not even
ruled out by the fact that very different sets of coefficients may reproduce the original DEM
equally well while a slight variation of one of the coefficients may result in a polynomial with a
very different shape in the temperature confidence interval. This is the main reason why I did
not implement such an approach.

5.5 Open issues and possible improvements

The fit dem routine is still far from perfection and offers several approaches for further improve-
ments and extensions. I was not able to perform a final cross-check of the calculated DEM and
the deduced abundances that includes the application of the polynomial DEM and the derived
set of abundances as input to CHIANTI’s make chianti spec routine that computes synthetic
spectra for lack of time. The thus obtained synthetic spectra could be compared to the observed
data.

It is surely worth testing if functions other than simple polynomials as a representation of the
DEM give strongly deviating and/or better results. A set of orthogonal functions would show
convergence for the higher-order coefficients which provides several mathematical advantages.

It would be very simple to combine the two fitting methods presented here to a single method.
The resulting combined fit may join the positive properties of both approaches, i.e. the better
stability of the ratio fit and the better ability of the iron line fit to reproduce fine structure in
the DEM . (On the other hand the opposite may happen.)

Especially the ratio fit is often limited by the small number of available H-like to He-like ratios.
It would be simple to extend the list of temperature-dependend but abundance-independent
ratios, for example with ratios of Ly α to Ly β. Thus it may be possible to cover temperature
ranges inaccessible with certain datasets before, e.g. the RGS does not provide the measurement
of the carbon H-like to He-like ratio but would allow the measurement of carbon Ly α to Ly β.

Also for the lack of time I was not able to implement an iterative process to consider the
abundance dependence of the continuum as mentioned above. The current treatment of the
continuum in general requires further improvements though, since it is probably the cause of
the normalization problem mentioned above. A more reliable continuum measurement must at
least provide more data points whose continuum contribution functions also cover lower tem-
peratures, i.e. they have to be located at longer wavelengths. In combination with an iterative
process aligning the abundances a correct normalization in the whole temperature confidence
interval might be achieved. Another possibility would be to exclude the now applied contin-
uum measurements from the fit and use instead the source background of the individual lines
measured with CORA. A non-normalized DEM (i.e. with an unknown polynomial coefficient
a0) can thus be scaled so that the reproduced continuum fluxes agree on average with the data.
Such an approach is probably much better than simple photon counting in few spectral regions
supposed to be free of lines, although it still would not consider the pseudo-continuum created
by unresolved lines.
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6 Individual stars

I have studied several stars with the method described in Chapter 4. Here I provide the detailed
results on a small selection distributed over the Hertzsprung-Russel-diagram. For each of the
chosen stars multiple observations, obtained with more than one instrument, are available so
that the results acquired from the single datasets can be compared. I also took the opportunity
to combine the measurements of different instruments to increase the number of measured lines
and therefore to extend the temperature range covered by the fit. A discussion whether this is
reasonable in the individual cases is appended, since big spaces of time may lie inbetween the
distinct observations and different stages of activity may be covered.

For each of the listed observations additionally the lightcurve and a fluxed spectrum are given
to evaluate the short-term variability of the source and to compare the state of activity of all
the datasets of the same star. The lightcurves of Chandra HETGS and LETGS observations
were obtained from the counts contained in the 0th order image and the dispersed spectra,
LETGS lightcurves were dead-time-factor corrected. For datasets obtained with XMM-Newton,
the lightcurves were usually determined from the data of the EPIC PN detector running parallel
to RGS and MOS. Effects of pile-up on the lightcurve were not considered since the overall shape
of a lightcurve will be influenced by pile-up only when enormous changes in count rate occur,
besides the lightcurves have only minor relevance for the subject of this work. The lightcurves
were grouped in bins of 300 s if not stated otherwise. The fluxed spectra were in case of
Chandra data directly calculated from count spectra, effective area and exposure time, positive
and negative 1st order summed up. RGS spectra were created with the SAS task rgsfluxer

and contain the merged data from both RGS instruments in 1st and 2nd order. The binsize
of the spectra is 0.0125 Å, 0.015 Å, 0.0375 Å and 0.0103 Å for HEG, MEG, LETGS and RGS
respectively.

Considering the single observations, HETGS datasets were always regarded completely, i.e.
line counts of HEG and MEG spectra are fitted separately but the line fluxes for each line were
averaged and overall differential emission measure distributions and abundances were calculated.
The spectra of RGS 1 and 2, in 1st and 2nd order, were also treated together the same way.
This procedure should be reasonable since the mentioned detectors operate parallely.

For each of the analyzed datasets I show plots of the calculated DEMs – normally as well from
the fit of the H-like to He-like ratios as from the iron lines, plotted in black and red respectively.
For better clarity, the DEMs from each available polynomial are plotted separately but with the
same ranges and scales. The minimum order is usually 2, representing thus a simple parabola.
The maximum order of the fitted polynomials is constrained either by the ability of the fit to
converge or by the available degrees of freedom, the latter is the prevalent case for the ratio fits.
The plots of the differential emission measures are arranged in increasing order from left to right
and top down.

The quality of each single DEM fit can be evaluated from the prediction of the measured line
fluxes, ratios and continuum fluxes the fit is initially based on. The values of reduced χ2 are
also given. For the ratio fits they are based on Equation 4.13 and thus on the H-like to He-like
ratios and the continuum fluxes. The corresponding value for the iron line fits – although listed
again with the ratios – is based on Equation 4.20, i.e. on the iron lines and continuum fluxes.
The column belonging to the polynomial with the minimum χ2 is highlighted in grey, also in the
following tables, where the deduced abundances are listed. The abundances are itemized relative
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to oxygen and also absolutely, despite the uncertain normalization as mentioned in Chapter 5.
For comparison, I give also the abundances obtained from a global fit to the high resolution
spectra with two or three temperature components accomplished with xspec. For consistency
checks I eventually list the abundances derived for each line individually. This helps to identify
problematic lines, i.e. significantly deviating lines or those with large errors, especially within
the bunch of iron lines. Iron lines that were not included in the fit are marked with asterisks.

If the derived ratios or abundances exceed the value of 100 (which is very unreliable) they
are replaced by asterisks. Admittedly, even once these values reach 15 or 20, they become
untrustworthy. Especially with iron line fits based on very few lines values of zero and NaN
(representing infinity) also occur, clarifying that the DEM fit is definitely not credible in the
corresponding temperature interval or that the normalization is wrong.

For the calculations two additional numbers were needed: The first is the distance of the star,
the second is the hydrogen column density NH towards it. For all stars treated in the following
Hipparcos parallaxes were adopted (Perryman and ESA, 1997). The hydrogen column density
towards AB Dor and UX Ari was taken from Sanz-Forcada et al. (2002), for AU Mic I adopted
the value derived by Wood et al. (2005).
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6.1 The zero-age main sequence star AB Dor

On the night sky AB Dor is an inconspicuous star with mV = 6 .m9 in brightness, located not
far from the Large Magellanic Cloud in the constellation of Doradus. Yet it is an interesting
object to observe in X-rays, since it was classified as a zero-age main sequence star. Statements
concerning its spectral type and luminosity class in the literature vary from K0–2 and III–V. Its
age was estimated to be approximately 20–30 Myr. With a distance of 14.9 pc, AB Dor is thus
the nearest K-type ZAMS star. It is a fast rotator with v sin i = 90 km s−1, resulting in a rotation
period of 0.5148 d. Strong magnetic fields arise that have been studied with Zeeman Doppler
imaging techniques. Hence it is no wonder that AB Dor is a very luminous X-ray source that has
been extensively studied with almost every X-ray satellite since its discovery in X-rays in 1981.
Rotational modulation has been detected in various wavelength bands and Doppler imaging
campaigns revealed the existence of dark spots, in particular a long-lived, extended polar spot.
Further details on AB Dor can be found in Garćıa-Alvarez et al. (2005) and references therein.

The X-ray emission of AB Dor is with a luminosity of ≈ 1030 erg s−1 very close to the
saturation limit – not unusual for such a young and rapidly rotating object. The observed level
of activity ranges from periods of relative quiescence and slow variation to extremely strong
and repeated flaring, with flaring periods being recurrent. Rotational modulation in X-rays at
levels up to 15% has been verified, indicating that at least part of the X-ray emission originates
from spatially limited regions on the star. The sizes of the X-ray emitting coronal structures
are calculated to occupy only small fractions of the stellar surface but raising to heights of the
order of the stellar radius (Sanz-Forcada et al. (2003), Hussain et al. (2005)).

AB Dor has two companions, the dM4e star AB Dor B at a distance of 10′′ and a very low-
mass star close by. With Chandra, AB Dor A and B can be clearly separated, while in the
XMM EPIC images the source appears just elongated and in the RGS a separation is not also
possible. Sanz-Forcada et al. (2003) argue from the analysis of Chandra HETGS data that
the contribution of the two late-type companions to the total X-ray emission is negligible, they
compute the contribution of AB Dor B to the overall X-ray luminosity not to exceed 4%.

The emission measure distribution of AB Dor is found to be concentrated between log T ≈
6.5− 7.5 (Sanz-Forcada et al. (2003), Garćıa-Alvarez et al. (2005)) with the shape of the DEM
being similar at different activity levels. Early abundance calculations indicate a sub-solar
metallicity. Sanz-Forcada et al. (2003) find an intermediate behavior between the FIP effect and
the inverse FIP effect from XMM and Chandra data while Garćıa-Alvarez et al. (2005) do not
confirm this trend and report an overall inverse FIP effect. The observed abundance anomalies
are however less extreme than observed in very active stars.

6.1.1 The HETGS dataset ObsID 16

Chandra observed AB Dor with the HETGS on 9 October 1999 for 52.3 ks. This dataset has
among others been discussed by Sanz-Forcada et al. (2003) and Garćıa-Alvarez et al. (2005), the
latter derive emission measure distributions and abundances from line ratios of H-like to He-like
lines in combination with iron lines as input to the algorithm developed by Kashyap and Drake
(1998). Since the underlying method is very similar to the one I used, a comparison between
their results and those I obtain is quite interesting.

Figure 6.1 shows the lightcurve and the fluxed HEG and MEG spectra of the observation.
The lightcurve is – with regard to AB Dor’s usual behavior – comparatively quiescent, showing
only one moderate flare. The spectra reveal a not very distinct continuum, indicating moderate
temperatures; and the strongest lines arise from Nex and Oviii.

The HEG and MEG spectra allowed the measurement of H-like to He-like ratios from all ele-
ments well-covered by the HETG wavelength range, i.e. oxygen, neon, magnesium, aluminium,
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Figure 6.1: Lightcurve (left) and spectrum (right) of the Chandra HETGS observation 16, tar-
getting AB Dor.

silicon and sulfur, whereas the oxygen ratio has a relatively large error (cf. Table 6.1). The
DEM reconstructed from these ratios can thus be valid only for higher temperatures ranging
from ≈ 4 MK to 20 MK (log T from 6.6 to 7.3). The available iron lines (Fe xvii to Fexxiv,
not counting the Fexxv triplet, cf. Table 6.6) cover essentially the same temperature range.

The respective parabolas, the simplest fitted polynomials, look very similar for both the ratio
and the iron line fit, with a maximum at log T ≈ 6.8. This changes considerably for the third
order polynomial, where the normalization of the DEM from the ratios lowers in contrast to the
iron line fit, where the DEM is lifted up. Consistency is reached only for lower temperatures
where the fit would not be valid. The two forth order polynomials show a similar structure (two
peaks with the second one an order of magnitude lower) but they are shifted in temperature
and normalization. The first maximum is located at 5 MK for the ratio fit and at 7 MK for the
iron line fit. The second peak is correspondingly located at 20 MK and 45 MK respectively, the
latter is definitely outside the reliable temperature range. However both fits seem to converge
in 4th order, the fifth order ratio fit is virtually identical to the fourth order fit, and the iron
line fit differs only a little.

Table 6.1 shows that the overall fit results are in general better for the ratio fit, while the
iron line fits with orders greater 3 are not able to reproduce the oxygen, neon and sulfur ratios.
The iron abundances (when omitting the Fe xxv triplet and the Fe xx line that clearly deviate
from the other lines) deduced from the ratio fit (Table 6.4) scatter with a factor of ≈ 2.5. Both
parabolas reproduce the ratios moderately but a parabola must be considered to be a poor fit
to the DEM . The 4th order ratio fit appears to provide the best solution.

The absolute abundances deduced from the DEMs of the ratio fits (Table 6.5) differ by
multiplicative factors due to the different normalizations of the DEMs. Neither of the 4 sets
matches those derived from the global fit with xspec. The resulting relative abundances instead
agree with each other within the errors but they match only few from the global fit. The largest
deviations arise for argon what is reducible to a questionable measurement of the Arxvii line
as mentioned in Section 4.3.1, but the other abundances also differ by factors up to 2.

The absolute abundance derived from the iron line fit scatter similar to those from the ratio
fit, the values of the higher orders are significantly too high, indicating that the normalization
of the ratio fit for 4th and 5th order is better. The parabola gives absolute abundances that
match the global fit best (see Table 6.7), additionally the relative abundances of the higher
orders (Table 6.3) match the global fit quite well.

The individual abundances derived from the DEM fit of iron lines (Table 6.6) scatter more
for the non-iron lines, the iron lines though scatter less than in the ratio fit. The Fexx line
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Figure 6.2: Differential emission measures for AB Dor with the polynomial order ranging from
2 to 5, calculated from the HETGS dataset 16.

clearly deviates, in both the ratio and the iron line fit, indicating a measurement problem. In a
second run of the fit the line was therefore excluded from the iron line fit.

When transforming the calculated DEM of the best-fit 4th order polynomial from the H-
like to He-like ratios to an emission measure distribution (units cm−3, see the left panel of
Figure 6.8) its overall shape compares not that well with those derived by Garćıa-Alvarez et al.
(2005), which is somewhat astonishing since I used the same lines and a very similar method.
Instead it matches the fit of Sanz-Forcada et al. (2003), who also reconstructed emission measure
distributions from this dataset.

Sanz-Forcada et al. (2003) give logarithmic abundances relative to solar photospheric abun-
dances derived by Anders and Grevesse (1989), Garćıa-Alvarez et al. (2005) use Grevesse and
Sauval (1998) as a reference. Both authors give more than one set of abundances from different
fits, and these sets have a broad scatter. A conversion to the non-logarithmic scale and relative
to the abundances of Asplund et al. (2005) places the relative values from my calculations in
the same range. In general, I can confirm the trend of an inverse FIP effect from the elements
I investigated here. I did not obtain data for the low-FIP elements calcium and nickel where
Sanz-Forcada et al. (2003) find an increase.
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measured 2nd order 3rd order 4th order 5th order
O VIII / O VII 9.403±1.505 6.045 (7.162) 7.417 (14.484) 9.410 (28.037) 9.410 (28.257)
Ne X / Ne IX 2.264±0.103 2.345 (2.688) 2.329 (3.462) 2.265 (4.930) 2.265 (4.967)

Mg XII / Mg XI 1.460±0.292 1.413 (1.623) 1.310 (1.519) 1.325 (1.770) 1.325 (1.782)
Al XIII / Al XII 0.726±0.303 1.063 (1.220) 0.999 (0.975) 1.089 (1.199) 1.089 (1.208)
Si XIV / Si XIII 1.015±0.129 0.867 (0.999) 0.853 (0.684) 0.966 (1.038) 0.966 (1.051)
S XVI / S XV 0.588±0.157 0.514 (0.599) 0.664 (0.287) 0.608 (1.038) 0.608 (1.085)

2-3 Å 1.291±0.129 1.291 (1.291) 1.291 (1.291) 1.291 (1.291) 1.291 (1.291)

red. χ2 2.10 (8.74) 1.68 ( 8.12) 0.91 (6.45) 1.82 (8.59)

Table 6.1: Fit results from H-like to He-like ratios from the AB Dor HETGS dataset 16: Photon
flux ratios and continuum flux [10−4 cts s−1 cm−2 ] from 2-3 Å. The corresponding results from
the iron line fit are given in brackets.

abundance 2nd order 3rd order 4th order 5th order 2T fit
N / O 1.790±0.318 1.824±0.264 1.868±0.257 1.868±0.257 1.578
Ne / O 2.595±0.308 2.464±0.149 2.372±0.094 2.372±0.094 1.478
Mg / O 0.545±0.074 0.548±0.049 0.538±0.041 0.538±0.041 0.275
Al / O 1.085±0.255 1.108±0.233 1.064±0.220 1.064±0.220 0.309
Si / O 0.559±0.074 0.577±0.051 0.559±0.035 0.559±0.035 0.334
S / O 1.458±0.233 1.549±0.191 1.343±0.153 1.343±0.153 0.594
Ar / O 6.896±1.469 8.111±1.516 5.922±1.073 5.922±1.073 1.715
Fe / O 0.453±0.063 0.417±0.044 0.399±0.039 0.399±0.039 0.314

Table 6.2: Abundances relative to oxygen derived from the DEM calculated from H-like to He-
like ratios and a corresponding global fit with two temperature components for the AB Dor
HETGS dataset 16.

abundance 2nd order 3rd order 4th order 5th order 2T fit
N / O 1.787±0.266 1.853±0.285 1.860±0.372 1.859±0.372 1.578
Ne / O 2.421±0.233 2.007±0.355 1.787±0.537 1.785±0.540 1.478
Mg / O 0.455±0.043 0.363±0.037 0.292±0.048 0.291±0.048 0.275
Al / O 0.883±0.239 0.736±0.159 0.583±0.171 0.581±0.173 0.309
Si / O 0.466±0.039 0.362±0.059 0.314±0.050 0.314±0.050 0.334
S / O 1.105±0.141 1.083±0.268 0.680±0.209 0.667±0.219 0.594
Ar / O 4.961±0.943 6.334±1.229 3.196±0.742 3.208±0.746 1.715
Fe / O 0.439±0.041 0.359±0.034 0.349±0.054 0.351±0.055 0.314

Table 6.3: Abundances relative to oxygen derived from the DEM calculated iron lines and a
corresponding global fit with two temperature components for the AB Dor HETGS dataset 16.
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element wavelength 2nd order 3rd order 4th order 5th order
N VII 24.782 0.615±0.082 4.711±0.627 0.722±0.096 0.722±0.096
O VII 21.601 0.230±0.036 2.070±0.323 0.387±0.060 0.387±0.060
O VIII 18.969 0.358±0.013 2.625±0.093 0.387±0.014 0.387±0.014
Ne IX 13.446 0.915±0.037 6.502±0.260 0.917±0.037 0.917±0.037
Ne X 12.134 0.884±0.019 6.322±0.139 0.917±0.020 0.917±0.020
Mg XI 9.1688 0.182±0.034 1.290±0.240 0.192±0.036 0.192±0.036
Mg XII 8.4209 0.188±0.014 1.438±0.105 0.211±0.015 0.211±0.015
Al XII 7.7572 0.450±0.112 3.327±0.829 0.504±0.126 0.504±0.126
Al XIII 7.1729 0.307±0.103 2.417±0.810 0.336±0.113 0.336±0.113
Si XIII 6.6479 0.187±0.011 1.447±0.084 0.214±0.012 0.214±0.012
Si XIV 6.1830 0.219±0.025 1.721±0.194 0.225±0.025 0.225±0.025
S XV 5.0387 0.488±0.060 4.119±0.505 0.523±0.064 0.523±0.064
S XVI 4.7300 0.559±0.132 3.648±0.863 0.506±0.120 0.506±0.120

Ar XVII 3.9488 2.367±0.421 20.941±3.726 2.289±0.407 2.289±0.407
Fe XVII 15.015 0.131±0.006 0.895±0.038 0.128±0.005 0.128±0.005
Fe XVII 17.075 0.158±0.025 1.081±0.172 0.154±0.024 0.154±0.024
Fe XVII 15.262 0.196±0.014 1.340±0.094 0.192±0.013 0.192±0.013
Fe XVII 16.777 0.148±0.010 1.012±0.067 0.144±0.010 0.144±0.010
Fe XVIII 14.204 0.214±0.013 1.486±0.089 0.232±0.014 0.232±0.014
Fe XIX 13.520 0.296±0.020 2.158±0.147 0.358±0.024 0.358±0.024
Fe XX* 12.829 0.056±0.071 0.432±0.544 0.072±0.090 0.072±0.090
Fe XXI 12.284 0.218±0.017 1.770±0.138 0.274±0.021 0.274±0.021
Fe XXII 11.767 0.150±0.019 1.288±0.162 0.176±0.022 0.176±0.022
Fe XXIII 11.736 0.183±0.024 1.643±0.214 0.188±0.024 0.188±0.024
Fe XXIV 11.170 0.284±0.061 2.599±0.556 0.262±0.056 0.262±0.056
Fe XXV* 1.8559 1.193±0.430 5.215±1.879 1.328±0.478 1.328±0.478

Table 6.4: Abundances derived for individual lines from the DEM calculated from H-like to
He-like ratios for the AB Dor HETGS dataset 16.

element 2nd order 3rd order 4th order 5th order 2T fit
N 0.615±0.082 4.711±0.627 0.722±0.096 0.722±0.096 1.062
O 0.343±0.040 2.582±0.148 0.387±0.013 0.387±0.013 0.673
Ne 0.891±0.017 6.362±0.123 0.917±0.018 0.917±0.018 0.995
Mg 0.187±0.013 1.414±0.096 0.208±0.014 0.208±0.014 0.185
Al 0.372±0.076 2.861±0.579 0.411±0.084 0.411±0.084 0.208
Si 0.192±0.012 1.490±0.100 0.216±0.011 0.216±0.011 0.225
S 0.500±0.055 3.999±0.436 0.519±0.057 0.519±0.057 0.400
Ar 2.367±0.421 20.941±3.726 2.289±0.407 2.289±0.407 1.154
Fe 0.155±0.012 1.078±0.095 0.154±0.014 0.154±0.014 0.211

Table 6.5: Absolute abundances derived from the DEM calculated from H-like to He-like ratios
and as well from a global fit with two temperature components, for the AB Dor HETGS dataset
16.
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element wavelength 2nd order 3rd order 4th order 5th order
N VII 24.782 0.968±0.129 0.407±0.054 4.746±0.632 5.357±0.713
O VII 21.601 0.421±0.066 0.334±0.052 7.522±1.174 8.560±1.336
O VIII 18.969 0.552±0.020 0.217±0.008 2.523±0.090 2.849±0.101
Ne IX 13.446 1.506±0.060 0.636±0.025 9.272±0.371 10.538±0.421
Ne X 12.134 1.269±0.028 0.416±0.009 4.258±0.094 4.803±0.106
Mg XI 9.1688 0.271±0.050 0.082±0.015 0.885±0.165 1.001±0.186
Mg XII 8.4209 0.243±0.018 0.079±0.006 0.730±0.053 0.821±0.060
Al XII 7.7572 0.635±0.158 0.185±0.046 1.951±0.486 2.205±0.549
Al XIII 7.1729 0.377±0.126 0.138±0.046 1.181±0.396 1.325±0.444
Si XIII 6.6479 0.251±0.015 0.076±0.004 0.806±0.047 0.912±0.053
Si XIV 6.1830 0.255±0.029 0.112±0.013 0.789±0.089 0.881±0.099
S XV 5.0387 0.601±0.074 0.224±0.027 2.160±0.265 2.460±0.302
S XVI 4.7300 0.590±0.140 0.459±0.109 1.225±0.290 1.334±0.316

Ar XVII 3.9488 2.686±0.478 1.391±0.248 8.157±1.451 9.243±1.644
Fe XVII 15.015 0.208±0.009 0.071±0.003 0.809±0.034 0.918±0.039
Fe XVII 17.075 0.253±0.040 0.088±0.014 1.034±0.165 1.174±0.187
Fe XVII 15.262 0.312±0.022 0.106±0.007 1.223±0.086 1.388±0.097
Fe XVII 16.777 0.237±0.016 0.083±0.005 0.974±0.065 1.106±0.073
Fe XVIII 14.204 0.321±0.019 0.090±0.005 0.882±0.053 0.996±0.060
Fe XIX 13.520 0.423±0.029 0.110±0.007 1.084±0.074 1.221±0.083
Fe XX* 12.829 0.077±0.097 0.020±0.025 0.216±0.273 0.243±0.307
Fe XXI 12.284 0.285±0.022 0.080±0.006 0.964±0.075 1.089±0.085
Fe XXII 11.767 0.188±0.024 0.061±0.008 0.773±0.097 0.879±0.110
Fe XXIII 11.736 0.214±0.028 0.091±0.012 0.938±0.122 1.077±0.140
Fe XXIV 11.170 0.310±0.066 0.197±0.042 0.884±0.189 0.986±0.211
Fe XXV* 1.8559 1.046±0.377 3.481±1.254 0.625±0.225 0.612±0.221

Table 6.6: Abundances derived for individual lines from the DEM calculated from iron lines for
the AB Dor HETGS dataset 16.

element 2nd order 3rd order 4th order 5th order 2T fit
N 0.968±0.129 0.407±0.054 4.746±0.632 5.357±0.713 1.062
O 0.541±0.036 0.220±0.017 2.552±0.380 2.881±0.431 0.673
Ne 1.311±0.091 0.441±0.070 4.560±1.192 5.143±1.354 0.995
Mg 0.246±0.017 0.080±0.005 0.745±0.051 0.838±0.057 0.185
Al 0.478±0.125 0.162±0.033 1.488±0.377 1.673±0.430 0.208
Si 0.252±0.013 0.080±0.011 0.802±0.042 0.905±0.047 0.225
S 0.598±0.065 0.238±0.056 1.734±0.466 1.923±0.562 0.400
Ar 2.686±0.478 1.391±0.248 8.157±1.451 9.243±1.644 1.154
Fe 0.238±0.015 0.079±0.004 0.891±0.040 1.010±0.045 0.211

Table 6.7: Absolute abundances derived from the DEM calculated from iron lines and a corre-
sponding global fit with two temperature components for the AB Dor HETGS dataset 16.
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Figure 6.3: Lightcurve (left) and spectrum (right) of AB Dor from 10/11 December 2002 obtained
with the LETGS and HRC-S onboard Chandra.

6.1.2 The LETGS dataset ObsID 3762

Hussain et al. (2005) use the LETGS dataset of AB Dor to verify rotational modulation in
X-rays and to measure Doppler shifts in order to determine the size of coronal structures. The
observation, lasting for 88.1 ks, covers nearly two rotational periods. The lightcurve shown
in Figure 6.3 is moderately quiescent apart from a strong flare beginning at the end of the
observation. The short-wavelength part of the fluxed spectrum compares quite well to the MEG
spectrum shown in Figure 6.1, the high-temperature iron lines in the long-wavelength part are
not that well-pronounced.

Nevertheless these iron lines could be measured together with five H-like to He-like ratios,
from ranging from carbon to silicon, i.e. temperatures from ≈ 1 MK to 16 MK are covered.
Only polynomials up to the forth order could be fitted to these ratios and the results are not
really satisfactory. 3rd and 4th order polynomials reproduce at least most of the ratios well,
apart from the higher-temperature silicon and magnesium (cf. Table 6.8). The rise of the DEM
at lower temperatures is suspicious, though it is at the boundary of the reliable temperature
range. Nevertheless the deduced iron abundance of the low-temperature Fe xvi is systematically
too low (see Table 6.11). Again, the iron lines show a broad scatter.

The iron lines (Fe xvi to Fe xxiv) cover somewhat higher temperatures ranging from 2.5 MK
to 20 MK, but the thus obtained DEMs do not provide better fits. They can in no way reproduce
the line ratios of the H-like and He-like lines, and especially in 4th order the normalization is
gone wrong. The shape of neither the DEMs from the iron lines nor of those from the ratios,
shown in Figure 6.4, matches the HETG fit. The two-peaked structure does not develop either.

The abundances derived from a global fit with two temperature components to the LETGS
data differ somewhat from the corresponding global fit to the HETGS data. The abundances
derived from the DEMs fitted to the LETGS data match the global fit not that well, neither
absolute nor relative to oxygen, as can be read off from Tables 6.12, 6.9, 6.14 and 6.10. The
iron lines seem to provide partly more reasonable values, but not for all elements. In general
the abundances seem at least to retain the general trend of an inverse FIP effect, apart from the
values for oxygen. The overall order of magnitude of the relative values derived from HETGS
and LETGS data agrees up to a certain degree.
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Figure 6.4: Second to forth order polynomials representing the differential emission measures for
AB Dor calculated from the LETGS dataset 3762. The two parabolas (left) differ considerably,
the one from iron is clearly better. The third (middle) and fourth (right) order polynomials
diverge at the boundaries of the appointed valid temperature ranges. At least for the the
maximum value at log T approximates the first peak found in the HETGS data.

measured 2nd order 3rd order 4th order
C VI / C V 3.106±0.869 6.580 (23.991) 3.142 (***) 3.092 (***)

O VIII / O VII 4.452±0.262 3.313 (5.337) 4.431 (***) 4.533 (***)
Ne X / Ne IX 2.172±0.092 2.110 (2.102) 2.167 (***) 2.101 (33.615)

Mg XII / Mg XI 0.976±0.193 1.738 (1.254) 1.231 (***) 1.346 (32.223)
Si XIV / Si XIII 1.281±0.274 1.366 (0.762) 0.648 (***) 1.097 (51.034)

19.5-20.5 Å 6.497±1.299 6.497 (6.497) 6.497 (6.497) 6.497 (6.481)

red. χ2 16.99 (5.53) 3.55 (4.10) 4.80 (4.44)

Table 6.8: Fit results from H-like to He-like ratios from the AB Dor LETGS dataset 3762:
Photon flux ratios and continuum flux [10−4 cts s−1 cm−2 ] in specified wavelength bands. The
corresponding results from the iron line fit are given in brackets.

element 2nd order 3rd order 4th order 2T fit
C / O 1.006±0.151 1.079±0.065 1.162±0.070 1.340
N / O 1.821±0.220 1.925±0.136 1.934±0.136 1.554
Ne / O 3.240±0.329 2.816±0.076 2.889±0.078 1.826
Mg / O 0.556±0.153 0.553±0.061 0.584±0.088 0.391
Si / O 0.605±0.083 0.762±0.261 0.757±0.072 0.338
Fe / O 0.386±0.047 0.328±0.016 0.365±0.020 0.166

Table 6.9: Abundances relative to oxygen derived from the DEM calculated from H-like to He-
like ratios and a corresponding global fit with two temperature components for the AB Dor
LETGS dataset 3762.

abundance 2nd order 3rd order 4th order 2T fit
C / O 1.344±0.261 1.228±0.486 1.269±0.488 1.340
N / O 2.017±0.171 1.980±0.670 2.020±0.657 1.554
Ne / O 2.776±0.151 1.793±1.481 1.883±1.422 1.826
Mg / O 0.556±0.071 0.160±0.137 0.167±0.137 0.391
Si / O 0.747±0.193 0.101±0.069 0.106±0.070 0.338
Fe / O 0.327±0.021 85.441±*** 2.852±0.912 0.166

Table 6.10: Abundances relative to oxygen derived from the DEM calculated from iron lines and
a corresponding global fit with two temperature components for the AB Dor LETGS dataset
3762.
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element wavelength 2nd order 3rd order 4th order
C V 40.268 1.142±0.312 0.405±0.111 0.365±0.100
C VI 33.737 0.539±0.032 0.401±0.024 0.367±0.022
N VII 24.782 0.987±0.067 0.715±0.049 0.610±0.042
O VII 21.602 0.421±0.023 0.370±0.021 0.321±0.018
O VIII 18.970 0.566±0.010 0.372±0.007 0.315±0.006
Ne IX 13.447 1.725±0.058 1.045±0.035 0.892±0.030
Ne X 12.134 1.775±0.046 1.047±0.027 0.923±0.024
Mg XI 9.1688 0.475±0.074 0.241±0.037 0.232±0.036
Mg XII 8.4210 0.267±0.033 0.191±0.024 0.168±0.021
Si XIII 6.6480 0.344±0.063 0.201±0.037 0.214±0.039
Si XIV 6.1830 0.323±0.035 0.398±0.043 0.250±0.027
Fe XVI 63.711 0.116±0.031 0.080±0.021 0.066±0.018
Fe XVII 15.015 0.212±0.009 0.108±0.005 0.097±0.004
Fe XVII 17.075 0.251±0.009 0.131±0.005 0.116±0.004
Fe XVII 15.262 0.271±0.025 0.139±0.013 0.124±0.011
Fe XVII 16.777 0.234±0.014 0.122±0.007 0.108±0.006
Fe XVIII 14.205 0.320±0.026 0.147±0.012 0.143±0.012
Fe XVIII 93.923 0.205±0.018 0.097±0.009 0.092±0.008
Fe XVIII 103.93 0.425±0.064 0.202±0.031 0.190±0.029
Fe XIX* 13.521 0.535±0.036 0.245±0.017 0.257±0.017
Fe XIX 108.35 0.293±0.027 0.133±0.012 0.136±0.013
Fe XIX 101.55 0.331±0.067 0.151±0.030 0.154±0.031
Fe XX 121.84 0.187±0.025 0.089±0.012 0.096±0.013
Fe XXI 128.75 0.168±0.021 0.089±0.011 0.101±0.012
Fe XXII 117.15 0.193±0.016 0.123±0.010 0.143±0.012
Fe XXII 135.79 0.232±0.029 0.148±0.018 0.172±0.021
Fe XXIII 132.90 0.140±0.008 0.126±0.007 0.145±0.008
Fe XXIV 11.171 0.316±0.055 0.633±0.110 0.677±0.118

Table 6.11: Abundances derived for individual lines from the DEM calculated from H-like to
He-like ratios for the AB Dor LETGS dataset 3762.

element 2nd order 3rd order 4th order 2T fit
C 0.545±0.061 0.401±0.023 0.366±0.021 0.607
N 0.987±0.067 0.715±0.049 0.610±0.042 0.704
O 0.542±0.054 0.372±0.007 0.315±0.006 0.453
Ne 1.756±0.036 1.047±0.021 0.911±0.019 0.827
Mg 0.301±0.077 0.206±0.022 0.184±0.028 0.117
Si 0.328±0.031 0.283±0.097 0.239±0.022 0.153
Fe 0.209±0.014 0.122±0.005 0.115±0.006 0.075

Table 6.12: Absolute abundances derived from the DEM calculated from H-like to He-like ratios
and a corresponding global fit with two temperature components for the AB Dor LETGS dataset
3762.
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element wavelength 2nd order 3rd order 4th order
C V 40.268 4.074±1.114 16.152±4.417 ***
C VI 33.737 0.527±0.031 0.003±0.000 3.870±0.229
N VII 24.782 0.795±0.054 0.005±0.000 6.165±0.421
O VII 21.602 0.466±0.026 1.238±0.069 79.177±4.417
O VIII 18.970 0.389±0.007 0.003±0.000 3.039±0.056
Ne IX 13.447 1.073±0.036 1.817±0.061 85.932±2.906
Ne X 12.134 1.108±0.028 0.005±0.000 5.553±0.143
Mg XI 9.1688 0.261±0.041 0.344±0.053 16.541±2.569
Mg XII 8.4210 0.203±0.025 0.000 0.501±0.062
Si XIII 6.6480 0.220±0.040 0.169±0.031 12.788±2.346
Si XIV 6.1830 0.370±0.040 0.000 0.321±0.035
Fe XVI 63.711 0.082±0.022 0.168±0.045 8.067±2.165
Fe XVII 15.015 0.114±0.005 0.191±0.008 7.634±0.339
Fe XVII 17.075 0.137±0.005 0.231±0.008 9.328±0.330
Fe XVII 15.262 0.146±0.013 0.244±0.023 9.800±0.905
Fe XVII 16.777 0.127±0.007 0.215±0.012 8.682±0.503
Fe XVIII 14.205 0.163±0.013 0.261±0.021 10.124±0.826
Fe XVIII 93.923 0.106±0.009 0.171±0.015 6.667±0.589
Fe XVIII 103.93 0.219±0.033 0.355±0.054 13.828±2.095
Fe XIX* 13.521 0.282±0.019 0.454±0.031 17.867±1.204
Fe XIX 108.35 0.151±0.014 0.243±0.022 9.478±0.872
Fe XIX 101.55 0.171±0.035 0.275±0.055 10.718±2.164
Fe XX 121.84 0.103±0.014 0.167±0.022 6.708±0.901
Fe XXI 128.75 0.102±0.012 0.171±0.021 7.028±0.861
Fe XXII 117.15 0.135±0.011 0.232±0.020 9.680±0.822
Fe XXII 135.79 0.163±0.020 0.279±0.034 11.636±1.438
Fe XXIII 132.90 0.125±0.007 0.216±0.013 8.562±0.497
Fe XXIV 11.171 0.487±0.085 0.216±0.038 8.700±1.511

Table 6.13: Abundances derived for individual lines from the DEM calculated from iron lines for
the AB Dor LETGS dataset 3762.

element 2nd order 3rd order 4th order 2T fit
C 0.530±0.099 0.003±0.001 3.871±0.835 0.607
N 0.795±0.054 0.005±0.000 6.165±0.421 0.704
O 0.394±0.020 0.003±0.001 3.051±0.971 0.453
Ne 1.095±0.022 0.005±0.003 5.746±3.936 0.827
Mg 0.219±0.026 0.000 0.510±0.384 0.117
Si 0.295±0.075 0.000 0.324±0.186 0.153
Fe 0.129±0.005 0.217±0.007 8.702±0.295 0.075

Table 6.14: Absolute abundances derived from the DEM calculated from iron lines and a corre-
sponding global fit with two temperature components for the AB Dor LETGS dataset 3762.
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Figure 6.5: Lightcurve (left) and spectrum (right) of AB Dor from 27/28 October 2000 obtained
with EPIC-PN and RGS onboard XMM respectively.

6.1.3 The RGS dataset ObsID 0123720301

AB Dor is used as a calibrational target for XMM , and especially for the wavelength calibration
of the RGS. It has therefore been extensively observed during the commissioning and calibration
phase of the satellite and is still regularly observed. More than 1000 ks of observing time with
the RGS have been gathered together to date, which would result in a high resolution X-ray
spectrum of incomparable quality and signal-to-noise when combined with the SAS 6.5 task
rgscombine. Results from early data have been presented by Güdel et al. (2001), Sanz-Forcada
et al. (2003) examine selected datasets covering different states of activity.

Since SAS 6.5 was not available when I sifted the existing data for processing and analyzing, I
could only select single RGS datasets to include in this study. For AB Dor I chose the – relatively
early – dataset 0123720301 with a total exposure time of 55.1 ks in RGS 1. This dataset has
not been discussed in the literature before.

The lightcurve of the observation shows that AB Dor was caught in a very active state, dis-
playing multiple flares. The fluxed spectrum though compares again quite well to the previously
described datasets. The PN dataset covers a somewhat longer time interval of 58.9 ks.

The RGS dataset 0123720301 allowed the measurement of the H-like to He-like ratios from
nitrogen, oxygen, neon, magnesium and silicon, i.e. of all ratios typically measureable with the
RGS. The nitrogen ratio has a relatively high measurement error. I would therefore constrain
the reasonable temperature range covered by the ratios from 2 MK to 13 MK. Iron lines are
only available from ionization stages xvii to xx, so that the confidence range for the iron line
fit would not exceed 3 MK to 10 MK. Higher temperatures are however covered by the three
continuum measurements, thus an extension to higher temperatures should be possible.

The parabola and the third order polynomial obtained from both the ratio and the iron line fit
are almost identical for temperatures exceeding 6 MK. These polynomials have a simple shape
and maxima located approximately at log T = 6.7− 6.8, similar to the corresponding fits to the
HETGS data. The reconstructed DEMs are somewhat broader though. The 4th order evolves
– for both the ratio and the iron line fit – to the two-peaked shape already known from the
HETGS fits. The iron line fit looks almost identical, apart from the normalization. The RGS
ratio fit leads to a broader DEM than in the HETGS fit. The ratio fit has its first maximum
at ≈ 4 MK, and the not very well pronounced second peak at ≈ 25 MK. The corresponding
iron line fit peaks at 6.5 MK and 30 MK. Only minor changes in the shape of the reconstructed
DEMs result for 5th and 6th order polynomials.

Thus the 4th order polynomial gives the best fit in the sense of reduced χ2. Nevertheless,
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Figure 6.6: Differential emission measures for AB Dor with the polynomial order ranging from
2 to 6, calculated from the RGS dataset 0123720301.

all polynomials obtained from th ratio fits reproduce the measured ratios and continuum fluxes
well, see Table 6.15. The iron abundances reconstructed from these fits (Table 6.20) show the
typical scatter.

The averaged absolute abundances per element (Table 6.19) are relatively stable compared
with the results from the HETGS and LETGS fits. The values obtained from the 2nd and
3rd order fit are systematically lower than for the higher orders and they do not match the
results from the global fit with two temperature components. This discrepancy remains also
for the values derived relative to oxygen that are listed in Table 6.16. While the values from
all polynomials compare well with each other, they do not match the global fit results. Instead
they are compatible with the relative abundances deduced from the HETGS and LETGS DEM
reconstructions, apart from magnesium that is enhanced by a factor of two. In general, the
values of the low-FIP elements, i.e. magnesium, silicon and iron, are increased compared to he
HETGS and LETGS datasets that are not dominated by strong flares while this RGS observation
is characterized by flaring activity.

The iron line fit does not reproduce the H-like to He-like ratios well, see Table 6.17. The best
results are obtained from the parabola that was very similar to the ratio fit parabola (Figure 6.6),
but the best fit with regard to the iron lines is obtained by the 4th order polynomial. These higher
order iron line fits reproduce none of the ratios within the errors, the strongest discrepancies
arise from the low temperature elements like oxygen and nitrogen.

The abundances deduced from the iron lines however fit the scheme built up by the former
measurements. The absolute values listed in Table 6.21 are somewhat higher than for the ratio
fit but still do not match the global fit. The values relative to oxygen in Table 6.18 match the
results from the global fit better than does the ratio fit, even the values of the low-FIP elements
are reduced. back to the values in the HETGS and LETGS fits.
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measured 2nd order 3rd order 4th order 5th order 6th oder
N VII / N VI 9.145±3.350 5.398 5.759 7.066 7.014 7.063

O VIII / O VII 3.817±0.179 3.733 3.798 3.840 3.841 3.838
Ne X / Ne IX 1.823±0.116 1.965 1.899 1.796 1.797 1.802

Mg XII / Mg XI 1.360±0.222 1.409 1.333 1.472 1.468 1.441
Si XIV / Si XIII 1.559±0.499 0.996 0.939 1.213 1.215 1.225

3-4 Å 3.129±0.092 3.185 3.190 3.126 3.125 3.111
2-3 Å 2.015±0.059 1.967 1.953 2.017 2.018 2.032
1-2 Å 0.769±0.014 0.770 0.771 0.768 0.768 0.767

red. χ2 1.06 1.14 0.40 0.60 1.13

Table 6.15: Fit results from H-like to He-like ratios from the AB Dor RGS dataset 0123720301:
Photon flux ratios and continuum flux [10−4 cts s−1 cm−2 ] in specified wavelength bands.

abundance 2nd order 3rd order 4th order 5th order 6th oder 2T fit
C / O 1.106±0.047 1.139±0.048 1.239±0.053 1.235±0.052 1.238±0.053 1.139
N / O 1.796±0.176 1.814±0.152 1.859±0.103 1.858±0.103 1.856±0.103 1.712
Ne / O 3.136±0.105 3.154±0.099 3.318±0.104 3.314±0.104 3.299±0.103 1.716
Mg / O 1.027±0.073 1.069±0.076 1.104±0.079 1.104±0.079 1.111±0.079 0.357
Si / O 0.788±0.170 0.823±0.199 0.853±0.138 0.854±0.138 0.867±0.140 0.345
Fe / O 0.523±0.036 0.513±0.036 0.561±0.044 0.559±0.044 0.551±0.043 0.337

Table 6.16: Abundances relative to oxygen derived from the DEM calculated from H-like to
He-like ratios and a corresponding global fit with two temperature components for the AB Dor
RGS dataset 0123720301.

measured 2nd order 3rd order 4th order 5th order 6th oder
N VII / N VI 9.145±3.350 6.421 9.716 35.834 35.834 35.834

O VIII / O VII 3.817±0.179 4.300 5.551 18.824 18.824 18.824
Ne X / Ne IX 1.823±0.116 2.145 2.229 3.249 3.249 3.249

Mg XII / Mg XI 1.360±0.222 1.503 1.418 1.070 1.070 1.070
Si XIV / Si XIII 1.559±0.499 1.041 0.942 0.664 0.664 0.664

3-4 Å 3.129±0.092 3.177 3.201 3.129 3.129 3.129
2-3 Å 2.015±0.059 1.972 1.945 2.015 2.015 2.015
1-2 Å 0.769±0.014 0.770 0.771 0.768 0.768 0.768

red. χ2 4.86 5.88 3.39 5.09 10.19

Table 6.17: Fit results from iron lines from the AB Dor RGS dataset 0123720301: Photon flux
ratios and continuum flux [10−4 cts s−1 cm−2 ] in specified wavelength bands.

abundance 2nd order 3rd order 4th order 5th order 6th oder 2T fit
C / O 1.143±0.074 1.261±0.206 1.483±0.724 1.483±0.724 1.483±0.724 1.139
N / O 1.813±0.144 1.886±0.316 2.150±1.071 2.150±1.071 2.150±1.071 1.712
Ne / O 2.849±0.217 2.579±0.445 1.876±0.965 1.876±0.965 1.876±0.965 1.716
Mg / O 0.889±0.077 0.822±0.143 0.644±0.321 0.644±0.321 0.644±0.321 0.357
Si / O 0.678±0.136 0.627±0.180 0.525±0.325 0.525±0.325 0.525±0.325 0.345
Fe / O 0.490±0.041 0.432±0.074 0.274±0.134 0.274±0.134 0.274±0.134 0.337

Table 6.18: Abundances relative to oxygen derived from the DEM calculated from iron lines for
the AB Dor RGS dataset 0123720301.
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element 2nd order 3rd order 4th order 5th order 6th oder 2T fit
C 0.438±0.016 0.401±0.015 0.620±0.023 0.622±0.023 0.653±0.024 1.079
N 0.710±0.068 0.639±0.052 0.931±0.047 0.935±0.048 0.978±0.050 1.621
O 0.396±0.009 0.352±0.008 0.501±0.011 0.503±0.011 0.527±0.011 0.947
Ne 1.241±0.032 1.110±0.025 1.661±0.037 1.668±0.038 1.739±0.039 1.625
Mg 0.406±0.028 0.376±0.026 0.553±0.038 0.556±0.038 0.586±0.040 0.338
Si 0.312±0.067 0.290±0.070 0.427±0.068 0.430±0.069 0.457±0.073 0.327
Fe 0.207±0.014 0.181±0.012 0.281±0.021 0.282±0.021 0.291±0.022 0.319

Table 6.19: Absolute abundances derived from the DEM calculated from H-like to He-like ratios
and a corresponding global fit with two temperature components for the AB Dor RGS dataset
0123720301.

element wavelength 2nd order 3rd order 4th order 5th order 6th oder
C VI 33.737 0.438±0.016 0.401±0.015 0.620±0.023 0.622±0.023 0.653±0.024
N VI 28.787 0.429±0.156 0.410±0.149 0.725±0.263 0.723±0.262 0.761±0.276
N VII 24.782 0.727±0.037 0.650±0.033 0.938±0.048 0.943±0.049 0.986±0.051
O VII 21.602 0.390±0.015 0.351±0.014 0.503±0.020 0.506±0.020 0.529±0.021
O VIII 18.970 0.398±0.010 0.353±0.009 0.500±0.013 0.502±0.013 0.526±0.014
Ne IX 13.447 1.324±0.078 1.150±0.068 1.640±0.097 1.647±0.097 1.722±0.101
Ne X 12.134 1.228±0.030 1.104±0.027 1.665±0.041 1.672±0.041 1.742±0.043
Mg XI 9.1688 0.418±0.060 0.370±0.053 0.588±0.085 0.591±0.085 0.613±0.088
Mg XII 8.4210 0.403±0.031 0.378±0.029 0.544±0.042 0.547±0.042 0.578±0.045
Si XIII 6.6480 0.273±0.058 0.252±0.054 0.390±0.083 0.393±0.084 0.419±0.090
Si XIV 6.1830 0.428±0.102 0.419±0.100 0.502±0.119 0.505±0.120 0.533±0.127
Fe XVII 15.015 0.193±0.011 0.168±0.010 0.258±0.015 0.259±0.015 0.267±0.015
Fe XVII 17.075 0.221±0.011 0.192±0.009 0.292±0.014 0.293±0.014 0.303±0.015
Fe XVII 15.262 0.163±0.039 0.141±0.033 0.218±0.052 0.219±0.052 0.225±0.053
Fe XVII 16.777 0.170±0.017 0.147±0.015 0.225±0.023 0.226±0.023 0.233±0.024
Fe XVIII 14.205 0.267±0.017 0.236±0.015 0.394±0.025 0.395±0.025 0.405±0.025
Fe XIX 13.521 0.316±0.030 0.284±0.027 0.488±0.046 0.491±0.046 0.509±0.048
Fe XX 12.830 0.171±0.024 0.157±0.022 0.265±0.037 0.267±0.038 0.284±0.040

Table 6.20: Abundances derived for individual lines from the DEM calculated from H-like to
He-like ratios for the AB Dor RGS dataset 0123720301.

element 2nd order 3rd order 4th order 5th order 6th oder 2T fit
C 0.552±0.020 0.568±0.021 0.795±0.029 0.795±0.029 0.795±0.029 1.079
N 0.875±0.051 0.849±0.043 1.154±0.121 1.154±0.121 1.154±0.121 1.621
O 0.483±0.026 0.450±0.072 0.536±0.261 0.536±0.261 0.536±0.261 0.947
Ne 1.376±0.075 1.162±0.077 1.007±0.167 1.007±0.167 1.007±0.167 1.625
Mg 0.429±0.029 0.370±0.025 0.345±0.037 0.345±0.037 0.345±0.037 0.338
Si 0.327±0.063 0.283±0.068 0.281±0.108 0.281±0.108 0.281±0.108 0.327
Fe 0.237±0.015 0.195±0.012 0.147±0.006 0.147±0.006 0.147±0.006 0.319

Table 6.21: Absolute abundances derived from the DEM calculated from iron lines for the AB Dor
RGS dataset 0123720301.
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element wavelength 2nd order 3rd order 4th order 5th order 6th oder
C VI 33.737 0.552±0.020 0.568±0.021 0.795±0.029 0.795±0.029 0.795±0.029
N VI 28.787 0.622±0.226 0.902±0.327 4.503±1.633 4.503±1.633 4.503±1.633
N VII 24.782 0.886±0.046 0.849±0.044 1.149±0.059 1.149±0.059 1.149±0.059
O VII 21.602 0.527±0.021 0.607±0.024 2.472±0.097 2.472±0.097 2.472±0.097
O VIII 18.970 0.468±0.012 0.418±0.011 0.501±0.013 0.501±0.013 0.501±0.013
Ne IX 13.447 1.587±0.094 1.389±0.082 1.725±0.102 1.725±0.102 1.725±0.102
Ne X 12.134 1.349±0.033 1.136±0.028 0.968±0.024 0.968±0.024 0.968±0.024
Mg XI 9.1688 0.465±0.067 0.383±0.055 0.291±0.042 0.291±0.042 0.291±0.042
Mg XII 8.4210 0.421±0.033 0.367±0.028 0.371±0.029 0.371±0.029 0.370±0.029
Si XIII 6.6480 0.289±0.062 0.246±0.053 0.240±0.051 0.240±0.051 0.240±0.051
Si XIV 6.1830 0.433±0.103 0.407±0.097 0.563±0.134 0.563±0.134 0.563±0.134
Fe XVII 15.015 0.222±0.013 0.183±0.010 0.138±0.008 0.138±0.008 0.138±0.008
Fe XVII 17.075 0.256±0.013 0.212±0.010 0.166±0.008 0.166±0.008 0.166±0.008
Fe XVII 15.262 0.188±0.045 0.155±0.037 0.117±0.028 0.117±0.028 0.117±0.028
Fe XVII 16.777 0.197±0.020 0.163±0.017 0.128±0.013 0.128±0.013 0.128±0.013
Fe XVIII 14.205 0.295±0.018 0.238±0.015 0.149±0.009 0.149±0.009 0.149±0.009
Fe XIX 13.521 0.341±0.032 0.276±0.026 0.199±0.019 0.199±0.019 0.199±0.019
Fe XX 12.830 0.181±0.026 0.150±0.021 0.146±0.021 0.146±0.021 0.146±0.021

Table 6.22: Abundances derived for individual lines from the DEM calculated from iron lines for
the AB Dor RGS dataset 0123720301.
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Figure 6.7: Differential emission measures for AB Dor with the polynomial order ranging from
2 to 6 for all dataset combined.

6.1.4 Combined datasets

The HETGS and the LETGS datasets caught AB Dor in a state of moderate activity, while the
chosen RGS dataset shows the star continuously flaring. Nevertheless, both the HETGS and the
RGS datasets produce DEMs with a two-peaked structure and comparable relative abundances.
A combination of the data from these two datasets should thus give similar results. The LETGS
dataset reproduced DEMs with a different shape, probably because the high temperatures where
the second maximum is located in the two other fits is not that well covered with LETGS data
that instead provide information about the lower temperatures from the carbon and nitrogen
lines. After all, similar abundances arise from all datasets. A combination of them thus leads
to fits covering a broader temperature range.

Figure 6.7 shows the polynomials representing the reconstructed DEMs from the correspond-
ing fits. The parabolas from iron line and ratio fit are broader than those from the HETGS
and RGS fits, and slightly shifted to lower temperatures in their maximum, probably due to the
influence of the LETGS data. Again both parabolas are very similar. Third and fourth order
ratio fit show a rise towards lower temperatures as it could be seen in the corresponding LETGS
fits. For temperatures greater than 10 MK they are however still very similar to the iron line
fits that decrease towards lower temperatures. The maximum is shifted back to log T ≈ 6.7. In
fifth order the DEM from the ratio fit at last also lowers up to 1 MK, where the boundary of
the reliable temperature interval is reached. Additionally at ≈ 30 MK the second peak slowly
forms although it is not very pronounced. Iron line and ratio fit look again very similar. The
ratio fit does not change much from 5th to 6th order, and the iron line fit now also shows the
convexity suggesting the second peak.

Especially the polynomials with orders 4 to 6 from the ratio fit can reproduce the measured
ratios and continuum fluxes quite well (see 6.23). The best-fit model arises from the fifth order.
The reproduced iron abundances in Table 6.26 exhibit the well-known scatter, suspicious lines
like Fexvi, Fexix at 13.52 Å and Fe xxv show the greatest discrepancies.

The fit results from the iron lines are not that good in terms of χ2, the parabola gives the
best result (see 6.27). The corresponding DEMs can however for the first time reproduce the
H-like to He-like ratios within the errors apart from the low-temperature carbon ratio.

As expected the relative abundances given in Tables 6.24 and 6.28 derived from these fits match
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Figure 6.8: Shapes of emission measure distributions constructed from the best-fit DEMs and
abundances as a lower limit from the mission measure loci curves for AB Dor. From upper left
to lower right: The best-fit polynomial from the HETGS, the LETGS, the RGS and all datasets
combined.

the previous determined values from the single datasets, at least those from the polynomials with
orders 4 to 6. The corresponding absolute abundances (Tables 6.28 and 6.28) also compare well
with each each other.

Aside from the different shapes of the reconstructed DEMs from the different datasets for
AB Dor it could be stated as a general result that AB Dor’s differential emission measure
has its maximum at log T ≈ 6.7 − 6.8 with probably a less pronounced second peak around
log T ≈ 7.3 − 7.5. The corresponding emission measure distributions (see Figure 6.8) thus
compare quite well with those calculated by Sanz-Forcada et al. (2003).

The abundances deduced from the fits to the single datasets agree with each other and indicate
a moderate inverse FIP effect as it was derived by Garćıa-Alvarez et al. (2005).
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measured 2nd order 3rd order 4th order 5th order 6th oder
C VI / C V 3.334±0.919 5.456 4.046 3.532 3.335 3.334

N VII / N VI 8.449±3.133 3.358 3.184 4.103 7.879 7.451
O VIII / O VII 4.715±1.102 2.533 2.727 3.598 4.659 4.515
Ne X / Ne IX 1.921±0.191 1.542 1.840 2.072 1.971 1.997

Mg XII / Mg XI 1.439±0.268 1.186 1.459 1.424 1.321 1.349
Al XIII / Al XII 0.726±0.303 0.995 1.212 1.114 1.078 1.087
Si XIV / Si XIII 1.057±0.116 0.891 1.071 0.937 0.959 0.950
S XVI / S XV 0.588±0.157 0.632 0.730 0.591 0.692 0.663

3-4 Å 3.129±0.092 3.088 3.129 3.126 3.117 3.121
2-3 Å 1.834±0.185 1.906 1.963 1.856 1.952 1.900
1-2 Å 0.769±0.014 0.771 0.766 0.768 0.767 0.768

red. χ2 2.50 1.54 1.06 0.64 0.76

Table 6.23: Fit results from H-like to He-like ratios from all mentioned AB Dor datasets com-
bined: Photon flux ratios and continuum flux [10−4 cts s−1 cm−2 ] in specified wavelength
bands.

element 2nd order 3rd order 4th order 5th order 6th oder
C / O 0.870±0.113 0.830±0.089 0.977±0.054 1.311±0.062 1.284±0.061
N / O 1.377±0.433 1.363±0.451 1.600±0.338 1.900±0.157 1.874±0.155
Ne / O 3.401±0.530 3.155±0.349 2.817±0.172 2.772±0.149 2.777±0.149
Mg / O 0.809±0.124 0.655±0.088 0.565±0.056 0.587±0.055 0.580±0.055
Al / O 1.611±0.379 1.196±0.333 1.055±0.232 1.123±0.232 1.102±0.228
Si / O 0.861±0.120 0.654±0.074 0.564±0.037 0.605±0.035 0.592±0.034
S / O 2.153±0.350 1.436±0.215 1.366±0.160 1.430±0.163 1.420±0.162
Ar / O 9.801±2.106 6.235±1.280 6.235±1.143 6.366±1.152 6.482±1.173
Fe / O 0.505±0.069 0.410±0.051 0.353±0.029 0.375±0.027 0.369±0.027

Table 6.24: Abundances relative to oxygen derived from the DEM calculated from H-like to
He-like ratios for all mentioned AB Dor datasets combined.

element 2nd order 3rd order 4th order 5th order 6th oder
C 0.214±0.010 0.322±0.011 0.341±0.011 0.508±0.017 0.456±0.015
N 0.339±0.098 0.528±0.166 0.558±0.115 0.736±0.056 0.665±0.050
O 0.246±0.030 0.387±0.040 0.349±0.015 0.387±0.013 0.355±0.012
Ne 0.837±0.083 1.222±0.052 0.982±0.042 1.074±0.045 0.985±0.042
Mg 0.199±0.019 0.254±0.022 0.197±0.017 0.227±0.020 0.206±0.018
Al 0.397±0.080 0.463±0.120 0.368±0.079 0.435±0.089 0.391±0.080
Si 0.212±0.015 0.253±0.012 0.197±0.010 0.234±0.011 0.210±0.010
S 0.530±0.058 0.556±0.061 0.476±0.052 0.554±0.061 0.504±0.055
Ar 2.413±0.429 2.416±0.430 2.174±0.387 2.467±0.439 2.300±0.409
Fe 0.124±0.008 0.159±0.011 0.123±0.009 0.145±0.009 0.131±0.009

Table 6.25: Absolute abundances derived from the DEM calculated from H-like to He-like ratios
for all mentioned AB Dor datasets combined.
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element wavelength 2nd order 3rd order 4th order 5th order 6th oder
C V 40.268 0.349±0.096 0.389±0.107 0.361±0.099 0.508±0.139 0.456±0.125
C VI 33.736 0.213±0.007 0.321±0.011 0.340±0.011 0.508±0.017 0.456±0.015
N VI 28.787 0.156±0.057 0.235±0.085 0.296±0.107 0.689±0.250 0.591±0.214
N VII 24.781 0.392±0.030 0.622±0.048 0.609±0.047 0.739±0.057 0.670±0.052
O VII 21.601 0.137±0.032 0.230±0.053 0.268±0.062 0.383±0.089 0.340±0.079
O VIII 18.969 0.254±0.009 0.397±0.013 0.352±0.012 0.388±0.013 0.355±0.012
Ne IX 13.446 0.718±0.062 1.183±0.103 1.042±0.091 1.095±0.095 1.016±0.088
Ne X 12.134 0.895±0.043 1.236±0.060 0.966±0.047 1.068±0.052 0.977±0.047
Mg XI 9.1688 0.178±0.027 0.256±0.039 0.196±0.030 0.215±0.033 0.198±0.030
Mg XII 8.4209 0.216±0.023 0.253±0.027 0.198±0.021 0.235±0.025 0.211±0.023
Al XII 7.7572 0.460±0.115 0.612±0.153 0.458±0.114 0.530±0.132 0.480±0.119
Al XIII 7.1729 0.336±0.112 0.367±0.123 0.299±0.100 0.357±0.120 0.320±0.107
Si XIII 6.6479 0.205±0.011 0.254±0.014 0.192±0.010 0.229±0.012 0.206±0.011
Si XIV 6.1830 0.243±0.023 0.251±0.024 0.216±0.021 0.253±0.024 0.229±0.022
S XV 5.0387 0.539±0.066 0.590±0.072 0.477±0.058 0.578±0.071 0.519±0.064
S XVI 4.7300 0.502±0.119 0.475±0.113 0.475±0.112 0.491±0.116 0.461±0.109

Ar XVII 3.9488 2.413±0.429 2.416±0.430 2.174±0.387 2.467±0.439 2.302±0.409
Fe XVI 63.710 0.041±0.011 0.070±0.019 0.068±0.018 0.074±0.020 0.068±0.018
Fe XVII 15.015 0.115±0.010 0.181±0.016 0.143±0.013 0.150±0.013 0.139±0.013
Fe XVII 17.075 0.129±0.012 0.205±0.020 0.165±0.016 0.172±0.016 0.160±0.015
Fe XVII 15.262 0.127±0.012 0.200±0.019 0.159±0.015 0.166±0.016 0.154±0.015
Fe XVII 16.777 0.112±0.008 0.178±0.012 0.143±0.010 0.149±0.010 0.138±0.009
Fe XVIII 14.204 0.191±0.015 0.275±0.021 0.203±0.015 0.224±0.017 0.205±0.016
Fe XVIII 93.922 0.092±0.008 0.137±0.012 0.103±0.009 0.111±0.010 0.102±0.009
Fe XVIII 103.93 0.190±0.029 0.283±0.043 0.214±0.032 0.230±0.035 0.212±0.032
Fe XIX 13.520 0.288±0.015 0.383±0.020 0.275±0.014 0.324±0.017 0.291±0.015
Fe XIX 108.35 0.147±0.013 0.201±0.018 0.145±0.013 0.167±0.015 0.151±0.014
Fe XIX 101.54 0.166±0.033 0.227±0.046 0.164±0.033 0.189±0.038 0.171±0.034
Fe XX 121.84 0.103±0.014 0.132±0.018 0.095±0.013 0.115±0.015 0.102±0.014
Fe XX 12.829 0.083±0.058 0.104±0.073 0.075±0.053 0.092±0.065 0.082±0.057
Fe XXI 128.75 0.102±0.012 0.122±0.015 0.089±0.011 0.112±0.014 0.099±0.012
Fe XXI 12.284 0.259±0.020 0.304±0.024 0.224±0.017 0.285±0.022 0.250±0.019
Fe XXII 117.15 0.131±0.011 0.147±0.012 0.111±0.009 0.142±0.012 0.125±0.011
Fe XXII 135.79 0.157±0.019 0.177±0.022 0.133±0.016 0.171±0.021 0.150±0.018
Fe XXII 11.767 0.178±0.022 0.196±0.025 0.150±0.019 0.193±0.024 0.169±0.021
Fe XXIII 132.90 0.110±0.006 0.116±0.007 0.093±0.005 0.118±0.007 0.104±0.006
Fe XXIII 11.736 0.205±0.027 0.210±0.027 0.175±0.023 0.217±0.028 0.193±0.025
Fe XXIV 11.170 0.289±0.042 0.278±0.040 0.262±0.038 0.290±0.042 0.275±0.040
Fe XXV 1.8559 0.601±0.217 0.567±0.204 0.754±0.272 0.554±0.199 0.619±0.223

Table 6.26: Abundances derived for individual lines from the DEM calculated from H-like to
He-like ratios for all mentioned AB Dor datasets combined.
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ratio measured 2nd order 3rd order 4th order 5th order 6th oder
C VI / C V 3.334±0.919 6.617 15.022 15.022 14.518 46.332

N VII / N VI 8.449±3.133 3.876 6.403 6.403 6.245 14.863
O VIII / O VII 4.715±1.102 2.849 3.963 3.963 3.887 7.178
Ne X / Ne IX 1.921±0.191 1.660 1.835 1.835 1.822 2.148

Mg XII / Mg XI 1.439±0.268 1.249 1.242 1.242 1.243 1.279
Al XIII / Al XII 0.726±0.303 1.037 0.997 0.997 1.002 1.040
Si XIV / Si XIII 1.057±0.116 0.920 0.867 0.867 0.873 0.945
S XVI / S XV 0.588±0.157 0.643 0.593 0.593 0.600 0.731

3-4 Å 3.129±0.092 3.125 3.120 3.120 3.119 3.107
2-3 Å 1.834±0.185 1.925 1.893 1.893 1.899 1.970
1-2 Å 0.769±0.014 0.767 0.768 0.768 0.768 0.768

red. χ2 7.56 7.93 8.43 8.99 9.55

Table 6.27: Fit results from iron lines from all mentioned AB Dor datasets combined: Photon
flux ratios and continuum flux [10−4 cts s−1 cm−2 ] in specified wavelength bands.

abundance 2nd order 3rd order 4th order 5th order 6th oder
C / O 0.870±0.113 0.830±0.089 0.977±0.054 1.311±0.062 1.284±0.061
N / O 1.377±0.433 1.363±0.451 1.600±0.338 1.900±0.157 1.874±0.155
Ne / O 3.401±0.530 3.155±0.349 2.817±0.172 2.772±0.149 2.777±0.149
Mg / O 0.809±0.124 0.655±0.088 0.565±0.056 0.587±0.055 0.580±0.055
Al / O 1.611±0.379 1.196±0.333 1.055±0.232 1.123±0.232 1.102±0.228
Si / O 0.861±0.120 0.654±0.074 0.564±0.037 0.605±0.035 0.592±0.034
S / O 2.153±0.350 1.436±0.215 1.366±0.160 1.430±0.163 1.420±0.162
Ar / O 9.801±2.106 6.235±1.280 6.235±1.143 6.366±1.152 6.482±1.173
Fe / O 0.505±0.069 0.410±0.051 0.353±0.029 0.375±0.027 0.369±0.027

Table 6.28: Abundances relative to oxygen derived from the DEM calculated from iron lines for
all mentioned AB Dor datasets combined.

element 2nd order 3rd order 4th order 5th order 6th oder
C 0.214±0.010 0.322±0.011 0.341±0.011 0.508±0.017 0.456±0.015
N 0.339±0.098 0.528±0.166 0.558±0.115 0.736±0.056 0.665±0.050
O 0.246±0.030 0.387±0.040 0.349±0.015 0.387±0.013 0.355±0.012
Ne 0.837±0.083 1.222±0.052 0.982±0.042 1.074±0.045 0.986±0.042
Mg 0.199±0.019 0.254±0.022 0.197±0.017 0.227±0.020 0.206±0.018
Al 0.397±0.080 0.463±0.120 0.368±0.079 0.435±0.089 0.391±0.080
Si 0.212±0.015 0.253±0.012 0.197±0.010 0.234±0.011 0.210±0.010
S 0.530±0.058 0.556±0.061 0.476±0.052 0.554±0.061 0.504±0.055
Ar 2.413±0.429 2.416±0.430 2.174±0.387 2.467±0.439 2.302±0.409
Fe 0.124±0.008 0.159±0.011 0.123±0.009 0.145±0.009 0.131±0.009

Table 6.29: Absolute abundances derived from the DEM calculated from iron lines for all men-
tioned AB Dor datasets combined.
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element wavelength 2nd order 3rd order 4th order 5th order 6th oder
C V 40.268 0.528±0.144 1.623±0.444 1.623±0.444 1.561±0.427 9.314±2.547
C VI 33.736 0.266±0.009 0.360±0.012 0.360±0.012 0.358±0.012 0.670±0.023
N VI 28.787 0.212±0.077 0.409±0.148 0.409±0.148 0.399±0.145 1.615±0.586
N VII 24.781 0.463±0.036 0.540±0.042 0.540±0.042 0.540±0.042 0.918±0.071
O VII 21.601 0.173±0.040 0.249±0.058 0.249±0.058 0.245±0.057 0.667±0.154
O VIII 18.969 0.286±0.010 0.296±0.010 0.296±0.010 0.298±0.010 0.438±0.015
Ne IX 13.446 0.814±0.071 0.829±0.072 0.829±0.072 0.834±0.073 1.209±0.105
Ne X 12.134 0.942±0.046 0.867±0.042 0.867±0.042 0.879±0.043 1.081±0.052
Mg XI 9.1688 0.188±0.029 0.172±0.026 0.172±0.026 0.175±0.026 0.217±0.033
Mg XII 8.4209 0.217±0.023 0.199±0.022 0.199±0.022 0.202±0.022 0.244±0.026
Al XII 7.7572 0.476±0.119 0.430±0.107 0.430±0.107 0.437±0.109 0.540±0.134
Al XIII 7.1729 0.333±0.112 0.313±0.105 0.313±0.105 0.316±0.106 0.377±0.126
Si XIII 6.6479 0.209±0.011 0.189±0.010 0.189±0.010 0.192±0.010 0.238±0.013
Si XIV 6.1830 0.240±0.023 0.231±0.022 0.231±0.022 0.233±0.022 0.267±0.026
S XV 5.0387 0.536±0.066 0.502±0.062 0.502±0.062 0.508±0.062 0.614±0.075
S XVI 4.7300 0.490±0.116 0.499±0.118 0.499±0.118 0.498±0.118 0.494±0.117

Ar XVII 3.9488 2.370±0.422 2.321±0.413 2.321±0.413 2.334±0.415 2.564±0.456
Fe XVI 63.710 0.048±0.013 0.053±0.014 0.053±0.014 0.053±0.014 0.090±0.024
Fe XVII 15.015 0.125±0.011 0.117±0.011 0.117±0.011 0.119±0.011 0.151±0.014
Fe XVII 17.075 0.142±0.014 0.134±0.013 0.134±0.013 0.135±0.013 0.174±0.017
Fe XVII 15.262 0.139±0.013 0.130±0.013 0.130±0.013 0.131±0.013 0.167±0.016
Fe XVII 16.777 0.123±0.008 0.116±0.008 0.116±0.008 0.117±0.008 0.151±0.010
Fe XVIII 14.204 0.201±0.015 0.179±0.014 0.179±0.014 0.182±0.014 0.220±0.017
Fe XVIII 93.922 0.098±0.009 0.088±0.008 0.088±0.008 0.090±0.008 0.109±0.010
Fe XVIII 103.93 0.203±0.031 0.183±0.028 0.183±0.028 0.186±0.028 0.227±0.034
Fe XIX 13.520 0.296±0.015 0.261±0.013 0.261±0.013 0.266±0.014 0.326±0.017
Fe XIX 108.35 0.152±0.014 0.134±0.012 0.134±0.012 0.137±0.013 0.166±0.015
Fe XIX 101.54 0.172±0.035 0.152±0.031 0.152±0.031 0.154±0.031 0.188±0.038
Fe XX 121.84 0.105±0.014 0.093±0.012 0.093±0.012 0.094±0.013 0.118±0.016
Fe XX 12.829 0.084±0.059 0.075±0.053 0.075±0.053 0.076±0.054 0.096±0.068
Fe XXI 128.75 0.102±0.013 0.092±0.011 0.092±0.011 0.093±0.011 0.120±0.015
Fe XXI 12.284 0.259±0.020 0.234±0.018 0.234±0.018 0.238±0.019 0.307±0.024
Fe XXII 117.15 0.130±0.011 0.119±0.010 0.119±0.010 0.121±0.010 0.156±0.013
Fe XXII 135.79 0.156±0.019 0.143±0.018 0.143±0.018 0.145±0.018 0.187±0.023
Fe XXII 11.767 0.176±0.022 0.163±0.020 0.163±0.020 0.165±0.021 0.213±0.027
Fe XXIII 132.90 0.108±0.006 0.102±0.006 0.102±0.006 0.104±0.006 0.129±0.008
Fe XXIII 11.736 0.201±0.026 0.192±0.025 0.192±0.025 0.194±0.025 0.237±0.031
Fe XXIV 11.170 0.282±0.041 0.282±0.041 0.282±0.041 0.283±0.041 0.301±0.043
Fe XXV 1.8559 0.596±0.215 0.634±0.228 0.634±0.228 0.624±0.225 0.529±0.190

Table 6.30: Abundances derived for individual lines from the DEM calculated from iron lines for
all mentioned AB Dor datasets combined.

81



6.2 Algol, the eclipsing binary

Algol or β Persei, the second brightest star in the constellation of Perseus is an eclipsing binary
consisting of a B8 V main sequence star (Algol A) and a K0 IV subgiant (Algol B). (A third
component of spectral type F with an orbital period of ≈ 1.8 yr is considered as unimportant
in this context.) It has an apparent magnitude mV of 2 .m12 outside eclipse which decreases to
about 3 .m5 during the eclipse of the main sequence star whose overall luminosity is more than
one order of magnitude higher.

The name Algol, deduced from Arabic Rhas al-Ghûl for ”head of the demon”, is based on
the classical depiction of the constellation Perseus, where the Greek hero holds the head of
the Medusa. The star Algol was said to be dangerous and ill-fated since ancient times. This
indicates that observers noticed the unexplainable alternation in brightness a long time ago,
although there is no documentary evidence for that. First specifications of Algol’s variability
arise in 1667, and in 1782 John Goodricke quantified the period of 2.8674 days. From the shape
of the lightcurve he also reasoned correctly the partial eclipse of the star by a fainter companion,
which was proved spectroscopically in 1889. See also Burnham, p. 1409 ff.

Algol is an evolved close-binary system: The secondary was initially the more massive star
of the system and evolved first. As soon as it filled its Roche lobe a mass transfer towards the
initially less massive primary started. By now the secondary has lost the biggest part of its initial
mass, especially from its outer layers. This implies that now the original core is unveiled. The
chemical composition of the core material had been modified by fusion processes, i.e. in case of
the high-mass progenitor of Algol B by the CNO cycle that transforms hydrogen into helium in a
catalytic reaction via carbon, nitrogen and oxygen. From all the partial reactions involved in the
CNO cycle the longest-lasting is the one that converts 14N to 15O. The resulting bottleneck leads
to an enhancement of nitrogen and a parallel deficiency of carbon that could be measured in
terms of the abundances of what is now Algol B’s photosphere and corona. While photospheric
measurements performed in the optical will focus on the more luminous A component, coronal
studies in X-rays will concentrate on Algol B since the A component is considered to be X-ray
dark. Actually Schmitt and Ness (2002) found evidence for a nitrogen enhancement and a carbon
depletion from Algol’s LETGS spectrum. These results were confirmed by Drake (2003), who
examined the coronal carbon and nitrogen abundances of Algol and a corresponding dataset
of the RS CVn system HR 1099 to deduce Algol’s anomalous carbon and nitrogen abundances
from a comparison of the otherwise very similar spectra. Schmitt and Ness (2004) eventually
derive a continuous differential emission measure based on Chebyshev polynomials from ratios
of H-like to He-like lines from the LETGS dataset and thus measured a nitrogen enhancement
by a factor of 2 and a carbon depletion by at least a factor of 25 relative to cosmic abundances
after Allen (1973).

Algol is known as an X-ray source already since 1976. At first, the high level of X-ray
emission was interpreted as being due to accretion of matter on the B-star. This model is in
conflict with X-ray observations of the eclipses though, since one would expect to see a decrease
in X-ray luminosity parallel to the optical primary minimum. Actually the situation is opposite:
Primary eclipses are not observed but on occasion the secondary eclipses. This is a definite
evidence for the origin of the X-ray emission being located on the K-type secondary. Nowadays
it is assumed that Algol B harbors an very hot corona that causes the high X-ray luminosity.
It is under debate to what extend this corona is influenced or even supported by the vicinity of
the B-star, i.e. whether even larger magnetic structures such as interbinary loops, as they are
suggested for RS CVn systems, exist. (See for instance Chung et al. (2004), who find the corona
of Algol B to be distorted towards the A component.) At least the two stars are tidally locked,
which results in a short rotation period and thus a triggered dynamo mechanism.

Eclipse observations (the inclination angle of the system is ≈ 81.4◦) allow the reconstruction
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Figure 6.9: Lightcurve (left) and spectrum (right) of Algol obtained with the HETGS onboard
Chandra with a total exposure time of 51.7 ks.

of size and shape of coronal structures on Algol B from geometrical considerations (see Schmitt
and Favata (1999), Schmitt et al. (2003)). Algol and α CrB, where the occultation is even total
in X-rays, are the only eclipsing binary systems with an X-ray-dark component where this works.

The Algol system is known to produce huge flares (see Schmitt and Favata (1999), Favata
and Schmitt (1999) for the analysis of a giant flare observed with BeppoSAX, and Favata et al.
(2000) for a summary on further flare observations). Temperatures as high as 100 MK can be
reached during these flares, making the flaring plasma dominate an integrated X-ray spectrum.
The occurrence of such a strong flare would thus require and perhaps permit (in terms of data
quality) a separate analysis of the DEM of both the quiescent and the flaring state.

The assessment of the hydrogen column density towards Algol is somewhat puzzling: The
results from various global fits to earlier low-resolution X-ray spectra reported in the literature
require considerably high column densities up to log NH > 21. Such high values are definitely
incompatible with the observed spectrum at higher wavelengths. If so, essentially no flux from
wavelengths greater 50 Å should be measureable, contrary to the LETGS spectrum with ObsID
2. However, global fits with the hydrogen column density as a free parameter performed with
the available LETGS, RGS and EPIC spectra resulted in column densities with similarly high
values of log NH = 19.52, 20.56 and 19.59 respectively, revealing obvious contradictions in these
global fits. Eventually I decided to fix the log NH value for Algol at 18.5, which results in more
or less coinciding iron abundances for lines from both the long and the short wavelength range.

6.2.1 The HETGS dataset ObsID 604

A Chandra HETGS observation of Algol was obtained on 1 April 2000. It covers the phase
interval from 0.49 to 0.69 ad therefore part of the secondary minimum. The occurrence of a
flare makes the interpretation of this part of the observation ambiguous (see Figure 6.9), the
flaring region is obviously not totally occulted, but a partial eclipse is possible. This subject is
discussed by Chung et al. (2004), who also measure Doppler shifts resulting from orbital motion
and line broadening with these data. The spectrum, as well as the spectra of the other Algol
datasets analyzed here, shows a well-pronounced source continuum over a broad wavelength
range, indicating the high temperatures typical for Algol.

Only polynomials with a maximum order of 4 could be fitted to this dataset, they are shown in
Figure 6.10. Even the simple parabolas from ratio and iron line fit indicate the high temperatures
typical for Algol, their maxima are located at 10 MK and 14 MK respectively. (Ness et al. (2002a)
found a bremsstrahlung model with a temperature of 15 MK as a best-fit to Algol’s observed
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Figure 6.10: Differential emission measures for Algol with polynomials of order 2 to 4, calculated
from the HETGS dataset 604.

continuum.) Additionally the DEM maxima from the ratio fits reach values up to one order of
magnitude higher than those of AB Dor. The iron lines measured in Algol’s HETGS spectrum
however show a broad scatter in their normalization.

The 3rd and 4th order ratio fits keep the maximum at temperatures higher than 10 MK and
form an additional minimum at temperatures of ≈ 1.8 MK followed by a rise towards even lower
temperatures. This artifical rise is induced by the absence of the carbon and nitrogen ratios in
the input data to the fit, I would thus confine the reliable temperature range of these fits to
temperatures of 2.5 MK and upwards. The corresponding iron line fits are computed from the
ionization stages xvii to xxiv and thus should be considered from temperatures greater 3 MK.

Table 6.31 however implies that these iron line fits are not able to reproduce the H-like
to He-like ratios. Especially the 4th order fit produces unreasonable values due to a really
bad normalization. Since this also applies to the absolute (Tables 6.36 and 6.37) and relative
(Table 6.33) abundances deduced from this polynomial, I will not discuss it any further. The
relative abundances calculated from the 3rd order fit are also unreasonably high, as a result
of a much too low oxygen abundance. This in turn is due to the rise of the underlying DEM
towards lower temperatures that here already stars at the formation temperatures of the oxygen
ad nitrogen lines and thus assigns misleading values to these elements. The other absolute
abundances have at least the same order of magnitude as the global fit with two temperature
components to this dataset. The parabola gives relative abundances that at least partly match
the global fit.

The DEMs calculated from the H-like to He-like ratios reproduce their input data well, the
4th order fit gives even an unreasonably low value of reduced χ2. The absolute abundances
(Tables 6.34 and 6.35) already indicate a clear nitrogen overabundance. The normalization
of the parabola matches the global fit somewhat better than do the 3rd and 4th order fits.
Relative to oxygen the abundances from these three polynomials compare well with each other,
see Table 6.32. With regard to the global fit, almost all elements show a systematic enhancement.
For certain elements like calcium, argon sulfur or aluminium this may be explained by erroneous
measurements (see Section 4.3.1). When transforming the abundances derived by Schmitt and
Ness (2004) to the solar values by Asplund et al. (2005), they compare better to the abundances
deduced from the DEM fit than to the global fit.

For this particular dataset I also investigated DEM fits an the coresponding abundances
including the weak calcium and argon lines. The changes introduced to the shapes of the DEM
polynomials and the reconstructed abundances were only minor, so I do not list the results from
these fits here.
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measured 2nd order 3rd order 4th order
O VIII / O VII 7.305±1.379 8.633 (11.724) 7.483 (0.019) 7.306 ( 0.000)
Ne X / Ne IX 5.123±0.634 3.785 (5.156) 4.716 (2.994) 5.073 ( 0.000)

Mg XII / Mg XI 2.696±0.477 2.611 (3.625) 3.049 (3.390) 2.842 (***)
Si XIV / Si XIII 1.703±0.136 1.777 (2.491) 1.747 (2.185) 1.686 (***)
S XVI / S XV 1.220±0.235 1.210 (1.745) 0.971 (1.273) 1.238 (***)

2-3 Å 9.743±0.974 9.743 (9.743) 9.743 (9.743) 9.743 (9.682)

red. χ2 1.90 (4.86) 1.10 (4.74) 0.12 (5.18)

Table 6.31: Fit results from H-like to He-like ratios from the Algol HETGS dataset 604: Pho-
ton flux ratios and continuum flux [ 10−4 cts s−1 cm−2 ] in specified wavelength bands. The
corresponding results from the iron line fit are given in brackets.

abundance 2nd order 3rd order 4th order 2T fit
N / O 7.893±0.658 7.563±0.630 8.030±0.669 8.453
Ne / O 2.640±0.407 2.897±0.214 2.865±0.211 1.998
Mg / O 1.121±0.060 0.964±0.052 0.959±0.052 0.774
Al / O 2.991±0.303 2.505±0.254 2.589±0.262 1.023
Si / O 1.072±0.058 0.897±0.049 0.927±0.050 0.668
S / O 0.956±0.092 0.857±0.099 0.885±0.085 0.686
Ar / O 5.498±1.203 5.626±0.868 4.474±2.084 2.429
Ca / O 5.234±0.729 5.329±1.482 3.542±2.371 2.286
Fe / O 0.890±0.071 0.900±0.055 0.864±0.067 0.843

Table 6.32: Abundances relative to oxygen derived from the DEM calculated from H-like to
He-like ratios and a corresponding global fit with two temperature components for the Algol
HETGS dataset 604.

abundance 2nd order 3rd order 4th order 2T fit
N / O 7.909±0.869 *** *** 8.453
Ne / O 2.964±0.305 *** *** 1.998
Mg / O 0.918±0.089 *** *** 0.774
Al / O 2.244±0.278 *** *** 1.023
Si / O 0.899±0.181 *** *** 0.668
S / O 0.589±0.100 *** *** 0.686
Ar / O 2.833±1.228 *** *** 2.429
Ca / O 2.734±0.449 *** *** 2.286
Fe / O 1.005±0.089 *** *** 0.843

Table 6.33: Abundances relative to oxygen derived from the DEM calculated iron lines and a
corresponding global fit with two temperature components for the Algol HETGS dataset 604.
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element 2nd order 3rd order 4th order 2T fit
N 3.302±0.241 1.833±0.134 2.174±0.158 5.173
O 0.418±0.017 0.242±0.010 0.271±0.011 0.612
Ne 1.105±0.164 0.702±0.043 0.776±0.048 1.223
Mg 0.469±0.017 0.234±0.008 0.260±0.009 0.474
Al 1.252±0.116 0.607±0.056 0.701±0.065 0.626
Si 0.448±0.016 0.217±0.008 0.251±0.009 0.409
S 0.400±0.035 0.208±0.023 0.240±0.021 0.420
Ar 2.300±0.495 1.363±0.203 1.211±0.562 1.487
Ca 2.190±0.292 1.292±0.355 0.959±0.641 1.399
Fe 0.372±0.025 0.218±0.010 0.234±0.016 0.516

Table 6.34: Absolute abundances derived from the DEM calculated from H-like to He-like ratios
and a corresponding global fit with two temperature components for the Algol HETGS dataset
604.

element wavelength 2nd order 3rd order 4th order
N VII 24.782 3.302±0.241 1.833±0.134 2.174±0.158
O VII 21.602 0.491±0.090 0.248±0.046 0.271±0.050
O VIII 18.970 0.416±0.017 0.242±0.010 0.271±0.011
Ne IX 13.447 0.989±0.084 0.677±0.058 0.772±0.066
Ne X 12.134 1.339±0.120 0.735±0.066 0.780±0.070
Mg XI 9.1688 0.455±0.079 0.263±0.046 0.273±0.047
Mg XII 8.4210 0.470±0.017 0.233±0.008 0.259±0.009
Al XIII 7.1730 1.252±0.116 0.607±0.056 0.701±0.065
Si XIII 6.6480 0.454±0.019 0.219±0.009 0.250±0.011
Si XIV 6.1830 0.435±0.029 0.213±0.014 0.253±0.017
S XV 5.0387 0.398±0.064 0.180±0.029 0.242±0.039
S XVI 4.7300 0.401±0.041 0.226±0.023 0.239±0.025

Ar XVII 3.9488 2.823±0.510 1.356±0.245 2.160±0.390
Ar XVIII 3.7330 1.833±0.482 1.381±0.363 0.878±0.231
Ca XIX 3.0212 2.137±0.325 1.206±0.183 2.196±0.334
Ca XX 3.1773 2.411±0.665 2.774±0.765 0.627±0.173
Fe XVII 15.015 0.291±0.012 0.203±0.009 0.205±0.009
Fe XVII 17.075 0.381±0.015 0.268±0.010 0.274±0.011
Fe XVII 15.262 0.376±0.030 0.262±0.021 0.265±0.021
Fe XVII 16.777 0.342±0.023 0.241±0.016 0.246±0.017
Fe XVIII 14.205 0.329±0.024 0.204±0.015 0.195±0.014
Fe XIX 13.521 0.730±0.038 0.403±0.021 0.389±0.020
Fe XX 12.830 0.446±0.040 0.224±0.020 0.225±0.020
Fe XXI 12.285 0.395±0.017 0.182±0.008 0.196±0.008
Fe XXII 11.767 0.511±0.035 0.221±0.015 0.265±0.018
Fe XXIII 11.736 0.527±0.022 0.227±0.010 0.315±0.013
Fe XXIV 11.171 0.591±0.055 0.292±0.027 0.487±0.045
Fe XXV* 1.8560 1.172±0.113 1.419±0.137 1.740±0.168

Table 6.35: Abundances derived for individual lines from the DEM calculated from H-like to
He-like ratios for the Algol HETGS dataset 604.
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element 2nd order 3rd order 4th order 2T fit
N 9.356±0.682 0.628±0.046 0.000 5.173
O 1.183±0.097 0.001±0.003 0.000 0.612
Ne 3.507±0.217 0.813±0.210 0.000 1.223
Mg 1.086±0.057 0.374±0.016 0.140±0.029 0.474
Al 2.655±0.247 0.922±0.086 0.296±0.028 0.626
Si 1.064±0.196 0.356±0.042 0.081±0.126 0.409
S 0.697±0.104 0.275±0.024 0.037±0.023 0.420
Ar 3.351±1.427 1.636±0.246 0.081±0.117 1.487
Ca 3.235±0.460 1.512±0.280 0.045±0.079 1.399
Fe 1.189±0.040 0.367±0.011 26.425±0.776 0.516

Table 6.36: Absolute abundances derived from the DEM calculated from iron lines and a cor-
responding global fit with two temperature components for the Algol HETGS dataset 604.

element wavelength 2nd order 3rd order 4th order
N VII 24.782 9.356±0.682 0.628±0.046 0.000
O VII 21.602 1.877±0.346 0.001±0.000 0.000
O VIII 18.970 1.169±0.048 0.282±0.012 0.000
Ne IX 13.447 3.517±0.299 0.696±0.059 0.000
Ne X 12.134 3.495±0.314 1.191±0.107 0.511±0.046
Mg XI 9.1688 1.448±0.251 0.467±0.081 7.591±1.314
Mg XII 8.4210 1.077±0.039 0.372±0.014 0.140±0.005
Al XIII 7.1730 2.655±0.247 0.922±0.086 0.296±0.028
Si XIII 6.6480 1.245±0.053 0.390±0.017 20.961±0.893
Si XIV 6.1830 0.851±0.057 0.304±0.020 0.080±0.005
S XV 5.0387 0.930±0.151 0.283±0.046 11.073±1.794
S XVI 4.7300 0.651±0.067 0.272±0.028 0.037±0.004

Ar XVII 3.9488 5.594±1.010 1.841±0.332 37.764±6.817
Ar XVIII 3.7330 2.443±0.642 1.390±0.365 0.080±0.021
Ca XIX 3.0212 3.581±0.545 1.419±0.216 10.398±1.581
Ca XX 3.1773 2.624±0.724 2.356±0.650 0.044±0.012
Fe XVII 15.015 1.039±0.044 0.321±0.014 23.732±1.001
Fe XVII 17.075 1.369±0.053 0.409±0.016 28.471±1.098
Fe XVII 15.262 1.343±0.108 0.413±0.033 30.262±2.431
Fe XVII 16.777 1.229±0.084 0.367±0.025 25.686±1.756
Fe XVIII 14.205 1.112±0.080 0.391±0.028 31.353±2.252
Fe XIX 13.521 2.341±0.122 0.812±0.042 60.971±3.170
Fe XX 12.830 1.357±0.123 0.449±0.041 32.120±2.905
Fe XXI 12.285 1.129±0.048 0.351±0.015 24.553±1.051
Fe XXII 11.767 1.347±0.091 0.398±0.027 27.983±1.894
Fe XXIII 11.736 1.217±0.051 0.358±0.015 26.641±1.121
Fe XXIV 11.171 1.104±0.102 0.385±0.036 26.543±2.464
Fe XXV* 1.8560 1.251±0.120 1.210±0.117 0.234±0.023

Table 6.37: Abundances derived for individual lines from the DEM calculated from iron lines
for the Algol HETGS dataset 604.
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Figure 6.11: Lightcurve (left) and spectrum (right) of Algol from 12/13 March 2000 obtained
with the LETGS on board Chandra. The lightcurve is binned with 600 s, the total exposure
time is 79.5 ks.

6.2.2 The LETGS dataset ObsID 2

Figure 6.11 shows that Algol was relatively quiescent with a slow decay during the Chandra

LETGS observation 2, which covers the primary but not the secondary eclipse. This dataset
was discussed in detail by Ness et al. (2002a), focussing on density and temperature diagnostics.
It also serves as input to the studies of Schmitt and Ness (2002) and Drake (2003). The strongest
line in Algol’s LETGS spectrum is the iron line located at 132.9 Å. In case of Algol it is clearly
dominated by Fe xxiii what again illustrates the existence of a high-temperature corona. Among
the stronger lines in the short-wavelength part of the spectrum the Nvii line is very conspicuous.

The DEM reconstruction method applied to this dataset by Schmitt and Ness (2004) is
probably the most similar to mine available in the literature, and a comparison of the results
is essential, as well concerning the shape of the emission measure distribution as the deduced
abundances.

The polynomials representing the DEMs from the ratio fits to this dataset resemble their
complements from the HETGS fit: They have the same shape and their maxima and minima are
located at the same temperatures although Algol was apparently in different states of activity
during these two observations. Apart from the 4th order fit, similar considerations apply to
the iron line fits, though the rise towards lower temperatures of the 3rd order fit leads not
to that strongly deviating values for the reconstructed abundances of oxygen and nitrogen.
The polynomial obtained from the 4th order iron line fit however differs considerably. The
reconstructed DEM is very narrow, covering temperatures from log T = 6.5 − 7.2 and develops
a two-peaked structure with the first, slightly weaker maximum located at 5 MK and the second
peak located at 25 MK.

The differential emission measures from the iron line fits can however again not reproduce
the H-like to He-like ratios (Table 6.38) while the scatter of the iron abundances deduced for
the individual iron lines from the ratio fits (Table 6.41) keeps within reasonable limits, apart
from the short-wavelength Fexix line, that was therefore excluded from the iron line fit. From
the three ratio fits the third order polynomial gives the best fit result. Both 3rd and 4th order
polynomials can reproduce the measured ratios apart from magnesium within the errors.

A comparison shows that these two reconstructed DEMs resemble the fourth order Chebyshev
polynomials derived by Schmitt and Ness (2004) in the temperature confidence range from
log T = 6.2 upwards quite closely in shape and the location of the maximum at ≈ 13 MK (cf.
their Figure 6). However it seems that I measured systematically lower ratios.
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Figure 6.12: Differential emission measures for Algol with polynomials of order 2 to 4, calculated
from the LETGS dataset 2.

measured 2nd order 3rd order 4th order
N VII / N VI 7.463±1.275 10.628 (10.868) 7.087 (2.142) 7.281 (41.795)

O VIII / O VII 7.187±0.640 7.111 (7.756) 7.523 (3.272) 7.361 (20.373)
Ne X / Ne IX 4.117±0.194 3.461 (4.163) 3.985 (3.445) 4.029 (4.622)

Mg XII / Mg XI 2.028±0.314 2.517 (3.235) 2.477 (3.077) 2.488 (2.910)
Si XIV / Si XIII 1.448±0.155 1.782 (2.397) 1.405 (2.206) 1.363 (2.077)

19.5-20.5 Å 19.422±3.88 19.421 (19.421) 19.421 (19.421) 19.421 (19.421)

red. χ2 8.22 (4.65) 1.48 (4.81) 2.74 (5.00)

Table 6.38: Fit results from H-like to He-like ratios from the Algol LETGS dataset 2: Photon
flux ratios and continuum flux between 19.5 and 20.5 Å in 10−4 cts s−1 cm−2. The corresponding
results from the iron line fit are given in brackets.

A conversion of the averaged absolute abundances listed in Table 4 of Schmitt and Ness
(2004) to the solar photospheric reference of Asplund et al. (2005) gives values of 3.02, 0.36,
1.14, 0.39, 04.6, and 0.28 for N, O, Ne, Mg, Si, and Fe respectively. Thus I obtained in general
slightly lower absolute abundances (see Table 6.40), caused by a different normalization. The
abundances I derived for the individual lines (Table 6.41) show much less scattering than those
listed in Table 2 of Schmitt and Ness (2004).

The 3rd and 4th order polynomials from the HETGS and LETGS ratio fits give very similar
absolute abundances with a clear nitrogen enhancement. Assuming the absolute normalization
level to be correct the other elements are sub-solar except for neon. Again, the abundances
derived from the reconstructed DEMs do not match those from the global fit well, neither
those deduced from the ratios nor those from the iron lines as can be seen from Tables 6.40 and
6.43. Additionally the global fit of the LETGS data shows distinct discrepancies compared to
the global fit of the HETGS data, even for the relative abundance values.

The abundances relative to oxygen listed in Tables 6.39 and 6.42 though compare quite well
with those of Schmitt and Ness (2004) for all three available polynomials from the ratio fits and
for the parabola and the 4th order fit from the iron line fit. Nitrogen that is somewhat lower in
all my measurements is the only exception.
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element 2nd order 3rd order 4th order 2T fit
N / O 7.176±0.453 7.042±0.277 7.019±0.276 8.998
Ne / O 3.268±0.264 3.166±0.090 3.173±0.090 2.570
Mg / O 1.043±0.076 0.932±0.064 0.924±0.064 0.660
Si / O 1.116±0.096 1.075±0.053 1.074±0.053 0.653
Fe / O 0.659±0.031 0.579±0.029 0.572±0.030 0.648

Table 6.39: Abundances relative to oxygen derived from the DEM calculated from H-like to
He-like ratios and a corresponding global fit with two temperature components for the Algol
LETGS dataset 2.

element 2nd order 3rd order 4th order 2T fit
N 2.260±0.136 1.811±0.062 1.760±0.060 3.599
O 0.315±0.006 0.257±0.005 0.251±0.005 0.400
Ne 1.029±0.080 0.814±0.017 0.796±0.016 1.028
Mg 0.328±0.023 0.240±0.016 0.232±0.015 0.264
Si 0.351±0.030 0.276±0.013 0.269±0.012 0.261
Fe 0.207±0.009 0.149±0.007 0.143±0.007 0.259

Table 6.40: Absolute abundances derived from the DEM calculated from H-like to He-like ratios
and a corresponding global fit with two temperature components for the Algol LETGS dataset
2.

element wavelength 2nd order 3rd order 4th order
N VI 28.787 3.190±0.534 1.724±0.288 1.719±0.288
N VII 24.782 2.240±0.078 1.815±0.063 1.762±0.061
O VII 21.602 0.312±0.027 0.269±0.023 0.257±0.022
O VIII 18.970 0.315±0.006 0.257±0.005 0.250±0.005
Ne IX 13.447 0.911±0.037 0.795±0.033 0.783±0.032
Ne X 12.134 1.084±0.026 0.821±0.019 0.800±0.019
Mg XI 9.1688 0.398±0.057 0.286±0.041 0.278±0.040
Mg XII 8.4210 0.321±0.019 0.234±0.014 0.227±0.013
Si XIII 6.6480 0.416±0.039 0.270±0.025 0.258±0.024
Si XIV 6.1830 0.338±0.018 0.278±0.015 0.274±0.014
Fe XVII 15.015 0.159±0.007 0.131±0.006 0.130±0.006
Fe XVII 17.075 0.202±0.007 0.169±0.006 0.168±0.006
Fe XVII 15.262 0.237±0.021 0.196±0.018 0.194±0.018
Fe XVII 16.777 0.231±0.011 0.194±0.010 0.193±0.009
Fe XVIII 14.205 0.194±0.017 0.141±0.012 0.138±0.012
Fe XVIII 93.923 0.205±0.015 0.156±0.011 0.154±0.011
Fe XIX* 13.521 0.516±0.025 0.338±0.016 0.326±0.016
Fe XIX 108.35 0.241±0.020 0.163±0.014 0.158±0.013
Fe XX 121.84 0.187±0.019 0.117±0.012 0.112±0.011
Fe XX 118.68 0.198±0.027 0.124±0.017 0.119±0.016
Fe XXI 128.75 0.190±0.014 0.114±0.009 0.107±0.008
Fe XXI 117.50 0.188±0.037 0.112±0.022 0.106±0.021
Fe XXII 117.15 0.210±0.011 0.125±0.006 0.117±0.006
Fe XXII 135.79 0.214±0.018 0.127±0.011 0.119±0.010
Fe XXIII 132.90 0.257±0.008 0.164±0.005 0.155±0.005
Fe XXIV 11.171 0.274±0.025 0.248±0.022 0.249±0.023

Table 6.41: Abundances derived for individual lines from the DEM calculated from H-like to
He-like ratios for the Algol LETGS dataset 2.
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abundance 2nd order 3rd order 4th order 2T fit
N / O 7.097±0.470 4.890±2.509 7.728±1.740 8.998
Ne / O 3.298±0.094 3.992±1.048 2.976±0.465 2.570
Mg / O 0.915±0.128 1.186±0.332 0.828±0.154 0.660
Si / O 0.865±0.163 1.143±0.339 0.812±0.166 0.653
Fe / O 0.716±0.026 0.865±0.218 0.589±0.089 0.648

Table 6.42: Abundances relative to oxygen derived from the DEM calculated from iron lines and
a corresponding global fit with two temperature components for the Algol LETGS dataset 2.

element 2nd order 3rd order 4th order 2T fit
N 3.479±0.220 1.483±0.665 2.825±0.478 3.599
O 0.490±0.010 0.303±0.076 0.366±0.054 0.400
Ne 1.616±0.033 1.211±0.097 1.088±0.053 1.028
Mg 0.448±0.062 0.360±0.045 0.303±0.034 0.264
Si 0.424±0.079 0.347±0.056 0.297±0.041 0.261
Fe 0.351±0.011 0.262±0.008 0.215±0.006 0.259

Table 6.43: Absolute abundances derived from the DEM calculated from iron lines and a corre-
sponding global fit with two temperature components for the Algol LETGS dataset 2.

element wavelength 2nd order 3rd order 4th order
N VI 28.787 5.020±0.840 0.564±0.094 15.720±2.631
N VII 24.782 3.448±0.120 1.964±0.068 2.807±0.097
O VII 21.602 0.527±0.046 0.156±0.014 1.023±0.089
O VIII 18.970 0.488±0.010 0.342±0.007 0.361±0.007
Ne IX 13.447 1.630±0.067 1.070±0.044 1.191±0.049
Ne X 12.134 1.612±0.038 1.278±0.030 1.061±0.025
Mg XI 9.1688 0.690±0.099 0.527±0.075 0.421±0.060
Mg XII 8.4210 0.432±0.025 0.347±0.020 0.293±0.017
Si XIII 6.6480 0.657±0.061 0.497±0.046 0.403±0.038
Si XIV 6.1830 0.397±0.021 0.326±0.017 0.281±0.015
Fe XVII 15.015 0.291±0.013 0.217±0.010 0.177±0.008
Fe XVII 17.075 0.370±0.013 0.273±0.009 0.229±0.008
Fe XVII 15.262 0.433±0.039 0.322±0.029 0.264±0.024
Fe XVII 16.777 0.423±0.021 0.312±0.015 0.261±0.013
Fe XVIII 14.205 0.351±0.030 0.277±0.024 0.209±0.018
Fe XVIII 93.923 0.373±0.027 0.291±0.021 0.221±0.016
Fe XIX* 13.521 0.908±0.043 0.718±0.034 0.574±0.027
Fe XIX 108.35 0.427±0.035 0.339±0.028 0.264±0.022
Fe XX 121.84 0.323±0.032 0.253±0.025 0.211±0.021
Fe XX 118.68 0.342±0.047 0.268±0.037 0.223±0.031
Fe XXI 128.75 0.317±0.024 0.243±0.018 0.210±0.016
Fe XXI 117.50 0.313±0.061 0.239±0.047 0.207±0.041
Fe XXII 117.15 0.333±0.017 0.248±0.013 0.210±0.011
Fe XXII 135.79 0.339±0.029 0.252±0.022 0.214±0.018
Fe XXIII 132.90 0.372±0.011 0.271±0.008 0.218±0.007
Fe XXIV 11.171 0.314±0.028 0.248±0.022 0.210±0.019

Table 6.44: Abundances derived for individual lines from the DEM calculated from iron lines for
the Algol LETGS dataset 2.
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Figure 6.13: Lightcurve (left) and spectrum (right) of Algol obtained with EPIC PN and RGS
onboard XMM respectively. Though total exposure time of the PN is reduced compared to
MOS and RGS (45 ks vs. 51.4 ks), the data from PN detector was taken to create the lightcurve
because of its higher sensitivity.

6.2.3 The RGS dataset ObsID 0112880701

Algol was also observed with XMM-Newton on 12 February 2002. The observation is centered
on phase 0.46 and also covers the secondary minimum. Figure 6.13 exhibits another strong flare,
occurring just before the time of the eclipse, Algol was thus in a state of activity similar to that
covered by the HETGS dataset. The flaring region on the K-star was apparently occulted and
allowed Schmitt et al. (2003) to reconstruct a spatially resolved ”image” with eclipse mapping
techniques.

It was difficult to measure the silicon lines in Algol’s RGS spectrum, thus one ratio less than
from the LETGS data is available for the ratio fit. Additionally some of the ratio measurements
deviate considerably from the previous datasets, see Table 6.45. The nitrogen ratio is higher and
the neon and magnesium ratios are found to be much lower than in the HETGS and LETGS
datasets. It is thus no wonder that the polynomials representing the DEM differ from those of
the other datasets.

The DEMs reconstructed from the H-like to He-like ratios do not really suit the properties
known for Algol’s corona from the previous datasets. The high level of log DEM ≈ 47 at
maximum is maintained but the maximum shifted to lower temperatures of ≈ 6.5 MK in case of
the parabola. The 3rd and 4th order polynomials look very similar and they do barely differ from
the parabola. The thus reconstructed DEMs are relatively broad and peak at low temperatures
with respect to what is typical for Algol. The 5th order ratio fit got a different shape: Additional
to the dominating low temperature maximum a second peak at ≈ 40 MK develops. An auxiliary
minimum at 0.7 MK followed by a rise towards very low temperatures is definitely outside the
temperature range covered by the input ratios. From log T = 6.2 upwards these DEMs may be
trustworthy but I am hesitating to rely on them at all. The values of reduced χ2 for he ratio
fits (see Table 6.45) are generally quite good so any fatal errors must arise from the measured
ratios.

The iron line fits are not well-determined since only lines from Fexvii and Fexviii are avail-
able, see Table 6.46. The deduced parabola gives the best-fit result and actually matches the
parabolas from the previous datasets better than does the ratio fit, with the maximum located
at 12 MK. The following three polynomials are virtually identical, the fit is converged due to the
poor temperature coverage of the available iron lines. From the reproduced ratios in Table 6.45
and the broad scatter in the deduced individual abundances (see Table 6.59) it is clear that
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Figure 6.14: Differential emission measures for Algol with polynomials of order 2 to 5, calculated
from the RGS dataset 011288070.

these fits do not provide good results.
A global fit with three temperature components was required to fit the Algol RGS dataset

well. The abundances deduced from these fits however resemble those from the LETGS global fit
apart from a somewhat lower nitrogen abundance. The absolute abundances reconstructed from
the ratio fits (Table 6.53) are systematically lower, and those from the iron line fits (Table 6.57)
– although probably not reliable – are systematically higher.

Aside from magnesium the relative abundances resulting from the ratio fits match those
deduced from the previous datasets. The same applies astonishingly for the relative abundances
from the poor iron line fit, the deviating value is here the iron abundance itself. Thus the overall
level of abundances is similar for all datasets: For N / O, Ne / O, Mg / O, Si / O and Fe / O
typical values are 7.1, 3.2, 0.9, 0.9 and 0.7 respectively.

The very similar DEMs from the HETGS and LETGS datasets recommend a combination
of the data to enlarge the covered temperature range and increase the signal-to-noise. The
question is whether it makes sense to add also the RGS dataset. Both the RGS and the HETGS
lightcurves show a flare while the LETGS dataset covers a phase of quiescence. Flares are typical
for Algol, even much stronger flares than those observed in these datasets. And also with respect
to abundances, all three datasets give similar results. Thus a combination of all three datasets
should at least not lead to contradictory abundances.
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measured 2nd order 3rd order 4th order 5th order
N VII / N VI 8.807±1.457 9.401 (32.114) 10.026 (24.291) 10.123 (24.291) 8.805 (24.291)

O VIII / O VII 7.079±0.783 6.097 (17.305) 6.110 (15.027) 6.076 (15.027) 7.201 (15.027)
Ne X / Ne IX 2.664±0.385 2.851 (5.285) 2.668 (5.571) 2.637 (5.571) 2.425 (5.571)

Mg XII / Mg XI 1.292±0.347 1.988 (3.048) 1.812 (3.406) 1.802 (3.406) 1.537 (3.406)

3-4 Å 8.397±0.188 8.490 (8.422) 8.498 (8.399) 8.491 (8.399) 8.442 (8.399)
2-3 Å 6.059±0.157 5.950 (6.022) 5.917 (6.057) 5.927 (6.057) 5.990 (6.057)
1-2 Å 2.812±0.158 2.846 (2.838) 2.894 (2.814) 2.890 (2.814) 2.862 (2.814)

red. χ2 1.69 (3.69) 1.94 (4.89) 2.90 (7.34) 1.25 (14.69)

Table 6.45: Fit results from H-like to He-like ratios from the Algol RGS dataset 0112880701:
Photon flux ratios and continuum flux [ 10−4 cts s−1 cm−2 ] in specified wavelength bands. The
corresponding results from the iron line fit are given in brackets.

element wavelength 2nd order 3rd order 4th order 5th order
N VI 28.787 1.521±0.246 1.373±0.222 1.392±0.225 1.162±0.187
N VII 24.782 1.425±0.052 1.206±0.044 1.211±0.044 1.162±0.042
O VII 21.602 0.183±0.019 0.154±0.016 0.153±0.016 0.166±0.017
O VIII 18.970 0.212±0.008 0.178±0.007 0.178±0.007 0.163±0.006
Ne IX 13.447 0.917±0.117 0.735±0.094 0.734±0.094 0.622±0.080
Ne X 12.134 0.857±0.058 0.734±0.049 0.741±0.050 0.683±0.046
Mg XI 9.1688 0.467±0.111 0.386±0.092 0.390±0.093 0.345±0.082
Mg XII 8.4210 0.303±0.038 0.275±0.034 0.279±0.035 0.290±0.036
Fe XVII 15.015 0.170±0.017 0.135±0.014 0.136±0.014 0.111±0.011
Fe XVII 17.075 0.169±0.005 0.135±0.004 0.135±0.004 0.110±0.003
Fe XVII 15.262 0.176±0.015 0.140±0.012 0.140±0.012 0.115±0.010
Fe XVII 16.777 0.096±0.019 0.077±0.015 0.077±0.015 0.063±0.012
Fe XVIII 14.205 0.209±0.033 0.171±0.027 0.172±0.027 0.148±0.023

Table 6.46: Abundances derived for individual lines from the DEM calculated from H-like to
He-like ratios and a corresponding global fit with three temperature components for the Algol
RGS dataset 0112880701.

element wavelength 2nd order 3rd order 4th order 5th order
N VI 28.787 11.986±1.935 10.351±1.671 10.351±1.671 10.351±1.671
N VII 24.782 3.287±0.120 3.753±0.137 3.753±0.137 3.753±0.137
O VII 21.602 1.105±0.115 1.115±0.116 1.115±0.116 1.115±0.116
O VIII 18.970 0.452±0.017 0.525±0.019 0.525±0.019 0.525±0.019
Ne IX 13.447 2.845±0.364 3.513±0.450 3.513±0.450 3.513±0.450
Ne X 12.134 1.434±0.096 1.680±0.113 1.680±0.113 1.680±0.113
Mg XI 9.1688 0.934±0.222 1.173±0.279 1.173±0.279 1.173±0.279
Mg XII 8.4210 0.396±0.049 0.445±0.055 0.445±0.055 0.445±0.055
Fe XVII 15.015 0.461±0.047 0.601±0.062 0.601±0.062 0.601±0.062
Fe XVII 17.075 0.474±0.014 0.616±0.018 0.616±0.018 0.616±0.018
Fe XVII 15.262 0.480±0.041 0.625±0.054 0.625±0.054 0.625±0.054
Fe XVII 16.777 0.270±0.052 0.350±0.068 0.350±0.068 0.350±0.068
Fe XVIII 14.205 0.448±0.070 0.588±0.092 0.588±0.092 0.588±0.092

Table 6.47: Abundances derived for individual lines from the DEM calculated from iron lines for
the Algol RGS dataset 0112880701.
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abundance 2nd order 3rd order 4th order 5th order 3T fit
N / O 6.872±0.418 6.952±0.419 6.963±0.431 7.094±0.351 7.129
Ne / O 4.178±0.323 4.210±0.324 4.231±0.331 4.076±0.281 1.995
Mg / O 1.541±0.252 1.656±0.223 1.677±0.225 1.824±0.212 0.824
Fe / O 0.801±0.058 0.761±0.055 0.761±0.056 0.664±0.043 0.782

Table 6.48: Abundances relative to oxygen derived from the DEM calculated from H-like to
He-like ratios and a corresponding global fit with three temperature components for the Algol
RGS dataset 0112880701.

element 2nd order 3rd order 4th order 5th order 3T fit
N 1.429±0.051 1.213±0.043 1.217±0.043 1.162±0.041 2.880
O 0.208±0.010 0.174±0.008 0.175±0.009 0.164±0.006 0.404
Ne 0.869±0.052 0.735±0.044 0.740±0.044 0.667±0.040 0.806
Mg 0.320±0.050 0.289±0.036 0.293±0.036 0.299±0.033 0.333
Fe 0.167±0.009 0.133±0.007 0.133±0.007 0.109±0.006 0.316

Table 6.49: Absolute abundances derived from the DEM calculated from H-like to He-like ratios
and a corresponding global fit with three temperature components for the Algol RGS dataset
0112880701.

abundance 2nd order 3rd order 4th order 5th order 3T fit
N / O 7.139±1.820 7.021±1.580 7.021±1.580 7.021±1.580 7.129
Ne / O 3.282±0.991 3.307±0.989 3.307±0.989 3.307±0.989 1.995
Mg / O 0.905±0.303 0.874±0.300 0.874±0.300 0.874±0.300 0.824
Fe / O 0.994±0.202 1.111±0.202 1.111±0.202 1.111±0.202 0.782

Table 6.50: Abundances relative to oxygen derived from the DEM calculated from iron lines
and a corresponding global fit with two temperature components for the Algol RGS dataset
0112880701.

element 2nd order 3rd order 4th order 5th order 3T fit
N 3.320±0.536 3.797±0.536 3.797±0.536 3.797±0.536 2.880
O 0.465±0.092 0.541±0.095 0.541±0.095 0.541±0.095 0.404
Ne 1.527±0.349 1.789±0.433 1.789±0.433 1.789±0.433 0.806
Mg 0.421±0.114 0.473±0.139 0.473±0.139 0.473±0.139 0.333
Fe 0.462±0.023 0.601±0.030 0.601±0.030 0.601±0.030 0.316

Table 6.51: Absolute abundances derived from the DEM calculated from iron lines and a corre-
sponding global fit with three temperature components for the Algol RGS dataset 0112880701.
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Figure 6.15: Differential emission measures for Algol with polynomials of order 2 to 7, calculated
from all available datasets combined.

6.2.4 Combined datasets

Polynomials up to the 7th order can be calculated from the combined datasets. The resulting
lower-order DEMs look a little bit like a mixture between the HETGS and LETGs datasets on
the one hand and the RGS dataset on the other hand. The parabola from the ratio fit has its
maximum at log T = 6.9, the corresponding iron line fit provides a somewhat narrower DEM
with the maximum shifted to log T = 7.1. The high-temperature slopes of the two parabolas
are identical. Third and fourth order ratio fit are almost identical. They show a maximum at
10 MK, towards higher temperatures they resemble the parabolas. Towards lower temperatures
they flatten and thus they are broader than the polynomials. The third order iron line fit is very
similar to its HETGS and LETGS counterparts, with a maximum at 15 MK and a minimum at
4 MK. The fourth order iron line fit shows the same two-peaked structure as the fourth order
iron line fit from the LETGS dataset, though the two peaks are somewhat shifted towards higher
temperatures and now located at log T = 6.8 and 7.5. It keeps these two maxima also in fifth
order, the second peak is now a little more pronounced and a minimum at log T = 6.4 occurs.
The following rise towards lower temperatures is again not covered by the available iron lines.
The fifth order ratio fit also keeps its one-peaked structure with the maximum at 10 MK, the
additional new minimum at 1 MK is due to the absence of the carbon ratio only barely covered
by the nitrogen ratio.

In sixth order even the ratio fit gives a DEM with multiple peaks. The first one is located
at log T = 6.2, the other two at log T = 6.9 and 7.5, exactly where also the maxima of the iron
line fit are found. Instead of the first peak there is a minimum at log T = 6.5 (vaguely where
the minimum between first and second peak of the ratio fit are located) followed by a steep rise
towards lower temperatures. Both ratio and iron line fit DEM change only marginally from 6th
to 7th order.

All ratio fits give a good fit in terms of reduced χ2, most of the values are even much smaller
than one and thus ”too good”, cf. Table 6.52. The best fit is given by the 3rd order polynomial,
but the second-best value comes from the 6th order fit. I consider the structures evolving at
the higher order fits very credible, at least the two higher-temperature peaks, since they are
also reproduced by the iron line fit. Additionally Schmitt and Ness (2004) compute a 7th order
Chebyshev polynomial with two peaks at 10 MK and 45 MK from the LETGS dataset that
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Figure 6.16: Shapes of emission measure distributions constructed from the best-fit DEMs and
abundances as a lower limit from the mission measure loci curves for Algol. From upper left to
lower right: The best-fit polynomial from the HETGS, the LETGS, the RGS and all datasets
combined.

resembles the 6th and 7th order ratio fits very well. The high-temperature peak would enable
the development of Algol’s strong continuum.

The absolute abundances deduced from the ratio fits (Table 6.53) are very stable and thus
the usual normalization problem seems to be overcome in this fit with all datasets. Apart from
nitrogen the values are slightly higher than those derived by Schmitt and Ness (2004). The
corresponding values relative to oxygen in listed Table 6.54 are also higher, again apart from
nitrogen. As can be seen in Table 6.55, the iron abundances derived from the ratio fit have the
typical scatter, but the short-wavelength lines may be slightly systematically higher, indicating
that the chosen hydrogen column density was too low. The strongly deviating Fexix line at
13.52 Å and the Fexxv triplet were not taken into account.

Table 6.56 shows the the iron line fits cannot reproduce the measured ratios well. Especially
the lower-temperature elements give poor results. In the higher orders this is due to rise towards
lower temperatures, here are the fits particularly bad. It is thus no wonder that the abundances
given in Table 6.59 show a broad scatter for the individual lines; and also averaged for each
element (Table 6.57) they do not match the values deduced from the ratio fit. Due to the
misleading values for oxygen, the relative abundances given in Table 6.58 are useless for the
higher orders. The values in 2nd and 4th order have at least the right order of magnitude.
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measured 2nd order 3rd order 4th order 5th order 6th oder 7th order
N VII / N VI 9.372±2.671 12.357 9.296 9.308 9.071 9.337 9.343

O VIII / O VII 6.735±1.217 7.682 6.919 6.917 7.081 6.759 6.756
Ne X / Ne IX 3.801±0.472 3.320 3.577 3.575 3.546 3.782 3.782

Mg XII / Mg XI 2.409±0.298 2.245 2.540 2.539 2.502 2.435 2.436
Si XIV / Si XIII 1.677±0.127 1.507 1.692 1.692 1.698 1.668 1.668
S XVI / S XV 1.220±0.235 1.005 1.097 1.098 1.126 1.260 1.259

3-4 Å 8.397±0.188 8.348 8.415 8.415 8.415 8.415 8.415
2-3 Å 6.980±0.927 5.997 6.016 6.016 6.042 6.147 6.146
1-2 Å 2.812±0.158 2.966 2.834 2.834 2.832 2.827 2.827

red. χ2 1.32 0.37 0.46 0.57 0.43 0.87

Table 6.52: Fit results from H-like to He-like ratios from all mentioned Algol datasets combined:
Photon flux ratios and continuum flux [ 10−4 cts s−1 cm−2 ] in specified wavelength bands.

element 2nd order 3rd order 4th order 5th order 6th oder 7th order
N 2.584±0.359 2.694±0.371 2.696±0.371 2.725±0.375 2.998±0.413 2.998±0.413
O 0.344±0.030 0.389±0.033 0.389±0.033 0.398±0.034 0.436±0.038 0.436±0.038
Ne 1.184±0.078 1.413±0.084 1.413±0.084 1.428±0.085 1.580±0.093 1.580±0.093
Mg 0.458±0.025 0.514±0.028 0.514±0.028 0.524±0.029 0.566±0.031 0.566±0.031
Al 1.411±0.131 1.475±0.137 1.476±0.137 1.514±0.141 1.678±0.156 1.678±0.156
Si 0.500±0.026 0.528±0.019 0.529±0.019 0.542±0.020 0.601±0.022 0.601±0.022
S 0.493±0.045 0.490±0.043 0.490±0.043 0.498±0.043 0.535±0.047 0.535±0.047
Ar 3.092±0.463 2.987±0.448 2.987±0.448 2.993±0.450 2.958±0.744 2.959±0.743
Ca 2.958±0.402 2.824±0.393 2.824±0.392 2.823±0.379 2.773±0.370 2.773±0.370
Fe 0.315±0.020 0.371±0.019 0.371±0.019 0.379±0.020 0.414±0.025 0.414±0.025

Table 6.53: Absolute abundances derived from the DEM calculated from H-like to He-like ratios
for all mentioned Algol datasets combined.

abundance 2nd order 3rd order 4th order 5th order 6th oder 7th order
N / O 7.505±1.227 6.926±1.125 6.931±1.126 6.847±1.112 6.882±1.118 6.884±1.118
Ne / O 3.439±0.373 3.633±0.380 3.633±0.380 3.588±0.375 3.627±0.379 3.628±0.379
Mg / O 1.329±0.136 1.321±0.135 1.321±0.135 1.317±0.135 1.299±0.133 1.299±0.133
Al / O 4.098±0.520 3.791±0.480 3.793±0.481 3.804±0.482 3.851±0.488 3.852±0.488
Si / O 1.452±0.146 1.358±0.127 1.359±0.127 1.362±0.127 1.379±0.129 1.379±0.129
S / O 1.431±0.180 1.259±0.154 1.259±0.154 1.251±0.153 1.228±0.151 1.228±0.151
Ar / O 8.983±1.552 7.678±1.329 7.678±1.329 7.520±1.304 6.790±1.805 6.793±1.804
Ca / O 8.592±1.382 7.261±1.188 7.261±1.187 7.095±1.132 6.364±1.011 6.367±1.012
Fe / O 0.916±0.097 0.952±0.095 0.953±0.095 0.952±0.096 0.951±0.100 0.951±0.100

Table 6.54: Abundances relative to oxygen derived from the DEM calculated from H-like to
He-like ratios for all mentioned Algol datasets combined.
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element λ 2nd order 3rd order 4th order 5th order 6th oder 7th order
N VI 28.787 3.152±0.712 2.681±0.605 2.684±0.606 2.671±0.603 2.991±0.676 2.993±0.676
N VII 24.782 2.390±0.415 2.703±0.470 2.703±0.470 2.759±0.479 3.002±0.522 3.002±0.522
O VII 21.602 0.377±0.055 0.396±0.058 0.396±0.058 0.412±0.060 0.437±0.064 0.436±0.064
O VIII 18.970 0.331±0.035 0.385±0.041 0.385±0.041 0.391±0.042 0.435±0.046 0.435±0.046
Ne IX 13.447 1.091±0.109 1.360±0.137 1.359±0.136 1.367±0.137 1.575±0.158 1.575±0.158
Ne X 12.134 1.249±0.091 1.445±0.106 1.446±0.106 1.465±0.107 1.583±0.116 1.583±0.116
Mg XI 9.1688 0.435±0.046 0.534±0.056 0.534±0.056 0.539±0.057 0.570±0.060 0.570±0.060
Mg XII 8.4210 0.467±0.030 0.507±0.033 0.507±0.033 0.519±0.034 0.564±0.037 0.564±0.037
Al XIII 7.1730 1.411±0.131 1.475±0.137 1.476±0.137 1.514±0.141 1.678±0.156 1.678±0.156
Si XIII 6.6480 0.468±0.029 0.531±0.032 0.532±0.032 0.546±0.033 0.599±0.037 0.599±0.037
Si XIV 6.1830 0.521±0.024 0.527±0.024 0.527±0.024 0.540±0.024 0.602±0.027 0.602±0.027
S XV 5.0387 0.434±0.070 0.456±0.074 0.456±0.074 0.471±0.076 0.547±0.089 0.547±0.089
S XVI 4.7300 0.528±0.055 0.507±0.052 0.507±0.052 0.511±0.053 0.530±0.055 0.530±0.055

Ar XVII 3.9488 3.378±0.610 3.338±0.603 3.339±0.603 3.412±0.616 3.802±0.686 3.801±0.686
Ar XVIII 3.7330 2.703±0.711 2.551±0.671 2.551±0.671 2.511±0.660 2.302±0.605 2.303±0.605
Ca XIX 3.0212 2.802±0.426 2.674±0.407 2.674±0.407 2.681±0.408 2.674±0.407 2.674±0.407
Ca XX 3.1773 3.997±1.102 3.851±1.062 3.849±1.062 3.733±1.030 3.253±0.897 3.254±0.897
Fe XVII 15.015 0.233±0.014 0.299±0.019 0.299±0.019 0.298±0.018 0.321±0.020 0.321±0.020
Fe XVII 17.075 0.261±0.019 0.336±0.025 0.336±0.025 0.334±0.024 0.364±0.027 0.364±0.027
Fe XVII 15.262 0.283±0.019 0.364±0.024 0.364±0.024 0.363±0.024 0.392±0.026 0.392±0.026
Fe XVII 16.777 0.273±0.036 0.351±0.047 0.351±0.047 0.350±0.047 0.381±0.051 0.381±0.051
Fe XVIII 14.205 0.275±0.021 0.349±0.027 0.349±0.027 0.349±0.027 0.350±0.027 0.350±0.027
Fe XVIII 93.923 0.264±0.019 0.338±0.024 0.338±0.024 0.337±0.024 0.346±0.025 0.346±0.025
Fe XIX* 13.521 0.670±0.024 0.824±0.029 0.825±0.029 0.835±0.029 0.824±0.029 0.824±0.029
Fe XIX 108.35 0.309±0.026 0.384±0.032 0.385±0.032 0.388±0.032 0.383±0.032 0.383±0.032
Fe XX 121.84 0.242±0.024 0.292±0.029 0.292±0.029 0.298±0.030 0.299±0.030 0.298±0.030
Fe XX 118.68 0.257±0.035 0.309±0.042 0.309±0.042 0.315±0.043 0.316±0.043 0.316±0.043
Fe XX 12.830 0.427±0.039 0.507±0.046 0.508±0.046 0.520±0.047 0.530±0.048 0.529±0.048
Fe XXI 128.75 0.252±0.019 0.291±0.022 0.291±0.022 0.301±0.023 0.318±0.024 0.318±0.024
Fe XXI 117.50 0.248±0.049 0.287±0.056 0.287±0.056 0.296±0.058 0.314±0.062 0.314±0.062
Fe XXI 12.285 0.392±0.017 0.446±0.019 0.447±0.019 0.462±0.020 0.502±0.022 0.502±0.021
Fe XXII 117.15 0.287±0.015 0.317±0.016 0.317±0.016 0.330±0.017 0.377±0.019 0.377±0.019
Fe XXII 135.79 0.292±0.025 0.323±0.028 0.323±0.028 0.336±0.029 0.384±0.033 0.384±0.033
Fe XXII 11.767 0.529±0.036 0.576±0.039 0.576±0.039 0.601±0.041 0.704±0.048 0.704±0.048
Fe XXIII 132.90 0.372±0.011 0.389±0.012 0.389±0.012 0.405±0.012 0.491±0.015 0.491±0.015
Fe XXIII 11.736 0.584±0.025 0.600±0.025 0.600±0.025 0.624±0.026 0.759±0.032 0.759±0.032
Fe XXIV 11.171 0.655±0.094 0.637±0.092 0.637±0.092 0.649±0.094 0.718±0.104 0.718±0.104
Fe XXV* 1.8560 1.968±0.190 1.915±0.184 1.914±0.184 1.862±0.179 1.692±0.163 1.692±0.163

Table 6.55: Abundances derived for individual lines from the DEM calculated from H-like to
He-like ratios for all mentioned Algol datasets combined.
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measured 2nd order 3rd order 4th order 5th order 6th oder 7th order
N VII / N VI 9.372±2.671 22.944 0.776 54.210 -NaN 0.000 0.000

O VIII / O VII 6.735±1.217 13.028 2.281 27.087 0.000 0.000 0.000
Ne X / Ne IX 3.801±0.472 4.624 3.426 5.788 0.000 0.000 0.000

Mg XII / Mg XI 2.409±0.298 2.878 3.103 3.398 0.000 0.000 0.000
Si XIV / Si XIII 1.677±0.127 1.813 2.129 2.477 2.649 2.743 2.745
S XVI / S XV 1.220±0.235 1.165 1.347 1.687 1.856 1.951 1.953

3-4 Å 8.397±0.188 8.238 8.362 8.396 8.410 8.417 8.418
2-3 Å 6.980±0.927 6.124 6.158 6.255 6.287 6.301 6.301
1-2 Å 2.812±0.158 3.152 2.932 2.860 2.832 2.814 2.812

red. χ2 10.01 8.79 8.44 8.75 9.35 10.07

Table 6.56: Fit results from iron lines from all mentioned Algol datasets combined: Photon flux
ratios and continuum flux [ 10−4 cts s−1 cm−2 ] in specified wavelength bands.

element 2nd order 3rd order 4th order 5th order 6th oder 7th order
N 4.593±1.684 0.231±0.242 6.811±3.933 -NaN 0.000 0.000
O 0.605±0.167 0.222±0.123 0.897±0.435 -NaN 0.000 0.000
Ne 1.913±0.173 1.960±0.116 2.776±0.515 0.000 0.000 0.000
Mg 0.615±0.047 0.695±0.074 0.841±0.119 0.000 0.000 0.000
Al 1.683±0.156 1.804±0.168 2.124±0.197 2.246±0.209 2.301±0.214 2.301±0.214
Si 0.607±0.022 0.647±0.071 0.750±0.131 0.789±0.159 0.806±0.174 0.806±0.174
S 0.543±0.047 0.531±0.046 0.550±0.075 0.553±0.095 0.552±0.105 0.552±0.105
Ar 3.223±0.543 3.019±0.637 2.877±0.888 2.783±0.978 2.721±1.019 2.719±1.019
Ca 3.052±0.408 2.825±0.378 2.689±0.359 2.614±0.349 2.565±0.342 2.563±0.342
Fe 0.460±0.021 0.544±0.023 0.744±0.030 0.835±0.033 0.880±0.035 0.881±0.035

Table 6.57: Absolute abundances derived from the DEM calculated from iron lines for all men-
tioned Algol datasets combined.

abundance 2nd order 3rd order 4th order 5th order 6th oder 7th order
N / O 7.591±3.487 1.044±1.235 7.596±5.728 -NaN 0.062±0.117 0.041±0.078
Ne / O 3.162±0.921 8.841±4.923 3.095±1.608 -NaN *** ***
Mg / O 1.016±0.292 3.135±1.768 0.938±0.474 -NaN *** ***
Al / O 2.781±0.812 8.138±4.569 2.368±1.170 -NaN *** ***
Si / O 1.003±0.280 2.917±1.646 0.837±0.431 -NaN *** ***
S / O 0.898±0.261 2.396±1.343 0.614±0.309 -NaN *** ***
Ar / O 5.326±1.726 13.618±8.070 3.208±1.845 -NaN *** ***
Ca / O 5.044±1.551 12.741±7.258 2.999±1.509 -NaN *** ***
Fe / O 0.761±0.214 2.455±1.364 0.829±0.404 -NaN *** ***

Table 6.58: Abundances relative to oxygen derived from the DEM calculated from iron lines for
all mentioned Algol datasets combined.
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element λ 2nd order 3rd order 4th order 5th order 6th oder 7th order
N VI 28.787 9.950±2.247 0.205±0.046 36.375±8.215 -NaN 0.000 0.000
N VII 24.782 4.064±0.706 2.480±0.431 6.288±1.093 0.000 0.000 0.000
O VII 21.602 1.048±0.153 0.165±0.024 3.288±0.479 -NaN 0.000 0.000
O VIII 18.970 0.542±0.058 0.487±0.052 0.818±0.087 0.000 0.000 0.000
Ne IX 13.447 2.202±0.221 1.839±0.185 3.851±0.387 0.000 0.000 0.000
Ne X 12.134 1.810±0.133 2.040±0.149 2.529±0.185 0.000 0.398±0.029 0.209±0.015
Mg XI 9.1688 0.706±0.074 0.850±0.090 1.114±0.117 0.000 0.000 0.000
Mg XII 8.4210 0.591±0.038 0.660±0.043 0.790±0.051 0.843±0.055 0.869±0.056 0.869±0.056
Al XIII 7.1730 1.683±0.156 1.804±0.168 2.124±0.197 2.246±0.209 2.301±0.214 2.301±0.214
Si XIII 6.6480 0.639±0.039 0.768±0.047 1.011±0.062 1.129±0.069 1.190±0.073 1.191±0.073
Si XIV 6.1830 0.591±0.027 0.605±0.027 0.685±0.031 0.715±0.032 0.728±0.033 0.727±0.033
S XV 5.0387 0.526±0.085 0.572±0.093 0.713±0.115 0.780±0.126 0.815±0.132 0.815±0.132
S XVI 4.7300 0.551±0.057 0.518±0.054 0.516±0.053 0.513±0.053 0.510±0.053 0.509±0.053

Ar XVII 3.9488 3.748±0.677 3.688±0.666 3.999±0.722 4.122±0.744 4.178±0.754 4.174±0.754
Ar XVIII 3.7330 2.661±0.700 2.412±0.634 2.173±0.571 2.068±0.544 2.008±0.528 2.006±0.527
Ca XIX 3.0212 2.919±0.444 2.699±0.410 2.591±0.394 2.527±0.384 2.486±0.378 2.483±0.378
Ca XX 3.1773 3.784±1.044 3.537±0.976 3.177±0.876 3.023±0.834 2.927±0.807 2.926±0.807
Fe XVII 15.015 0.442±0.027 0.486±0.030 0.680±0.042 0.783±0.048 0.814±0.050 0.815±0.050
Fe XVII 17.075 0.504±0.037 0.538±0.039 0.781±0.057 0.813±0.059 0.867±0.063 0.867±0.063
Fe XVII 15.262 0.540±0.036 0.591±0.039 0.831±0.055 0.947±0.063 0.985±0.066 0.987±0.066
Fe XVII 16.777 0.527±0.070 0.562±0.075 0.817±0.109 0.863±0.115 0.915±0.122 0.915±0.122
Fe XVIII 14.205 0.465±0.036 0.602±0.046 0.718±0.055 0.823±0.064 0.885±0.068 0.885±0.068
Fe XVIII 93.923 0.466±0.033 0.576±0.041 0.710±0.051 0.834±0.060 0.894±0.064 0.894±0.064
Fe XIX* 13.521 1.037±0.036 1.394±0.049 1.728±0.061 1.895±0.067 2.002±0.070 2.002±0.070
Fe XIX 108.35 0.492±0.041 0.657±0.054 0.796±0.066 0.885±0.073 0.941±0.078 0.941±0.078
Fe XX 121.84 0.359±0.036 0.480±0.048 0.625±0.063 0.680±0.068 0.712±0.072 0.712±0.072
Fe XX 118.68 0.380±0.052 0.508±0.070 0.662±0.091 0.720±0.099 0.754±0.104 0.754±0.104
Fe XX 12.830 0.617±0.056 0.819±0.074 1.100±0.100 1.197±0.108 1.249±0.113 1.250±0.113
Fe XXI 128.75 0.348±0.026 0.452±0.034 0.635±0.048 0.699±0.053 0.730±0.055 0.731±0.055
Fe XXI 117.50 0.343±0.067 0.445±0.087 0.626±0.123 0.689±0.135 0.720±0.141 0.720±0.142
Fe XXI 12.285 0.530±0.023 0.675±0.029 0.969±0.041 1.078±0.046 1.128±0.048 1.129±0.048
Fe XXII 117.15 0.372±0.019 0.454±0.023 0.660±0.034 0.748±0.038 0.790±0.040 0.791±0.041
Fe XXII 135.79 0.379±0.032 0.463±0.040 0.672±0.057 0.762±0.065 0.804±0.069 0.805±0.069
Fe XXII 11.767 0.671±0.045 0.798±0.054 1.152±0.078 1.315±0.089 1.394±0.094 1.396±0.094
Fe XXIII 132.90 0.447±0.013 0.498±0.015 0.673±0.020 0.760±0.023 0.804±0.024 0.805±0.024
Fe XXIII 11.736 0.686±0.029 0.737±0.031 0.954±0.040 1.062±0.045 1.118±0.047 1.119±0.047
Fe XXIV 11.171 0.707±0.102 0.684±0.099 0.731±0.105 0.749±0.108 0.757±0.109 0.756±0.109
Fe XXV* 1.8560 1.861±0.179 1.775±0.171 1.655±0.159 1.604±0.155 1.567±0.151 1.567±0.151

Table 6.59: Abundances derived for individual lines from the DEM calculated from iron lines for
all mentioned Algol datasets combined.
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6.3 AU Mic, a young active M-dwarf

AU Microscopii is an M1 V dwarf with mV = 8 .m61, located at a distance of 9.94 pc. It forms
a distance and proper motion pair with AT Mic, although the two stars are separated by 1.5◦

on the sky. Their space velocities identify both as members of the β Pictoris moving group,
an association of nearby young stars. The age of AU Mic is estimated to be approximately
10–12 Myr.

Coronagraphic measurements with the Keck telescope revealed the presence of a disk around
AU Mic, imaged in reflected light an thus consisting of circumstellar dust (Kalas et al., 2004).
Recent coronagraphic imaging with ACS on board the Hubble Space Telescope proved its extend
up to 150 AU with a thickness of ≈ 3 AU (Krist et al., 2005). The disk is seen nearly edge-on,
the inclination angle of the inner part within 50 AU is less than 1◦. Thus AU Mic is actually
obscured by its own debris disk.

AU Mic exhibits many signs of activity. Optical and UV spectra show emission lines typical
for chromospheric activity. Optical light curves show periodic variations (resulting in a rotation
period of 4.85 days) with ∆mV ≈ 0 .m15 that are attributed to photospheric dark spots, superim-
posed with phases of flare activity. Long-term variability studies indicate considerable variations
of the extent of the spotted area and of the spot distribution on the surface. Strong flares on
AU Mic are observable across the electromagnetic spectrum from X-ray to radio wavelengths
(see e.g. Smith et al. (2005), who analyzed simultaneous XMM-Newton X-ray and VLA radio
observations of several active M-dwarfs).

Magnetic activity phenomena are orders of magnitude more energetic on dMe stars than ob-
served on the Sun, and AU Mic itself is one of the most active of the dMe stars. It shows a
prominent ultraviolet emission line spectrum and has thus been a frequent target for satellite
missions and instruments operating in the UV like IUE or EUVE. Pagano et al. (2000) recon-
structed an emission measure distribution from recent observations with STIS on board Hubble,
temperatures greater than log T = 5.5 are however only poorly covered. Del Zanna et al. (2002)
analyze FUSE data, concentrating on the transition region. Their Figure 7 shows a DEM com-
puted for AU Mic in quiescent state from combined datasets of different UV instruments with
the method now implemented in the CHIANTI routine chianti dem shows – concentrating on
higher temperatures – a minimum at log T = 6.5 and a maximum at log T = 6.8 but is afflicted
with considerable uncertainties. At lower temperatures, their emission measure distributions
are in conflict with those derived by Pagano et al. (2000).

AU Mic shows the highest X-ray luminosity of all stars within 10 pc (log LX ≈ 29.65 in the
ROSAT and XMM energy bands) and is thus a suitable target for detailed investigations of
active M-dwarfs. Linsky et al. (2002) discuss the X-ray properties of AU Mic compared to solar
active regions.

6.3.1 The HETGS dataset ObsID 17

Linsky et al. (2002) give a discussion with emission measure and abundance analysis of the
HETGS observation of AU Mic. Results from this observation are also included in many studies
containing several stars, e.g. those by Ness et al. (2003c), Ness et al. (2004), Testa et al. (2004)
and Drake and Testa (2005). In none of these surveys it showed anomalous results deviating
strongly from the average.

The lightcurve in Figure 6.17 displays periods of flaring during the HETGS observation. The
flares are moderate or short-term events that do probably not have a lasting effect on the
emission measure, a level of quiescent emission can clearly be assessed. The corresponding HEG
and MEG spectra show a negligible continuum level and only weak emission lines in the short-
wavelength range < 10 Å. The strongest line is Oviii, but Ovii, Nvii, Nex, the Ne ix triplet
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Figure 6.17: Lightcurve (left) and spectrum (right) of AU Mic from 12 November 2000 obtained
with the HETGS onboard Chandra with a total exposure time of 58.8 ks.

and some Fe xvii lines are also visible.
The results obtained from this dataset are somehow disappointing. DEMs could only be

fitted in 2nd and 3rd order and the fits are not satisfactory, see Figure 6.18. The parabola
from the ratio fit peaks at 5 MK at a level of logDEM≈ 45.5 cm−3 K−1. The corresponding
iron line fit is very poor, the parabola does not even have a maximum. The 3rd order ratio
fit peaks at 4.5 MK, at similar temperatures as the parabola but at a much lower level of
log DEM ≈ 44 cm−3 K−1. The iron line fit is still not credible. It peaks at only 2 MK, at a
much too low level of log DEM ≈ 41.5 cm−3 K−1. 2nd and 3rd order polynomials would not be
able to reproduce the complex structure of the DEM obtained by Del Zanna et al. (2002), and
the reconstructed emission measures (see Figure 6.22) are only vaguely similar to the previous
results from Linsky et al. (2002).

The third order ratio fit gives the smallest reduced χ2 I have ever seen (see Table 6.60),
it is much ”too good”. Shape and maximum temperature of the polynomial are suitable for
a differential emission measure of an active M-dwarf like AU Mic but the level of maximum
emission is approximately an order of magnitude to low. It is also no wonder that none of the
two iron line fits can reproduce the measured ratios, and that the abundances derived from
these fits are too high (Tables 6.63 and 6.61). The 3rd order ratio fit also gives systematically
too high abundances, indicating the wrong normalization. The values obtained from the ratio
fit parabola though have the correct order of magnitude. Relative to oxygen both ratio fits
give similar results, indicating the neon overabundance reported by Drake and Testa (2005).
Nevertheless they do not match the two-temperature component global fit.

Linsky et al. (2002) derived abundances relative to Grevesse and Sauval from their emission
measure distribution that was constructed from iron lines based on APEC emissivities. Con-
verted to the values by Asplund et al., they obtain absolute values of 0.62, 2.76, 0.25, 0.54 and
0.4 for oxygen, neon, magnesium, silicon and iron respectively; these correspond to 4.44, 0.4,
0.87 and 0.65 relative to oxygen. These values do neither match those computed from my DEM
fits nor the global fit.
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Figure 6.18: Differential emission measures for AU Mic modeled with a parabola (left) and a
3rd order polynomial (right), calculated from the HETGS dataset 604.

measured 2nd order 3rd order
O VIII / O VII 4.257±0.635 3.567 (1.113) 4.270 (21.938)
Ne X / Ne IX 1.689±0.121 1.774 (1.117) 1.685 (36.129)

Mg XII / Mg XI 1.084±0.185 1.206 (1.284) 1.092 (73.720)
Si XIV / Si XIII 0.910±0.103 0.817 (1.385) 0.909 (***)

2-3 Å 0.343±0.034 0.343 (0.343) 0.343 (0.343)

red. χ2 1.47 (2.71) 0.03 (3.04)

Table 6.60: Fit results from H-like to He-like ratios from the AU Mic HETGS dataset 17: Photon
flux ratios and continuum flux [ 10−4 cts s−1 cm−2 ] from 2 to 3 Å. The corresponding results
from the iron line fit are given in brackets.

element 2nd order 3rd order 2T fit
N 1.115±0.198 (7.571±1.346) 20.646±3.670 (***±***) 2.005
O 0.645±0.037 (4.349±2.896) 11.393±0.517 (***±***) 0.812
Ne 1.622±0.044 (30.276±5.415) 27.990±0.768 (***±***) 1.034
Mg 0.161±0.013 (3.494±0.279) 3.047±0.243 (29.353±***) 0.098
Al 0.645±0.190 (11.959±3.525) 12.728±3.751 (74.033±***) 0.267
Si 0.368±0.021 (6.930±1.451) 7.323±0.414 (27.412±***) 0.220
S 0.866±0.219 (7.127±1.803) 10.050±2.542 (18.165±4.595) 0.434
Fe 0.199±0.016 (4.128±0.229) 3.551±0.267 (***±***) 0.149

Table 6.61: Absolute abundances derived from the DEM calculated from H-like to He-like ratios
and a corresponding global fit with two temperature components for the AU Mic HETGS dataset
17. The corresponding results from the iron line fit are given in brackets.
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abundance 2nd order 3rd order 2T fit
N / O 1.729±0.323 (1.741±1.200) 1.812±0.332 (1.734±0.557) 2.469
Ne / O 2.514±0.161 (6.961±4.799) 2.457±0.130 (1.368±0.701) 1.273
Mg / O 0.249±0.025 (0.803±0.539) 0.267±0.025 (0.062±0.045) 0.121
Al / O 0.999±0.300 (2.750±2.002) 1.117±0.333 (0.157±0.062) 0.328
Si / O 0.571±0.046 (1.593±1.112) 0.643±0.047 (0.058±0.063) 0.271
S / O 1.342±0.348 (1.639±1.167) 0.882±0.227 (0.038±0.014) 0.534
Fe / O 0.309±0.030 (0.949±0.634) 0.312±0.027 (4.611±1.258) 0.183

Table 6.62: Abundances relative to oxygen derived from the DEM calculated from H-like to
He-like ratios and a corresponding global fit with two temperature components for the AU Mic
HETGS dataset 17. The corresponding results from the iron line fit are given in brackets.

element wavelength 2nd order 3rd order
N VII 24.782 1.115±0.198 (7.571±1.346) 20.646±3.670 (***±***)
O VII 21.602 0.553±0.078 (2.119±0.299) 11.422±1.614 (***±***)
O VIII 18.970 0.660±0.032 (8.110±0.389) 11.390±0.546 (***±***)
Ne IX 13.447 1.690±0.110 (22.543±1.471) 27.946±1.824 (***±***)
Ne X 12.134 1.608±0.049 (34.068±1.030) 27.999±0.847 (***±***)
Mg XI 9.1688 0.174±0.024 (3.957±0.558) 3.062±0.432 (***±***)
Mg XII 8.4210 0.156±0.015 (3.339±0.323) 3.040±0.294 (29.154±2.820)
Al XIII 7.1730 0.645±0.190 (11.959±3.525) 12.728±3.751 (74.033±***)
Si XIII 6.6480 0.352±0.027 (9.003±0.698) 7.320±0.568 (***±***)
Si XIV 6.1830 0.392±0.032 (5.914±0.489) 7.325±0.606 (27.212±2.250)
S XVI 4.7300 0.866±0.219 (7.127±1.803) 10.050±2.542 (18.165±4.595)

Fe XVII 15.015 0.176±0.017 (3.453±0.337) 2.887±0.282 (***±***)
Fe XVII 17.075 0.245±0.015 (4.603±0.290) 4.011±0.253 (***±***)
Fe XVII 15.262 0.235±0.027 (4.578±0.518) 3.853±0.436 (***±***)
Fe XVII 16.777 0.194±0.021 (3.649±0.399) 3.176±0.347 (***±***)
Fe XVIII 14.205 0.222±0.030 (5.739±0.773) 3.892±0.524 (***±***)
Fe XIX 13.521 0.365±0.045 (10.416±1.298) 7.003±0.873 (***±***)
Fe XX 12.830 0.198±0.044 (5.761±1.278) 4.155±0.921 (***±***)
Fe XXI 12.285 0.107±0.021 (3.008±0.604) 2.451±0.492 (***±***)
Fe XXII 11.767 0.189±0.036 (4.855±0.919) 4.733±0.895 (***±***)
Fe XXIII 11.736 0.196±0.038 (4.097±0.788) 5.421±1.043 (***±***)
Fe XXIV 11.171 0.323±0.057 (4.247±0.746) 9.598±1.686 (***±***)

Table 6.63: Abundances derived for individual lines from the DEM calculated from iron lines
for the AU Mic HETGS dataset 17. The corresponding results from the iron line fit are given
in brackets.
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Figure 6.19: Lightcurve (left) and spectrum (right) of AU Mic from 13/14 October 2000 obtained
with EPIC-PN and RGS onboard XMM respectively. The exposure time is 38.4 ks.

6.3.2 The RGS dataset ObsID 0111420101

The observation of AU Mic with the RGS covers a period of repeated flaring as can be seen from
the lightcurve in Figure 6.19. It is difficult to assess a level of quiescence. The corresponding
spectrum is very similar to the HEG and MEG spectra (apart from the pseudo-continuum typical
for RGS observations). As AU Mic’s HETGS dataset, this RGS spectrum has been analyzed in
many studies like those by Ness et al. (2003c), Ness et al. (2003b) and Ness et al. (2004).

The differential emission measures reconstructed from this dataset give somewhat more re-
liable results than the HETGS dataset, although only three ratios and few iron lines covering
lower to intermediate temperatures are available. At higher temperatures these fits are solely de-
termined by the continuum measurements. The parabola obtained from the ratio fit (left panel
of Figure 6.20) has its maximum at 4.5 MK at a reasonable level of log DEM = 45 cm−3 K−1.
The corresponding parabola from the iron line fit is slightly narrower and its maximum is shifted
to 6.5 MK. For temperatures higher than 8 MK both parabolas resemble each other very well.

The ratio fit flattens towards lower temperatures in third order and peaks at log T = 6.7.
The corresponding iron line fit becomes much narrower but with a level an order of magnitude
higher at the maximum temperature. The fourth order iron line fit is more or less identical to
the third order fit while the fourth order ratio fit forms a rise towards lower temperatures, but
outside the valid temperature confidence range that starts at ≈ 2 MK.

None of the fits gives really good fit results though, the values of reduced χ2 do not drop below
5 and 3 for ratio and iron line fit respectively, see Table 6.64. The best results are provided in
both cases by the parabolas. The abundances of derived for the individual lines from the ratio
fits (Table 6.67) show a broad scatter due to the poor fits. Nevertheless they indicate a neon
enhancement. The global fit with two temperature components gives again deviating values, as
well concerning the absolute abundances in Table 6.65 as the relative abundances in Table 6.66.
The individual abundances deduced from the iron line fit (Table 6.70) are similarly scattered
than those from the ratio fit, but surprisingly the average values relative to oxygen in Table 6.69
match the values from the global fit quite well. Apart from the 2nd order fit, even the absolute
values in Table 6.68 agree with it. While the relative values obtained from this dataset at least
roughly match the values obtained from the HETGS dataset, there are the same deviations from
the values of Linsky et al. (2002).
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Figure 6.20: Differential emission measures for AU Mic modeled with 2nd to 4th order polyno-
mials, calculated from the RGS dataset 0111420101.

measured 2nd order 3rd order 4th order
N VII / N VI 3.113±0.569 4.847 (7.924) 4.360 (23.678) 4.330 (23.776)

O VIII / O VII 3.802±0.177 3.453 (5.072) 3.496 (11.506) 3.544 (11.559)
Ne X / Ne IX 1.714±0.185 1.904 (2.348) 2.081 (2.453) 1.949 (2.462)

3-4 Å 0.481±0.004 0.481 (0.481) 0.481 (0.481) 0.481 (0.481)
2-3 Å 0.290±0.026 0.305 (0.295) 0.282 (0.278) 0.299 (0.278)
1-2 Å 0.180±0.082 0.127 (0.112) 0.095 (0.247) 0.163 (0.247)

red. χ2 5.02 (3.14) 6.48 (3.38) 8.49 (4.51)

Table 6.64: Fit results from H-like to He-like ratios from the AU Mic RGS dataset 0111420101:
Photon flux ratios and continuum flux [ 10−4 cts s−1 cm−2 ] in specified wavelength bands. The
corresponding results from the iron line fit are given in brackets.

element 2nd order 3rd order 4th order 2T fit
C 2.311±0.212 2.188±0.201 1.656±0.152 1.385
N 2.980±0.354 2.975±0.280 2.262±0.209 1.500
O 1.993±0.070 2.014±0.062 1.516±0.039 0.876
Ne 5.880±0.234 5.665±0.380 4.312±0.196 1.252
Fe 0.720±0.043 0.730±0.042 0.515±0.030 0.192

Table 6.65: Absolute abundances derived from the DEM calculated from H-like to He-like ratios
and a corresponding global fit with two temperature components for the AU Mic RGS dataset
0111420101.

abundance 2nd order 3rd order 4th order 2T fit
C / O 1.160±0.114 1.086±0.105 1.092±0.104 1.581
N / O 1.495±0.185 1.477±0.146 1.492±0.143 1.712
Ne / O 2.951±0.157 2.813±0.207 2.845±0.148 1.429
Fe / O 0.361±0.025 0.362±0.024 0.340±0.021 0.219

Table 6.66: Abundances relative to oxygen derived from the DEM calculated from H-like to
He-like ratios and a corresponding global fit with two temperature components for the AU Mic
RGS dataset 0111420101.
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element wavelength 2nd order 3rd order 4th order
C VI 33.737 2.311±0.212 2.188±0.201 1.656±0.152
N VI 28.787 4.513±0.776 4.066±0.699 3.071±0.528
N VII 24.782 2.898±0.179 2.903±0.180 2.207±0.137
O VII 21.602 1.839±0.079 1.878±0.081 1.429±0.061
O VIII 18.970 2.025±0.036 2.042±0.036 1.533±0.027
Ne IX 13.447 6.435±0.634 6.709±0.661 4.816±0.474
Ne X 12.134 5.792±0.252 5.527±0.241 4.236±0.184

Fe XVII 15.015 0.690±0.030 0.702±0.031 0.494±0.022
Fe XVII 17.075 0.809±0.058 0.826±0.059 0.582±0.042
Fe XVII 15.262 0.670±0.094 0.682±0.096 0.480±0.068
Fe XVII 16.777 0.655±0.080 0.669±0.081 0.472±0.057
Fe XVIII 14.205 1.017±0.100 0.980±0.096 0.703±0.069
Fe XIX 13.521 0.350±0.211 0.323±0.195 0.241±0.145

Table 6.67: Abundances derived for individual lines from the DEM calculated from H-like to
He-like ratios for the AU Mic RGS dataset 0111420101.

element 2nd order 3rd order 4th order 2T fit
C 3.574±0.329 1.275±0.117 1.285±0.118 1.385
N 4.193±0.872 1.356±0.417 1.368±0.421 1.500
O 2.645±0.244 0.758±0.200 0.764±0.202 0.876
Ne 6.458±0.675 1.546±0.181 1.557±0.184 1.252
Fe 0.859±0.049 0.164±0.009 0.165±0.009 0.192

Table 6.68: Absolute abundances derived from the DEM calculated from iron lines for the
AU Mic RGS dataset 0111420101.

abundance 2nd order 3rd order 4th order 2T fit
C / O 1.351±0.176 1.681±0.469 1.681±0.470 1.581
N / O 1.585±0.361 1.790±0.724 1.790±0.725 1.712
Ne / O 2.442±0.340 2.040±0.588 2.037±0.589 1.429
Fe / O 0.325±0.035 0.216±0.058 0.216±0.058 0.219

Table 6.69: Abundances relative to oxygen derived from the DEM calculated from iron lines for
the AU Mic RGS dataset 0111420101.

element wavelength 2nd order 3rd order 4th order
C VI 33.737 3.574±0.329 1.275±0.117 1.285±0.118
N VI 28.787 10.360±1.782 10.169±1.749 10.298±1.771
N VII 24.782 4.070±0.252 1.337±0.083 1.348±0.083
O VII 21.602 3.427±0.147 2.211±0.095 2.240±0.096
O VIII 18.970 2.569±0.046 0.731±0.013 0.737±0.013
Ne IX 13.447 8.549±0.842 2.132±0.210 2.154±0.212
Ne X 12.134 6.241±0.272 1.490±0.065 1.500±0.065

Fe XVII 15.015 0.827±0.036 0.157±0.007 0.158±0.007
Fe XVII 17.075 0.982±0.070 0.190±0.014 0.192±0.014
Fe XVII 15.262 0.805±0.113 0.153±0.022 0.154±0.022
Fe XVII 16.777 0.796±0.097 0.154±0.019 0.156±0.019
Fe XVIII 14.205 1.099±0.108 0.198±0.019 0.199±0.020
Fe XIX 13.521 0.356±0.215 0.073±0.044 0.074±0.044

Table 6.70: Abundances derived for individual lines from the DEM calculated from iron lines
for the AU Mic RGS dataset 0111420101.
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Figure 6.21: Differential emission measures for AU Mic modeled with 2nd to 4th order polyno-
mials, calculated from both the HETGS and the RGS datasets combined.

measured 2nd order 3rd order 4th order
N VII / N VI 3.051±0.554 3.615 (0.855) 3.499 (34.626) 3.054 (6.119)

O VIII / O VII 3.904±0.562 2.680 (0.862) 2.762 (34.492) 3.804 (3.156)
Ne X / Ne IX 1.524±0.247 1.586 (0.941) 1.676 (59.879) 1.666 (1.341)

Mg XII / Mg XI 1.084±0.185 1.199 (1.183) 1.232 (***) 0.987 (1.116)
Si XIV / Si XIII 0.910±0.103 0.888 (1.422) 0.858 (***) 0.917 (1.246)

2-3 Å 0.343±0.034 0.343 (0.343) 0.343 (0.343) 0.343 (0.343)

red. χ2 2.09 (2.63) 3.02 (2.88) 0.64 (3.17)

Table 6.71: Fit results from H-like to He-like ratios from all AU Mic datasets combined: Pho-
ton flux ratios and continuum flux [ 10−4 cts s−1 cm−2 ] in specified wavelength bands. The
corresponding results from the iron line fit are given in brackets.

6.3.3 Combined datasets

Both the HETGS and the RGS datasets of AU Mic do not provide satisfactory fit results.
The most obvious possibility to obtain better results from the available data seemed to be
their merging. This attempt was however crowned only with moderate success. Five H-like
to He-like ratios are now available, the results from their DEM fits are clearly dominated
by the RGS data. The available 2nd to 4th order polynomials (Figure 6.21) resemble their
counterparts from the RGS dataset discussed above. The only differences for the parabola and
the 3rd order polynomial are that they peak at slightly lower temperatures of ≈ 3 MK and at
a somewhat higher level of log DEM . Maximum and minimum of the 4th order polynomial are
more pronounced than in the RGS 4th order polynomial, and the maximum is located at a higher
level of log DEM ≈ 46 cm−3 K−1. The high-temperature slope of the 4th order 4polynomial
starts falling at lower temperatures, similar to the iron line fits obtained from the RGS datasets.

The fit of the merged iron lines on the other hand is still dominated by the HETGS dataset,
and thus it is no wonder that they provide similarly poor results. The parabola is again turned
upside down and the normalization of the third order fit is too low (the maximum is located
at log DEM ≈ 41 cm−3 K−1) so that the corresponding polynomial is not even visible in the
plot in Figure 6.21. The fourth order iron line fit has a maximum at ≈ 3 MK followed by a
slow decay towards higher temperatures. A small second peak at extremely high temperatures
(≈ 65 MK) appears to emerge at a level an order of magnitude lower than the maximum, which
is below 45 cm−3 K−1.

The 4th order polynomial deduced from the ratios gives the best fit results, the ratios are
well-reproduced, see Table 6.71. Discrepancies arise however for the higher-temperature iron
lines (Table 6.74), that have a systematically higher abundance than the lower-temperature
ones. This does not occur with the 2nd and 3rd order ratio fits, thus the fitted early decrease
of the differential emission measure towards higher temperatures is in conflict with the high-
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Figure 6.22: Shapes of emission measures as a lower limit from the emission measure loci curves
for AU Mic. Upper panel: From the best-fit polynomial obtained from the ratio fits from the
HETGS (left) and the RGS (right) observations. Underneath the same for all datasets combined.

temperature iron lines. The averaged absolute abundances in Table 6.72 derived from parabola
and 3rd order fit deviate by a factor of ≈ 4 from the values of the 4th order fit. The relative values
listed in Table 6.73 however show a good agreement, also with the values from the individual
datasets. It is thus no wonder that they again deviate from the values derived by Linsky et al.
(2002).

The emission measures shown in Figure 6.22, each constructed from the the best-fit DEMs
and abundances have a much more pronounced maximum than the one obtained by Linsky et al.
(2002) from iron lines mainly from the HETGS dataset with two additional low-temperature
lines from EUVE. A corresponding emission measure from the 3rd order RGS fit would resemble
their data better. The emission measures computed by Del Zanna et al. (2002) (their Figure 8)
match the ones shown here somewhat better.
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element 2nd order 3rd order 4th order
C 1.056±0.097 0.833±0.077 0.253±0.023
N 1.438±0.080 1.165±0.065 0.312±0.017
O 0.985±0.144 0.801±0.107 0.205±0.010
Ne 2.845±0.227 2.230±0.178 0.499±0.040
Mg 0.229±0.018 0.172±0.014 0.045±0.004
Al 0.898±0.265 0.674±0.199 0.205±0.061
Si 0.518±0.029 0.389±0.022 0.117±0.007
S 1.028±0.260 0.858±0.217 0.119±0.030
Fe 0.311±0.028 0.234±0.024 0.060±0.006

Table 6.72: Absolute abundances derived from the DEM calculated from H-like to He-like ratios
for all mentioned AU Mic datasets combined.

element 2nd order 3rd order 4th order
C / O 1.071±0.185 1.040±0.168 1.233±0.128
N / O 1.460±0.228 1.454±0.210 1.525±0.113
Ne / O 2.887±0.481 2.785±0.433 2.438±0.229
Mg / O 0.233±0.039 0.215±0.033 0.220±0.021
Al / O 0.912±0.300 0.842±0.272 1.003±0.300
Si / O 0.526±0.082 0.486±0.070 0.572±0.043
S / O 1.043±0.305 1.071±0.306 0.581±0.150
Fe / O 0.315±0.054 0.292±0.049 0.292±0.033

Table 6.73: Abundances relative to oxygen derived from the DEM calculated from H-like to
He-like ratios for all mentioned AU Mic datasets combined.

element wavelength 2nd order 3rd order 4th order
C VI 33.737 1.056±0.097 0.833±0.077 0.253±0.023
N VI 28.787 1.680±0.289 1.320±0.227 0.313±0.054
N VII 24.782 1.418±0.083 1.151±0.067 0.312±0.018
O VII 21.602 0.733±0.098 0.608±0.082 0.200±0.027
O VIII 18.970 1.068±0.056 0.860±0.045 0.206±0.011
Ne IX 13.447 2.914±0.362 2.366±0.294 0.527±0.065
Ne X 12.134 2.800±0.293 2.151±0.225 0.482±0.050
Mg XI 9.1688 0.247±0.035 0.189±0.027 0.042±0.006
Mg XII 8.4210 0.223±0.022 0.166±0.016 0.047±0.005
Al XIII 7.1730 0.898±0.265 0.674±0.199 0.205±0.061
Si XIII 6.6480 0.512±0.040 0.379±0.029 0.118±0.009
Si XIV 6.1830 0.525±0.043 0.402±0.033 0.117±0.010
S XVI 4.7300 1.028±0.260 0.858±0.217 0.119±0.030

Fe XVII 15.015 0.337±0.035 0.265±0.028 0.054±0.006
Fe XVII 17.075 0.416±0.045 0.330±0.036 0.067±0.007
Fe XVII 15.262 0.356±0.034 0.281±0.027 0.057±0.005
Fe XVII 16.777 0.343±0.041 0.271±0.033 0.055±0.007
Fe XVIII 14.205 0.516±0.077 0.391±0.059 0.083±0.012
Fe XIX 13.521 0.274±0.106 0.202±0.078 0.050±0.019
Fe XX 12.830 0.297±0.066 0.216±0.048 0.065±0.014
Fe XXI 12.285 0.159±0.032 0.114±0.023 0.044±0.009
Fe XXII 11.767 0.274±0.052 0.198±0.037 0.105±0.020
Fe XXIII 11.736 0.271±0.052 0.201±0.039 0.163±0.031
Fe XXIV 11.171 0.406±0.071 0.322±0.057 0.448±0.079

Table 6.74: Abundances derived for individual lines from the DEM calculated from H-like to
He-like ratios for all mentioned AU Mic datasets combined.
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element 2nd order 3rd order 4th order
C 2.847±0.262 *** 8.315±0.764
N 5.741±3.550 *** 9.300±1.500
O 5.931±4.838 *** 5.937±0.463
Ne 52.613±*** *** 17.201±1.378
Mg 6.122±0.489 23.430±*** 1.643±0.131
Al 21.424±6.314 59.132±*** 6.132±1.807
Si 12.332±2.739 21.794±*** 3.517±0.552
S 11.813±2.988 14.458±3.658 3.609±0.913
Fe 7.939±0.501 *** 2.166±0.126

Table 6.75: Absolute abundances derived from the DEM calculated from iron lines for all men-
tioned AU Mic datasets combined.

abundance 2nd order 3rd order 4th order
C / O 0.480±0.394 1.305±0.462 1.401±0.169
N / O 0.968±0.991 1.557±0.716 1.567±0.281
Ne / O 8.871±7.550 1.290±1.129 2.897±0.324
Mg / O 1.032±0.846 0.046±0.035 0.277±0.031
Al / O 3.612±3.133 0.117±0.053 1.033±0.315
Si / O 2.079±1.758 0.043±0.048 0.592±0.104
S / O 1.992±1.701 0.029±0.012 0.608±0.161
Fe / O 1.339±1.095 7.420±2.577 0.365±0.036

Table 6.76: Abundances relative to oxygen derived from the DEM calculated from iron lines for
all mentioned AU Mic datasets combined.

element wavelength 2nd order 3rd order 4th order
C VI 33.737 2.847±0.262 *** 8.315±0.764
N VI 28.787 2.817±0.484 *** 18.139±3.120
N VII 24.782 10.051±0.588 *** 9.046±0.529
O VII 21.602 3.207±0.430 *** 4.982±0.668
O VIII 18.970 14.523±0.764 *** 6.162±0.324
Ne IX 13.447 43.242±5.368 *** 16.059±1.994
Ne X 12.134 70.025±7.318 *** 18.247±1.907
Mg XI 9.1688 6.514±0.918 *** 1.676±0.236
Mg XII 8.4210 5.967±0.577 23.340±2.258 1.628±0.157
Al XIII 7.1730 21.424±6.314 59.132±*** 6.132±1.807
Si XIII 6.6480 16.347±1.268 *** 4.225±0.328
Si XIV 6.1830 10.464±0.865 21.707±1.794 3.087±0.255
S XVI 4.7300 11.813±2.988 14.458±3.658 3.609±0.913

Fe XVII 15.015 7.492±0.784 *** 2.023±0.212
Fe XVII 17.075 8.836±0.953 *** 2.461±0.265
Fe XVII 15.262 7.858±0.755 *** 2.132±0.205
Fe XVII 16.777 7.277±0.877 *** 2.023±0.244
Fe XVIII 14.205 15.578±2.332 *** 3.723±0.557
Fe XIX 13.521 9.359±3.632 *** 2.290±0.889
Fe XX 12.830 10.626±2.357 *** 2.734±0.606
Fe XXI 12.285 5.678±1.140 *** 1.539±0.309
Fe XXII 11.767 9.338±1.767 *** 2.640±0.500
Fe XXIII 11.736 7.989±1.537 *** 2.277±0.438
Fe XXIV 11.171 8.191±1.439 *** 2.124±0.373

Table 6.77: Abundances derived for individual lines from the DEM calculated from iron lines
for all mentioned AU Mic datasets combined.
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6.4 UX Ari, an RS CVn system

RS CVn stars are a class of detached binaries typically composed of late-type (G or K), evolved
stars. These systems rotate generally fast with typical orbital periods of several days. Tidal
forces have coupled the rotational periods of the close components to the orbital period and
thus the two stars rotate at high velocity. Consequently, these stars usually display a level of
activity orders of magnitudes greater than solar, with strong chromospheric line emission and
a high X-ray luminosity with a distinct tendency to flare. There is even evidence suggesting
that the interaction between the two stellar magnetic fields may originate interbinary flares,
interconnecting coronal loops or mass transfer. RS CVn systems often show strong rotational
modulation due to large photospheric spots, the surfaces of their components can be mapped
with Doppler imaging and Zeeman Doppler imaging techniques.

UX Ari is one of the best-studied RS CVn-type systems. It consists of a K0 IV and a G5 V
component in a 6.44 day orbit. The orbital inclination is 60◦, eclipses cannot occur. Spectro-
scopic measurements have additionally revealed the presence of a third component.

The X-ray luminosity of UX Ari is greater than 1031 erg s−1. Considering its distance of
50.2 pc, this makes UX Ari – 6 .m47 in mV – to one of the brightest stellar X-ray sources in the sky.
Extensive observations with previous X-ray observatories show that UX Ari is able to produce
extremely strong flares. UX Ari is also one of the easiest targets for spatially resolved studies
with Very Long Baseline Interferometry (VLBI) or the Very Large Baseline Array (VLBA).

Sanz-Forcada et al. (2002) calculate emission measures for UX Ari in quiescent and flar-
ing states from XUV spectra obtained with EUVE. These emission measures show minima at
0.7 MK, 3 MK and 13 MK. Maxima are located at 2 MK and 8 MK. For temperatures higher
than 20 MK their EM is not very well determined.

Audard et al. (2003) derive the coronal abundances of UX Ari from global fits to RGS data.
They apply both APEC and MEKAL models and obtain slightly different results fro the two
underlying spectral models. However, as a general trend an inverse FIP effect is clearly visible.

6.4.1 The HETGS dataset ObsID 605

The lightcurve of UX Ari obtained from this HETGS observation shown in Figure 6.23 shows
no sign of variability, UX Ari was apparently caught in a state of quiescence. Nex and Oviii

are the two strongest lines in the corresponding MEG spectrum, both lines have approximately
equal strength. The Ne ix and Ovii triplets are also visible, as well as a relatively strong Nvii

line. Iron lines are rather inconspicuous and also the lines from the high-temperature ions at
wavelengths shorter than 10 Å are barely visible, even in the HEG. The continuum underlying
the emission lines has a moderate level of emissivity.

Five H-like to He-like ratios, of oxygen, neon, magnesium, silicon and sulfur, are available to
determine the differential emission measure, polynomials up to the 4th order could be fitted, see
Figure 6.24. Parabola, 3rd and 4th order polynomial show reasonable properties for an RS CVn
system like UX Ari: Maxima are located at 7 MK, 9 MK and 8 MK respectively, at a high level of
log DEM ≈ 47 cm−3 K−1, comparable to Algol. Third and fourth order ratio fit show additional
minima at 1 MK and 1.5 MK respectively, followed by a rise towards lower temperatures that
are, like the minima themselves, definitely outside the valid temperature range for these fits.
I would specify the lower boundary of the temperature confidence interval at 2 MK. The 4th
order polynomial is somewhat narrower than the 3rd order polynomial.

The ratio fits provide values of reduced χ2 between 1.7 and 2.4 and thus reproduce most of their
input ratios well, the best-fit value is given by the simple parabola, see Table 6.78. Concerning
the individual iron abundances derived from these fits (see Table 6.82), the higher values for
Fexxiii and Fe xxiv in 4th order indicate that the steep decay towards higher temperatures of
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Figure 6.23: Lightcurve (left) and spectrum (right) of UX Ari from 12/13 January 2000 obtained
with the HETGS onboard Chandra, the exposure time was 48.5 ks.

the 4th order fit starts at still too low temperatures.
The corresponding iron line fits give similar values of reduced χ2, but they look very different

and give only poor results concerning the reproduction of the measured ratios. The problem
with the iron line fits is the normalization. The iron line fit parabola is broader than the one
from the ratio fit, its maximum is at a similar temperature but the maximum level is lower.
The 3rd and 4th order iron line fits have a shape very different from their ratio fit counterparts.
They do not show the minimum, are much broader and flatten towards higher temperatures.
Their temperature maxima agree with the ratio fits, but the maximum level is two orders of
magnitude too low.

Thus the absolute abundances derived for these two polynomials ( cf. Tables 6.84 and 6.83) are
systematically too high by these two orders of magnitude. The parabola gives correspondingly
lower values. The absolute abundances derived from the ratio fits given in Tables 6.82 and 6.81
also differ by certain multiplicative factors, but they have at least the correct order of magnitude.

Relative to oxygen however, as listed in Tables 6.79 and 6.80, all polynomials as well from the
ratio fits as from the iron line fits show a very good agreement. Neon is clearly overabundant.
The values from aluminium, sulfur and especially argon are somewhat questionable, probably
they are systematically too high for the reasons discussed in Section 4.3.1. Apart from these two
elements, the two-temperature component global fit nearly matches the absolute abundances
deduced from the 2nd order ratio fit within the errors, indicating that the normalization is best
for this fit. This simple 2T fit provides a relative good agreement with the values derived by
Audard et al. (2003) from a 4T fit to the RGS dataset discussed below.

Converted to the solar photospheric reference values from Asplund et al., Audard et al. (2003)
give absolute values with APEC and MEKAL models respectively of 1.1 and 1.75 for carbon,
2.17 and 3.47 for nitrogen, 0.67 and 1.04 for oxygen, 2.24 and 3.33 for neon, 0.24 and 0.34 for
magnesium, 0.27 and 0.24 for silicon, 0.37 and 0.34 for sulfur, 1.94 and 2.39 for argon and 0.13
and 0.15 for iron, all with errors of approximately 10% to 20%. Relative to oxygen this results
in 1.64 and 1.68 for carbon, 3.34 and 3.24 for nitrogen, 3.2 and 3.34 for neon, 0.32 and 0.36 for
magnesium, 0.26 and 0.36 for silicon, 0.36 and 0.51 for sulfur, 2.39 and 2.89 for argon and 0.14
and 0.19 for iron.

A comparison of these values to the relative abundances I deduced from the DEM fits shows
a satisfactory agreement. As mentioned above, sulfur and argon are probably too high in my
measurements but additionally I obtain slightly higher neon and iron abundances.
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Figure 6.24: Differential emission measures for UX Ari modeled with 2nd to 4th order polyno-
mials, calculated from the HETGS dataset 605.

measured 2nd order 3rd order 4th order
O VIII / O VII 5.991±0.988 6.617 (6.719) 6.261 (11.678) 5.994 (16.854)
Ne X / Ne IX 3.438±0.334 2.875 (3.327) 3.072 (4.670) 3.348 (5.366)

Mg XII / Mg XI 1.666±0.197 1.919 (2.437) 1.949 (3.434) 1.820 (3.739)
Si XIV / Si XIII 1.403±0.229 1.277 (1.735) 1.155 (2.944) 1.144 (3.350)
S XVI / S XV 0.844±0.453 0.835 (1.223) 0.647 (2.999) 1.115 (3.684)

2-3 Å 1.439±0.144 1.439 (1.439) 1.439 (1.439) 1.439 (1.439)

red. χ2 1.73 (1.78) 2.35 (2.02) 2.32 (2.40)

Table 6.78: Fit results from H-like to He-like ratios from the UX Ari HETGS dataset 605:
Photon flux ratios and continuum flux [ 10−4 cts s−1 cm−2 ] in specified wavelength bands. The
corresponding results from the iron line fit are given in brackets.

abundance 2nd order 3rd order 4th order 2T fit
Ne / O 4.068±0.375 4.052±0.268 3.872±0.233 2.785
Mg / O 0.375±0.028 0.356±0.028 0.347±0.023 0.242
Al / O 1.183±0.263 1.137±0.253 1.180±0.262 0.380
Si / O 0.423±0.037 0.405±0.042 0.425±0.046 0.289
S / O 0.954±0.257 0.968±0.262 1.002±0.272 0.563
Ar / O 15.066±2.346 18.711±2.917 8.097±5.672 4.432
Fe / O 0.293±0.023 0.288±0.023 0.267±0.029 0.250

Table 6.79: Abundances relative to oxygen derived from the DEM calculated from H-like to
He-like ratios and a corresponding global fit with two temperature components for the UX Ari
HETGS dataset 605.

abundance 2nd order 3rd order 4th order 2T fit
Ne / O 4.119±0.248 3.902±0.702 3.770±0.929 2.785
Mg / O 0.332±0.053 0.275±0.081 0.257±0.087 0.242
Al / O 0.930±0.207 0.704±0.179 0.649±0.181 0.380
Si / O 0.332±0.035 0.239±0.079 0.217±0.084 0.289
S / O 0.642±0.175 0.329±0.204 0.276±0.195 0.563
Ar / O 7.517±2.521 2.031±1.797 1.603±1.525 4.432
Fe / O 0.314±0.018 0.366±0.050 0.378±0.068 0.250

Table 6.80: Abundances relative to oxygen derived from the DEM calculated iron lines and a
corresponding global fit with two temperature components for the UX Ari HETGS dataset 605.
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element 2nd order 3rd order 4th order 2T fit
O 0.809±0.034 0.473±0.020 0.276±0.012 1.096
Ne 3.291±0.269 1.916±0.097 1.069±0.046 3.052
Mg 0.304±0.018 0.168±0.011 0.096±0.005 0.265
Al 0.957±0.209 0.538±0.117 0.326±0.071 0.417
Si 0.342±0.027 0.192±0.018 0.117±0.012 0.317
S 0.772±0.205 0.458±0.123 0.277±0.074 0.617
Ar 12.188±1.826 8.849±1.327 2.235±1.563 4.858
Fe 0.237±0.016 0.136±0.009 0.074±0.007 0.274

Table 6.81: Absolute abundances derived from the DEM calculated from H-like to He-like ratios
and a corresponding global fit with two temperature components for the UX Ari HETGS dataset
605.

element wavelength 2nd order 3rd order 4th order
O VII 21.602 0.888±0.141 0.493±0.078 0.276±0.044
O VIII 18.970 0.804±0.036 0.472±0.021 0.276±0.012
Ne IX 13.447 2.911±0.243 1.770±0.148 1.048±0.088
Ne X 12.134 3.482±0.173 1.981±0.098 1.076±0.053
Mg XI 9.1688 0.339±0.034 0.190±0.019 0.102±0.010
Mg XII 8.4210 0.294±0.018 0.162±0.010 0.094±0.006
Al XIII 7.1730 0.957±0.209 0.538±0.117 0.326±0.071
Si XIII 6.6480 0.322±0.043 0.171±0.023 0.104±0.014
Si XIV 6.1830 0.354±0.034 0.208±0.020 0.128±0.012
S XV 5.0387 0.768±0.269 0.419±0.147 0.321±0.112
S XVI 4.7300 0.777±0.316 0.547±0.222 0.243±0.099

Ar XVII 3.9488 13.488±2.626 8.188±1.594 8.072±1.572
Ar XVIII 3.7330 10.971±2.541 10.342±2.395 1.817±0.421
Fe XVII 15.015 0.195±0.015 0.116±0.009 0.061±0.005
Fe XVII 17.075 0.234±0.016 0.140±0.010 0.074±0.005
Fe XVII 15.262 0.272±0.039 0.163±0.023 0.085±0.012
Fe XVII 16.777 0.214±0.026 0.129±0.015 0.068±0.008
Fe XVIII 14.205 0.300±0.035 0.168±0.020 0.084±0.010
Fe XIX* 13.521 0.591±0.069 0.315±0.037 0.161±0.019
Fe XX 12.830 0.252±0.126 0.130±0.065 0.071±0.035
Fe XXI 12.285 0.228±0.023 0.115±0.011 0.069±0.007
Fe XXII 11.767 0.317±0.038 0.161±0.019 0.112±0.014
Fe XXIII 11.736 0.315±0.063 0.170±0.034 0.146±0.029
Fe XXIV 11.171 0.390±0.042 0.245±0.026 0.277±0.030

Table 6.82: Abundances derived for individual lines from the DEM calculated from H-like to
He-like ratios for the UX Ari HETGS dataset 605.
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element 2nd order 3rd order 4th order 2T fit
O 2.259±0.096 50.954±6.637 88.836±*** 1.096
Ne 9.303±0.397 *** *** 3.052
Mg 0.749±0.115 14.017±3.708 22.859±6.593 0.265
Al 2.100±0.458 35.851±7.828 57.663±*** 0.417
Si 0.749±0.073 12.196±3.698 19.237±6.638 0.317
S 1.450±0.392 16.769±*** 24.491±*** 0.617
Ar 16.980±5.647 *** *** 4.858
Fe 0.709±0.029 18.664±0.751 33.572±1.343 0.274

Table 6.83: Absolute abundances derived from the DEM calculated from iron lines and a cor-
responding global fit with two temperature components for the UX Ari HETGS dataset 605.

element wavelength 2nd order 3rd order 4th order
O VII 21.602 2.516±0.400 97.480±*** ***
O VIII 18.970 2.243±0.099 50.007±2.209 87.304±3.856
Ne IX 13.447 9.083±0.759 *** ***
Ne X 12.134 9.386±0.465 ***±9.324 ***
Mg XI 9.1688 1.027±0.104 26.656±2.700 47.326±4.794
Mg XII 8.4210 0.702±0.043 12.929±0.792 21.082±1.292
Al XIII 7.1730 2.100±0.458 35.851±7.828 57.663±***
Si XIII 6.6480 0.874±0.116 22.904±3.029 41.109±5.436
Si XIV 6.1830 0.707±0.068 10.919±1.046 17.222±1.650
S XV 5.0387 1.786±0.626 47.767±*** 87.403±***
S XVI 4.7300 1.233±0.502 13.451±5.475 20.031±8.153

Ar XVII 3.9488 26.177±5.096 *** ***
Ar XVIII 3.7330 13.513±3.129 89.535±*** ***
Fe XVII 15.015 0.626±0.049 16.473±1.301 29.560±2.334
Fe XVII 17.075 0.751±0.052 19.884±1.381 35.909±2.493
Fe XVII 15.262 0.874±0.126 23.023±3.312 41.354±5.949
Fe XVII 16.777 0.688±0.082 18.222±2.174 32.913±3.926
Fe XVIII 14.205 0.947±0.112 24.072±2.851 41.846±4.956
Fe XIX* 13.521 1.809±0.211 45.949±5.356 79.936±9.318
Fe XX 12.830 0.740±0.369 19.025±9.488 33.530±***
Fe XXI 12.285 0.631±0.063 16.523±1.642 29.681±2.950
Fe XXII 11.767 0.814±0.098 21.785±2.629 39.976±4.824
Fe XXIII 11.736 0.711±0.141 19.353±3.849 36.092±7.178
Fe XXIV 11.171 0.709±0.076 18.574±1.980 33.195±3.539

Table 6.84: Abundances derived for individual lines from the DEM calculated from iron lines
for the UX Ari HETGS dataset 605.
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Figure 6.25: Lightcurve (left) and spectrum (right) of UX Ari obtained from 14 to 16 February
2001 with the LETGS onboard Chandra. Binsize of the lightcurve is 600 s with a total exposure
time of 112.8 ks.

6.4.2 The LETGS dataset ObsID 597

Though quite long exposed, the LETGS spectrum of UX Ari shows again no sign of flaring
activity. A slow rise in the countrate is however visible during the first half of the observation,
see the lightcurve in the left panel of Figure 6.25. The corresponding spectrum in the right panel
compares in the short wavelength part well with the MEG spectrum. The high-temperature iron
lines in the long wavelength part are relatively weak.

Ness et al. (2002b) discussed among others this dataset. Their analysis was focused on density
diagnostics but additionally they used H-like to He-like ratios for a simple temperature estimate.

Only one of the polynomials fitted to this dataset provides reasonable results. The parabola
obtained from the H-like to He-like ratios provides a very poor fit (see Table 6.85), it is much
too broad and peaks at log T = 5.9, very much too low for an active RS CVn system like
UX Ari. The fit improved a lot in 3rd order, the reconstructed DEM is much narrower and
has its maximum at 8 MK, cf. Figure 6.26. An additional minimum more than one order of
magnitude lower than the maximum log DEM ≈ 47.5 cm−3 K−1 is located at 1.3 MK; these
low temperatures are barely covered by the measured carbon ratio. The 4th order polynomial is
even narrower, with steeper slopes and the minimum shifted to 2 MK. This polynomial provides
the best-fit result, and reproduces the measured ratios best.

The polynomials obtained from the iron lines are narrow right from start with the parabola. It
peaks at 10 MK with the appropriate level of log DEM ≈ 47.5 cm−3 K−1, but the ratios are only
very poorly reproduced. While iron line fit parabola and 3rd order ratio fit have approximately
the same width, the 3rd order iron line fit gives again an even narrower DEM . The 4th order
fit looks nearly identical. Contrary to the 3rd and 4th order ratio fit, the corresponding iron line
fits do not show the minimum and the rise towards lower temperatures. Differential emission
measures with such a simple, parabola-like shape can apparently not reproduce the H-like to
He-like ratios although the high-temperature slope of both 4th order fits are almost identical.

The abundances derived from this dataset are thus somewhat difficult to evaluate. The el-
ements also available in the HETGS dataset show a general agreement (within the errors) in
the values relative to oxygen derived from the 3rd and 4th order ratio fits. Iron gives a smaller
value, matching the results from Audard et al. (2003) better. The values obtained from the 2nd
order ratio fit are definitely not trustworthy due to the poor quality of the fit, nevertheless they
confirm a general trend of enhanced values for nitrogen (cf. Schmitt and Ness, 2002) and neon.
As for the global fit to this dataset, the thus obtained results also show this tendency.

With reservations the same applies for the relative values obtained from the iron line fits,
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Figure 6.26: Differential emission measures for UX Ari modeled with 2nd to 4th order polyno-
mials, calculated from the LETGS dataset 597.

measured 2nd order 3rd order 4th order
C VI / C V 1.440±0.244 3.073 (***) 1.415 (***) 1.469 (***)

N VII / N VI 8.332±1.775 2.366 (52.835) 12.434 (***) 7.180 (***)
O VIII / O VII 9.712±0.898 2.062 (28.648) 8.782 (***) 10.256 (***)
Ne X / Ne IX 3.161±0.114 1.587 (5.446) 2.995 (***) 3.113 (***)

Si XIV / Si XIII 0.266±0.103 1.273 (0.886) 0.680 (***) 0.376 (***)

19.5-20.5 Å 8.782±1.756 8.782 (8.782) 8.782 (8.782) 8.782 (8.782)

red. χ2 138.43 (24.68) 12.41 (23.96) 2.13 (26.36)

Table 6.85: Fit results from H-like to He-like ratios from the UX Ari LETGS dataset 597:
Photon flux ratios and continuum flux [ 10−4 cts s−1 cm−2 ] in specified wavelength bands. The
corresponding results from the iron line fit are given in brackets.

although the low-FIP elements silicon and magnesium have systematically lower values, while
iron is much too high. By and large, all the relative values obtained from the global fits and
the best-fit polynomials match the values of Audard et al. (2003), confirming the finding of a
distinct inverse FIP effect.

The absolute values however are more problematic. While the ratio fits show a typical scatter
due to normalization, the iron line fits provide much too low values. The iron line fits are
actually just as untrustworthy as the 2nd order ratio fit.
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element 2nd order 3rd order 4th order 2T fit
C 0.126±0.026 0.307±0.019 0.240±0.015 0.832
N 0.552±0.247 1.231±0.081 1.081±0.045 2.756
O 0.168±0.103 0.291±0.006 0.257±0.004 0.748
Ne 1.195±0.416 1.057±0.026 0.873±0.014 1.985
Mg 0.141±0.019 0.081±0.011 0.077±0.010 0.148
Si 0.155±0.129 0.131±0.054 0.151±0.018 0.201
Fe 0.048±0.012 0.035±0.007 0.025±0.006 0.075

Table 6.86: Absolute abundances derived from the DEM calculated from H-like to He-like ratios
and from a global fit with two temperature components for the UX Ari LETGS dataset 597.

element 2nd order 3rd order 4th order 2T fit
C / O 0.747±0.484 1.056±0.068 0.936±0.059 1.112
N / O 3.282±2.494 4.230±0.289 4.210±0.190 3.684
Ne / O 7.109±5.012 3.631±0.114 3.398±0.080 2.654
Mg / O 0.837±0.526 0.277±0.037 0.299±0.040 0.198
Si / O 0.921±0.950 0.450±0.185 0.589±0.072 0.269
Fe / O 0.283±0.188 0.122±0.023 0.097±0.023 0.100

Table 6.87: Abundances relative to oxygen derived from the DEM calculated from H-like to
He-like ratios and a corresponding global fit with two temperature components for the UX Ari
LETGS dataset 597.

element wavelength 2nd order 3rd order 4th order
C V 40.268 0.257±0.040 0.303±0.047 0.244±0.038
C VI 33.737 0.120±0.008 0.308±0.020 0.240±0.016
N VI 28.787 0.207±0.043 1.821±0.380 0.939±0.196
N VII 24.782 0.729±0.031 1.220±0.052 1.089±0.046
O VII 21.602 0.056±0.005 0.264±0.024 0.271±0.025
O VIII 18.970 0.263±0.005 0.292±0.005 0.256±0.005
Ne IX 13.447 0.855±0.026 1.018±0.031 0.863±0.027
Ne X 12.134 1.703±0.032 1.074±0.020 0.876±0.017

Mg XII 8.4210 0.141±0.019 0.081±0.011 0.077±0.010
Si XIII 6.6480 0.366±0.046 0.178±0.022 0.160±0.020
Si XIV 6.1830 0.076±0.028 0.070±0.025 0.113±0.041
Fe XVII 15.015 0.056±0.004 0.041±0.003 0.029±0.002
Fe XVII 17.075 0.012±0.002 0.009±0.002 0.007±0.001
Fe XVII 15.262 0.116±0.012 0.087±0.009 0.062±0.006
Fe XVIII 14.205 0.055±0.010 0.027±0.005 0.018±0.003
Fe XVIII 93.923 0.113±0.010 0.064±0.006 0.043±0.004
Fe XIX 13.521 0.259±0.019 0.105±0.008 0.073±0.005
Fe XIX 108.35 0.164±0.016 0.070±0.007 0.048±0.005
Fe XX 121.84 0.085±0.013 0.033±0.005 0.025±0.004
Fe XX 118.68 0.081±0.023 0.032±0.009 0.024±0.007
Fe XX 12.830 0.131±0.015 0.051±0.006 0.041±0.005
Fe XXI 128.75 0.104±0.013 0.041±0.005 0.039±0.005
Fe XXI 117.50 0.113±0.040 0.045±0.016 0.042±0.015
Fe XXII 117.15 0.108±0.011 0.049±0.005 0.063±0.006
Fe XXII 135.79 0.095±0.017 0.043±0.008 0.056±0.010
Fe XXIII 132.90 0.116±0.006 0.073±0.004 0.145±0.008

Table 6.88: Abundances derived for individual lines from the DEM calculated from H-like to
He-like ratios for the UX Ari LETGS dataset 597.
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element 2nd order 3rd order 4th order 2T fit
C 0.516±0.217 0.000 0.000 0.832
N 1.982±0.338 0.000 0.000 2.756
O 0.454±0.058 0.000 0.000 0.748
Ne 1.438±0.304 0.000 0.000 1.985
Mg 0.075±0.010 0.000 0.000 0.148
Si 0.106±0.061 0.000 0.000 0.201
Fe 0.048±0.006 0.034±0.004 0.034±0.004 0.075

Table 6.89: Absolute abundances derived from the DEM calculated from iron lines and a cor-
responding global fit with two temperature components for the UX Ari LETGS dataset 597.

abundance 2nd order 3rd order 4th order 2T fit
C / O 1.137±0.500 0.934±0.437 0.934±0.437 1.112
N / O 4.365±0.929 3.779±1.066 3.779±1.066 3.684
Ne / O 3.165±0.781 2.869±1.848 2.869±1.848 2.654
Mg / O 0.165±0.030 0.126±0.030 0.126±0.030 0.198
Si / O 0.232±0.137 0.035±0.101 0.035±0.101 0.269
Fe / O 0.106±0.020 *** *** 0.100

Table 6.90: Abundances relative to oxygen derived from the DEM calculated from iron lines
and a corresponding global fit with two temperature components for the UX Ari LETGS dataset
597.

element wavelength 2nd order 3rd order 4th order
C V 40.268 53.432±8.325 0.160±0.025 0.160±0.025
C VI 33.737 0.516±0.034 0.000 0.000
N VI 28.787 12.501±2.610 0.045±0.009 0.045±0.009
N VII 24.782 1.971±0.084 0.000 0.000
O VII 21.602 1.328±0.121 0.006±0.001 0.006±0.001
O VIII 18.970 0.450±0.008 0.000 0.000
Ne IX 13.447 2.291±0.070 0.013±0.000 0.013±0.000
Ne X 12.134 1.329±0.025 0.000 0.000

Mg XII 8.4210 0.075±0.010 0.000 0.000
Si XIII 6.6480 0.175±0.022 0.000 0.000
Si XIV 6.1830 0.053±0.019 0.000 0.000
Fe XVII 15.015 0.078±0.005 0.056±0.004 0.056±0.004
Fe XVII 17.075 0.018±0.004 0.014±0.003 0.014±0.003
Fe XVII 15.262 0.166±0.017 0.120±0.012 0.120±0.012
Fe XVIII 14.205 0.037±0.006 0.022±0.004 0.022±0.004
Fe XVIII 93.923 0.099±0.009 0.062±0.006 0.062±0.006
Fe XIX 13.521 0.118±0.009 0.069±0.005 0.069±0.005
Fe XIX 108.35 0.085±0.008 0.049±0.005 0.049±0.005
Fe XX 121.84 0.034±0.005 0.021±0.003 0.021±0.003
Fe XX 118.68 0.032±0.009 0.020±0.006 0.020±0.006
Fe XX 12.830 0.050±0.006 0.032±0.004 0.032±0.004
Fe XXI 128.75 0.037±0.005 0.028±0.004 0.028±0.004
Fe XXI 117.50 0.041±0.014 0.031±0.011 0.031±0.011
Fe XXII 117.15 0.040±0.004 0.042±0.004 0.042±0.004
Fe XXII 135.79 0.035±0.006 0.037±0.007 0.037±0.007
Fe XXIII 132.90 0.054±0.003 0.034±0.002 0.034±0.002

Table 6.91: Abundances derived for individual lines from the DEM calculated from iron lines
for the UX Ari LETGS dataset 597.
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Figure 6.27: Lightcurve (left) and spectrum (right) of UX Ari from 15/16 February 2001 obtained
with EPIC-MOS and RGS onboard XMM respectively. The spectrum is obtained exclusively
from the dataset 0111390301 while the lightcurve shows additionally to the 28.5 ks in MOS 2
from observation 0111390301 also the data from the preceding observation 0111390101 providing
additional 14.5 ks of exposure time.

6.4.3 The RGS dataset ObsID 0111390301

The three XMM observations 0111390201, 0111390301 and 0111390301 targetting UX Ari with
9.4 ks, 16.0 ks and 30.9 ks of RGS exposure time respectively have been conducted simultaneously
to the Chandra LETGS observation of UX Ari discussed below, probably for cross-calibrational
reasons. Surprisingly I could not find studies making explicitly use of this fact in the litera-
ture. Proceeding during the second half of the LETGS observation, the lightcurve of the XMM

datasets is just as flat as the LETGS lightcurve, and the only differences in the spectra are due
to the different pseudo-continua.

I concentrated my analysis on the dataset 0111390301 that has the longest exposure time. As
mentioned above Audard et al. (2003) applied this dataset in their study of several RS CVn
systems and derived abundances from global fits with four temperature components. The higher-
temperature lines of silicon and magnesium where not measurable in this dataset, as well as the
Nvi line. Thus only two ratios are available to assess the DEM , and only 2nd and 3rd order
polynomials could be fitted. The fit and its reduced χ2 are therefore dominated by the three
continuum measurements. There also only five iron lines available (see Table 6.95), four of
them are from Fexvii. Both fitting approaches are thus not well-determined. Nevertheless I
conducted the fitting.

The two parabolas obtained from ratio and iron line fit are almost identical. They peak at
7 MK, at a reasonable level matching the previous fits. In third order, the polynomial from the
ratio fit representing the DEM becomes somewhat narrower, with a slight shift of the maximum
towards lower temperatures. The corresponding iron line develops a much different shape. An
extremely deep minimum at 4 MK is followed by a maximum at 20 MK, resulting in a very
narrow parabola-like DEM in the valid temperature range determined basically by Fe xvii.

Such a DEM is definitely not compatible with the lines from other elements, and as it can be
seen from Tables 6.92 to 6.95, it provides only nonsense values for the abundances and ratios.
The values derived from the other three fits compare very well with the previous measurements.
The only outlier is iron that is much lower. In general, the reliable fits from all datasets for
UX Ari provide absolute abundances of approximately 0.3 for carbon, 1.1 for nitrogen, 0.25 for
oxygen, 1.0 for neon, 0.1 for magnesium and 0.2 for silicon; they are smaller by a factor of ≈ 3
compared to the values derived by Audard et al. (2003). Relative to oxygen there is however a
good agreement.
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measured 2nd order 3rd order
O VIII / O VII 7.690±0.878 7.334 (7.433) 7.603 (0.000)
Ne X / Ne IX 2.484±0.368 2.779 (2.834) 2.574 (0.000)

3-4 Å 5.326±0.533 5.541 (5.464) 5.522 (5.288)
2-3 Å 3.335±0.334 3.180 (3.196) 3.147 (3.375)
1-2 Å 1.019±0.204 1.028 (1.071) 1.077 (0.998)

red. χ2 0.59 (1.26) 0.60 (1.29)

Table 6.92: Fit results from H-like to He-like ratios from the UX Ari RGS dataset 0111390301:
Photon flux ratios and continuum flux [ 10−4 cts s−1 cm−2 ] in specified wavelength bands. The
corresponding results from the iron line fit are given in brackets.

element 2nd order 3rd order 2T fit
C 0.310±0.019 (0.340±0.021) 0.258±0.016 (0.000) 1.145
N 1.130±0.055 (1.240±0.060) 0.925±0.045 (0.000) 4.644
O 0.280±0.014 (0.308±0.015) 0.227±0.011 (0.000) 1.175
Ne 1.067±0.063 (1.166±0.069) 0.866±0.051 (0.000) 3.182
Fe 0.045±0.005 (0.050±0.006) 0.034±0.004 (***) 0.204

Table 6.93: Absolute abundances derived from the DEM calculated from H-like to He-like ratios
and a corresponding global fit with two temperature components for the UX Ari RGS dataset
0111390301. The corresponding results from the iron line fit are given in brackets.

abundance 2nd order 3rd order 2T fit
C / O 1.109±0.089 (1.104±0.088) 1.136±0.091 (***) 0.974
N / O 4.041±0.282 (4.026±0.281) 4.069±0.284 (***) 3.952
Ne / O 3.818±0.295 (3.786±0.292) 3.806±0.294 (***) 2.708
Fe / O 0.160±0.020 (0.162±0.020) 0.148±0.018 (***) 0.173

Table 6.94: Abundances relative to oxygen derived from the DEM calculated from H-like to
He-like ratios and a corresponding global fit with two temperature components for the UX Ari
RGS dataset 0111390301. The corresponding results from the iron line fit are given in brackets.

element wavelength 2nd order 3rd order
C VI 33.737 0.310±0.019 (0.340±0.021) 0.258±0.016 (0.000±0.000)
N VII 24.782 1.130±0.055 (1.240±0.060) 0.925±0.045 (0.000±0.000)
O VII 21.602 0.270±0.027 (0.300±0.030) 0.226±0.022 (0.000±0.000)
O VIII 18.970 0.283±0.016 (0.311±0.018) 0.228±0.013 (0.000±0.000)
Ne IX 13.447 1.171±0.156 (1.301±0.173) 0.891±0.118 (0.000±0.000)
Ne X 12.134 1.047±0.069 (1.141±0.075) 0.860±0.056 (0.076±0.005)

Fe XVII 15.015 0.038±0.007 (0.043±0.007) 0.029±0.005 (***±***)
Fe XVII 17.075 0.054±0.010 (0.060±0.012) 0.041±0.008 (***±***)
Fe XVII 15.262 0.072±0.020 (0.080±0.023) 0.054±0.015 (***±***)
Fe XVII 16.777 0.044±0.009 (0.049±0.010) 0.033±0.007 (***±***)
Fe XIX 13.521 0.095±0.018 (0.104±0.020) 0.077±0.015 (15.939±3.053)

Table 6.95: Abundances derived for individual lines from the DEM calculated from iron lines
for the UX Ari RGS dataset 0111390301. The corresponding results from the iron line fit are
given in brackets.
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Figure 6.28: Differential emission measures for UX Ari modeled with 2nd and 3rd order polyno-
mials, calculated from the RGS dataset 0111390301.

Figure 6.29: Shapes of emission measure distributions constructed from the best-fit DEMs and
abundances as a lower limit from the mission measure loci curves for UX Ari. From upper left
to lower right: The best-fit polynomial from the HETGS, the LETGS, the RGS and all datasets
combined.
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6.4.4 Combined datasets

It is a little bit surprising that a well-known active RS CVn system like UX Ari showed no
flaring activity during both the LETGS/RGS and the HETGS observations. Thus any of the
X-ray datasets discussed here caught UX Ari in a state of quiescence. While the advantages of
a combination of the LETGS and RGS datasets are obvious (a merging of the data from these
simultaneous observations does not differ from the parallel treatment of HEG and MEG data and
will definitely increase the quality of the fit), this allows also to add the HETGS dataset. Such
an approach is affirmed by the similar relative abundances derived for the individual datasets.

The thus combined input data allows the fitting of polynomials up to the 7th order, and
the results are much more promising than those obtained from the individual observations.
Figure 6.30 shows the polynomials obtained from these fits. From the LETGS dataset the 2nd
and 3rd order fits ratio inherit the tendency to produce a broad DEM with a maximum at low
temperatures (≈ 2 MK). In 4th, 5th and 6th order, the shape of the polynomials from the ratio
fits is similar to the 3rd and 4th order ratio fits from the HETGS datasets. The maximum is
formed at 8 MK, and a minimum at 1.4 MK approximately an order of magnitude lower than the
maximum of log DEM ≈ 47.5 cm−3 K−1 is added. Since the fit is calculated from ratios ranging
from the low-temperature carbon to the high-temperature sulfur, the reconstructed DEM is
reliable from the minimum on. Again similar to the HETGS dataset, maximum and minimum
are more pronounced with higher order N . The 7th order polynomial finally develops a low-
temperature minimum at 0.7 MK that is however outside the confidence range in temperature.
Another maximum is formed in the high-temperature region. The initial maximum shifts to
6.5 MK and the new, smaller maximum forms at 25 MK. The initial minimum shifts to 2 MK,
and another minimum forms between the two maxima at 15 MK. It is questionable if the rise
towards lower temperatures following the first minimum is real, although it is now well-covered
by the carbon, nitrogen and oxygen lines.

The iron line fits seem to go ahead concerning the reproduction of certain structures in the
DEM with increasing order. The parabola already peaks at 7 MK and is much narrower than
its counterpart from the ratio fit. The 3rd order iron line fit starts forming a minimum at lower
temperatures (≈ 0.6 MK). In 4th and 5th order, the iron line fit produces a polynomial with two
maxima located at 7 MK an 28 MK and a minimum at 15 MK. Ignoring the low temperature
part where no iron lines to determine the DEM are available, these DEMs resemble the one
from 7th order ratio fit very much. The 6th and 7th order polynomials from the iron line fit
unfortunately start oscillating. A third maximum forms, and maxima and minima tear orders of
magnitude apart combined with very steep slopes. Such a DEM would definitely be unphysical.

The very good agreement between the independently reconstructed DEMs from the 4th order
iron line fit and from the 7th order ratio fit is a clear evidence for the reliability of the structures
shown by the two corresponding polynomials. Additionally these two polynomials provide each
the best-fit results from the ratio and iron line fits (see Tables 6.96 and 6.100). However, while
the higher order ratio fits reproduce the measured ratios very well, the iron line fits suffer from
missing emission measure at lower temperatures and thus cannot reproduce the ratios from
carbon to magnesium. The thus arising discrepancies can easily be recognized from abundances
derived for the individual lines in Table 6.103.

The averaged absolute abundances derived from the ratio fits (Table 6.97) differ again in
their normalization, but in general the derived values are lower than those derived by Audard
et al. (2003) by factors ranging from 3 to 6. The values relative to oxygen in Table 6.98 though
show a good agreement as do the individual datasets contributing to the combined input data.
Similar considerations apply to the abundances derived from the iron line fits. Despite of the
poor reproduction of the low-temperature ratios, the averaged abundances of the corresponding
elements are in good agreement with the values from the ratio fit. My measurements clearly
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Figure 6.30: Differential emission measures for UX Ari modeled with 2nd to 7th order polyno-
mials, calculated from all available datasets combined.

confirm an inverse FIP effect for UX Ari.
Emission measures reconstructed from the best-fit DEM (Figure 6.29) of the combined input

data as well as from HETGS and LETGS confirm the maximum at log T = 6.9 derived by Sanz-
Forcada et al. (2002). Above 10 MK their EM is only poorly determined, so that no concluding
confirmation or rejection of the second maximum found from the combined data can be given.
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measured 2nd order 3rd order 4th order 5th order 6th oder 7th oder
C VI / C V 2.311±0.528 3.996 3.860 2.304 2.294 2.283 2.313

N VII / N VI 7.033±1.424 2.769 2.835 7.990 7.904 7.553 7.017
O VIII / O VII 8.797±1.405 2.247 2.379 6.432 6.731 7.484 8.847
Ne X / Ne IX 2.910±0.354 1.537 1.670 2.944 2.978 3.110 2.869

Mg XII / Mg XI 1.606±0.186 1.290 1.416 1.807 1.752 1.688 1.637
Si XIV / Si XIII 1.403±0.229 1.040 1.131 1.081 1.143 1.078 1.344
S XVI / S XV 0.844±0.453 0.791 0.848 0.630 1.094 1.193 1.016

3-4 Å 5.326±0.533 3.993 4.010 5.231 5.303 5.315 5.234
2-3 Å 2.387±0.948 2.839 2.870 2.990 2.651 2.464 3.206
1-2 Å 1.019±0.204 1.499 1.493 1.009 1.005 1.019 0.967

red. χ2 10.49 10.78 1.42 1.22 1.38 0.55

Table 6.96: Fit results from H-like to He-like ratios from all UX Ari datasets combined: Photon
flux ratios and continuum flux [ 10−4 cts s−1 cm−2 ] in specified wavelength bands.

element 2nd order 3rd order 4th order 5th order 6th ode 7th order
C 0.140±0.022 0.178±0.026 0.270±0.021 0.142±0.011 0.110±0.009 0.365±0.029
N 0.470±0.215 0.606±0.269 1.118±0.085 0.594±0.045 0.470±0.036 1.630±0.124
O 0.101±0.074 0.133±0.093 0.253±0.035 0.137±0.016 0.111±0.008 0.388±0.025
Ne 1.240±0.337 1.500±0.345 1.021±0.042 0.536±0.022 0.408±0.017 1.364±0.057
Mg 0.144±0.014 0.161±0.009 0.080±0.004 0.044±0.002 0.034±0.002 0.117±0.006
Al 0.566±0.124 0.596±0.130 0.277±0.061 0.155±0.034 0.124±0.027 0.404±0.088
Si 0.192±0.028 0.206±0.022 0.098±0.013 0.056±0.006 0.044±0.006 0.141±0.011
S 0.471±0.125 0.484±0.128 0.240±0.064 0.131±0.035 0.105±0.028 0.293±0.078
Ar 7.379±1.111 7.244±1.230 4.664±0.698 1.109±0.744 0.749±0.586 4.391±0.657
Fe 0.078±0.008 0.093±0.008 0.052±0.004 0.030±0.002 0.023±0.002 0.079±0.006

Table 6.97: Absolute abundances derived from the DEM calculated from H-like to He-like ratios
for all mentioned UX Ari datasets combined.

element 2nd order 3rd order 4th order 5th order 6th oder 7th oder
C / O 1.394±1.049 1.339±0.959 1.066±0.168 1.040±0.145 0.993±0.103 0.941±0.095
N / O 4.671±4.053 4.569±3.793 4.415±0.692 4.348±0.602 4.239±0.432 4.201±0.417
Ne / O 12.333±9.682 11.311±8.344 4.031±0.576 3.928±0.482 3.680±0.292 3.516±0.267
Mg / O 1.434±1.066 1.217±0.855 0.317±0.046 0.322±0.040 0.303±0.025 0.302±0.024
Al / O 5.633±4.327 4.493±3.298 1.095±0.282 1.137±0.281 1.114±0.255 1.040±0.237
Si / O 1.912±1.436 1.554±1.102 0.386±0.072 0.408±0.062 0.398±0.058 0.362±0.036
S / O 4.687±3.669 3.650±2.736 0.947±0.285 0.962±0.281 0.949±0.264 0.756±0.207
Ar / O 73.404±*** 54.641±*** 18.422±3.734 8.127±5.530 6.752±5.300 11.315±1.841
Fe / O 0.777±0.578 0.702±0.496 0.203±0.031 0.218±0.030 0.205±0.023 0.203±0.020

Table 6.98: Abundances relative to oxygen derived from the DEM calculated from H-like to
He-like ratios for all mentioned UX Ari datasets combined.
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element λ 2nd order 3rd order 4th order 5th order 6th ode 7th order
C V 40.268 0.234±0.050 0.286±0.061 0.269±0.057 0.141±0.030 0.109±0.023 0.366±0.078
C VI 33.737 0.135±0.011 0.171±0.014 0.270±0.023 0.142±0.012 0.110±0.009 0.365±0.031
N VI 28.787 0.283±0.052 0.367±0.068 1.247±0.230 0.656±0.121 0.500±0.092 1.627±0.300
N VII 24.782 0.718±0.060 0.909±0.076 1.097±0.092 0.583±0.049 0.465±0.039 1.631±0.137
O VII 21.602 0.063±0.009 0.082±0.012 0.202±0.029 0.112±0.016 0.098±0.014 0.390±0.056
O VIII 18.970 0.245±0.017 0.304±0.022 0.277±0.020 0.147±0.010 0.115±0.008 0.388±0.028
Ne IX 13.447 0.787±0.089 0.996±0.113 1.031±0.117 0.547±0.062 0.433±0.049 1.348±0.153
Ne X 12.134 1.491±0.066 1.736±0.077 1.019±0.045 0.535±0.024 0.405±0.018 1.367±0.061
Mg XI 9.1688 0.124±0.013 0.147±0.015 0.088±0.009 0.047±0.005 0.035±0.004 0.119±0.012
Mg XII 8.4210 0.154±0.009 0.167±0.009 0.078±0.004 0.043±0.002 0.033±0.002 0.117±0.007
Al XIII 7.1730 0.566±0.124 0.596±0.130 0.277±0.061 0.155±0.034 0.124±0.027 0.404±0.088
Si XIII 6.6480 0.163±0.022 0.182±0.024 0.084±0.011 0.049±0.007 0.038±0.005 0.137±0.018
Si XIV 6.1830 0.220±0.021 0.226±0.022 0.110±0.010 0.061±0.006 0.050±0.005 0.143±0.014
S XV 5.0387 0.459±0.161 0.485±0.170 0.218±0.076 0.150±0.053 0.128±0.045 0.322±0.113
S XVI 4.7300 0.490±0.199 0.483±0.197 0.292±0.119 0.116±0.047 0.090±0.037 0.267±0.109

Ar XVII 3.9488 8.581±1.671 8.693±1.692 4.377±0.852 3.686±0.718 3.525±0.686 4.822±0.939
Ar XVIII 3.7330 6.425±1.488 6.201±1.436 5.249±1.216 0.895±0.207 0.626±0.145 3.976±0.921
Fe XVII 15.015 0.049±0.004 0.060±0.005 0.046±0.004 0.024±0.002 0.018±0.001 0.054±0.004
Fe XVII 17.075 0.026±0.013 0.032±0.016 0.026±0.013 0.013±0.007 0.010±0.005 0.031±0.015
Fe XVII 15.262 0.088±0.008 0.108±0.009 0.084±0.007 0.043±0.004 0.032±0.003 0.099±0.009
Fe XVII 16.777 0.055±0.007 0.068±0.009 0.054±0.007 0.028±0.004 0.021±0.003 0.064±0.009
Fe XVIII 14.205 0.063±0.030 0.074±0.035 0.042±0.020 0.022±0.010 0.016±0.007 0.054±0.026
Fe XVIII 93.923 0.094±0.009 0.113±0.010 0.071±0.006 0.036±0.003 0.026±0.002 0.087±0.008
Fe XIX 13.521 0.214±0.020 0.246±0.023 0.117±0.011 0.061±0.006 0.044±0.004 0.180±0.017
Fe XIX 108.35 0.137±0.014 0.160±0.016 0.080±0.008 0.042±0.004 0.030±0.003 0.115±0.011
Fe XX 121.84 0.073±0.011 0.083±0.013 0.037±0.006 0.020±0.003 0.014±0.002 0.063±0.010
Fe XX 118.68 0.069±0.019 0.078±0.022 0.035±0.010 0.019±0.005 0.014±0.004 0.060±0.017
Fe XX 12.830 0.121±0.032 0.135±0.036 0.058±0.015 0.032±0.008 0.023±0.006 0.107±0.028
Fe XXI 128.75 0.091±0.012 0.100±0.013 0.042±0.005 0.024±0.003 0.018±0.002 0.084±0.011
Fe XXI 117.50 0.100±0.035 0.110±0.038 0.046±0.016 0.026±0.009 0.020±0.007 0.092±0.032
Fe XXI 12.285 0.129±0.013 0.140±0.014 0.057±0.006 0.033±0.003 0.026±0.003 0.119±0.012
Fe XXII 117.15 0.098±0.010 0.106±0.011 0.043±0.004 0.026±0.003 0.021±0.002 0.089±0.009
Fe XXII 135.79 0.087±0.015 0.093±0.017 0.038±0.007 0.023±0.004 0.019±0.003 0.079±0.014
Fe XXII 11.767 0.193±0.023 0.206±0.025 0.083±0.010 0.053±0.006 0.044±0.005 0.169±0.020
Fe XXIII 132.90 0.113±0.006 0.118±0.006 0.050±0.003 0.035±0.002 0.031±0.002 0.086±0.005
Fe XXIII 11.736 0.203±0.040 0.210±0.042 0.091±0.018 0.068±0.013 0.062±0.012 0.141±0.028
Fe XXIV 11.171 0.254±0.027 0.253±0.027 0.133±0.014 0.124±0.013 0.131±0.014 0.142±0.015

Table 6.99: Abundances derived for individual lines from the DEM calculated from H-like to
He-like ratios for all mentioned UX Ari datasets combined.
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measured 2nd order 3rd order 4th order 5th order 6th oder 7th oder
C VI / C V 2.311±0.528 23.169 6.947 *** *** *** ***

N VII / N VI 7.033±1.424 9.970 5.121 52.962 53.118 62.363 59.623
O VIII / O VII 8.797±1.405 6.233 4.187 28.192 28.299 32.264 34.365
Ne X / Ne IX 2.910±0.354 2.752 2.509 5.019 5.036 5.881 5.479

Mg XII / Mg XI 1.606±0.186 1.845 1.870 2.163 2.163 2.189 2.574
Si XIV / Si XIII 1.403±0.229 1.232 1.290 1.711 1.706 2.051 1.936
S XVI / S XV 0.844±0.453 0.806 0.842 1.382 1.374 1.780 3.069

3-4 Å 5.326±0.533 4.698 4.791 4.833 4.868 5.171 5.298
2-3 Å 2.387±0.948 3.066 3.104 3.276 3.286 3.004 2.931
1-2 Å 1.019±0.204 1.281 1.239 1.198 1.188 1.049 0.965

red. χ2 6.16 6.46 5.01 5.35 5.02 5.33

Table 6.100: Fit results from iron lines from all UX Ari datasets combined: Photon flux ratios
and continuum flux [ 10−4 cts s−1 cm−2 ] in specified wavelength bands.

element 2nd order 3rd order 4th order 5th order 6th oder 7th oder
C 0.440±0.155 0.328±0.083 1.149±0.450 1.131±0.443 0.230±0.090 0.209±0.082
N 1.717±0.201 1.284±0.170 4.330±1.660 4.262±1.635 0.912±0.359 0.713±0.279
O 0.376±0.057 0.280±0.101 1.015±0.323 0.999±0.318 0.221±0.075 0.162±0.056
Ne 1.590±0.066 1.588±0.085 2.828±0.429 2.782±0.424 0.580±0.107 0.473±0.081
Mg 0.128±0.007 0.130±0.008 0.199±0.023 0.196±0.023 0.041±0.005 0.032±0.006
Al 0.425±0.093 0.424±0.093 0.619±0.135 0.609±0.133 0.117±0.026 0.106±0.023
Si 0.151±0.012 0.151±0.012 0.217±0.020 0.214±0.019 0.041±0.007 0.037±0.005
S 0.347±0.092 0.340±0.090 0.391±0.107 0.385±0.105 0.073±0.027 0.039±0.024
Ar 5.612±0.839 5.379±0.805 4.729±1.317 4.698±1.274 0.496±0.317 0.443±0.201
Fe 0.084±0.006 0.085±0.006 0.163±0.009 0.160±0.009 0.033±0.002 0.030±0.002

Table 6.101: Absolute abundances derived from the DEM calculated from iron lines for all
mentioned UX Ari datasets combined.

abundance 2nd order 3rd order 4th order 5th order 6th oder 7th oder
C / O 1.171±0.450 1.169±0.515 1.132±0.571 1.132±0.571 1.043±0.541 1.291±0.677
N / O 4.573±0.876 4.582±1.759 4.265±2.125 4.265±2.127 4.125±2.145 4.406±2.308
Ne / O 4.233±0.666 5.664±2.064 2.786±0.982 2.784±0.984 2.624±1.014 2.927±1.135
Mg / O 0.340±0.055 0.463±0.169 0.196±0.066 0.196±0.066 0.183±0.066 0.200±0.078
Al / O 1.132±0.301 1.513±0.638 0.610±0.235 0.610±0.236 0.529±0.214 0.655±0.270
Si / O 0.402±0.069 0.539±0.199 0.214±0.071 0.214±0.071 0.186±0.070 0.226±0.085
S / O 0.924±0.283 1.211±0.542 0.385±0.161 0.385±0.162 0.330±0.166 0.240±0.169
Ar / O 14.945±3.185 19.189±7.491 4.659±1.970 4.702±1.968 2.244±1.622 2.738±1.569
Fe / O 0.224±0.037 0.303±0.111 0.160±0.052 0.160±0.052 0.151±0.052 0.184±0.065

Table 6.102: Abundances relative to oxygen derived from the DEM calculated from iron lines
for all mentioned UX Ari datasets combined.
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element λ 2nd order 3rd order 4th order 5th order 6th oder 7th oder
C V 40.268 4.345±0.922 0.952±0.202 74.891±*** 73.904±*** 17.27±3.663 15.31±3.248
C VI 33.737 0.433±0.037 0.317±0.027 1.146±0.097 1.128±0.095 0.230±0.019 0.208±0.018
N VI 28.787 2.343±0.432 1.012±0.187 31.85±5.873 31.44±5.798 7.924±1.461 5.915±1.091
N VII 24.782 1.653±0.138 1.390±0.116 4.230±0.354 4.163±0.349 0.894±0.075 0.698±0.058
O VII 21.602 0.294±0.042 0.184±0.026 3.092±0.442 3.055±0.437 0.773±0.111 0.604±0.086
O VIII 18.970 0.416±0.030 0.386±0.027 0.965±0.069 0.950±0.068 0.211±0.015 0.155±0.011
Ne IX 13.447 1.515±0.172 1.402±0.159 4.709±0.533 4.647±0.526 1.130±0.128 0.860±0.097
Ne X 12.134 1.603±0.071 1.626±0.072 2.730±0.122 2.685±0.120 0.559±0.025 0.457±0.020
Mg XI 9.1688 0.143±0.014 0.147±0.015 0.256±0.026 0.251±0.025 0.053±0.005 0.049±0.005
Mg XII 8.4210 0.124±0.007 0.126±0.007 0.190±0.011 0.187±0.010 0.039±0.002 0.030±0.002
Al XIII 7.1730 0.425±0.093 0.424±0.093 0.619±0.135 0.609±0.133 0.117±0.026 0.106±0.023
Si XIII 6.6480 0.140±0.018 0.143±0.019 0.250±0.033 0.246±0.032 0.055±0.007 0.047±0.006
Si XIV 6.1830 0.159±0.015 0.156±0.015 0.205±0.020 0.202±0.019 0.038±0.004 0.034±0.003
S XV 5.0387 0.340±0.119 0.339±0.119 0.527±0.185 0.517±0.181 0.122±0.043 0.113±0.040
S XVI 4.7300 0.357±0.145 0.340±0.138 0.322±0.131 0.318±0.129 0.058±0.024 0.031±0.013

Ar XVII 3.9488 6.089±1.185 5.891±1.147 6.654±1.295 6.532±1.272 1.506±0.293 0.865±0.168
Ar XVIII 3.7330 5.133±1.189 4.882±1.131 3.828±0.886 3.813±0.883 0.397±0.092 0.347±0.080
Fe XVII 15.015 0.071±0.005 0.071±0.005 0.138±0.011 0.136±0.011 0.028±0.002 0.025±0.002
Fe XVII 17.075 0.040±0.020 0.040±0.019 0.081±0.040 0.080±0.039 0.016±0.008 0.015±0.007
Fe XVII 15.262 0.129±0.011 0.129±0.011 0.254±0.022 0.250±0.022 0.051±0.004 0.046±0.004
Fe XVII 16.777 0.083±0.011 0.083±0.011 0.170±0.023 0.168±0.023 0.034±0.005 0.031±0.004
Fe XVIII 14.205 0.069±0.033 0.073±0.035 0.107±0.051 0.105±0.050 0.023±0.011 0.020±0.010
Fe XVIII 93.923 0.114±0.010 0.119±0.011 0.187±0.017 0.184±0.017 0.041±0.004 0.034±0.003
Fe XIX 13.521 0.200±0.019 0.212±0.020 0.323±0.031 0.316±0.030 0.073±0.007 0.067±0.006
Fe XIX 108.35 0.136±0.013 0.144±0.014 0.212±0.021 0.207±0.020 0.045±0.004 0.043±0.004
Fe XX 121.84 0.064±0.010 0.067±0.011 0.113±0.018 0.111±0.017 0.025±0.004 0.023±0.004
Fe XX 118.68 0.060±0.017 0.064±0.018 0.107±0.030 0.105±0.029 0.024±0.007 0.022±0.006
Fe XX 12.830 0.101±0.027 0.107±0.028 0.194±0.051 0.190±0.050 0.044±0.012 0.038±0.010
Fe XXI 128.75 0.072±0.009 0.075±0.010 0.154±0.020 0.151±0.020 0.031±0.004 0.027±0.004
Fe XXI 117.50 0.079±0.028 0.082±0.029 0.169±0.059 0.166±0.058 0.034±0.012 0.030±0.010
Fe XXI 12.285 0.099±0.010 0.102±0.010 0.223±0.022 0.219±0.022 0.043±0.004 0.037±0.004
Fe XXII 117.15 0.073±0.007 0.074±0.007 0.168±0.017 0.165±0.017 0.031±0.003 0.028±0.003
Fe XXII 135.79 0.064±0.011 0.065±0.012 0.148±0.026 0.146±0.026 0.027±0.005 0.025±0.004
Fe XXII 11.767 0.139±0.017 0.141±0.017 0.315±0.038 0.311±0.037 0.059±0.007 0.054±0.007
Fe XXIII 132.90 0.079±0.004 0.079±0.004 0.149±0.008 0.147±0.008 0.032±0.002 0.029±0.002
Fe XXIII 11.736 0.141±0.028 0.138±0.028 0.234±0.047 0.230±0.046 0.054±0.011 0.045±0.009
Fe XXIV 11.171 0.177±0.019 0.170±0.018 0.189±0.020 0.186±0.020 0.034±0.004 0.030±0.003

Table 6.103: Abundances derived for individual lines from the DEM calculated from iron lines
for all mentioned UX Ari datasets combined.
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A The fit dem routine

1 ; f i t dem recon s t ru c t s d i f f e r e n t i a l emssion measures and abundances
2 ;
3 ; c a l l s :
4 ; cut ( by Jan−Uwe Ness )
5 ; convertname , ion2spec t roscop ic , ion in terp , g o f t , f r e e f r e e , freebound , two photon ( a l l

from Chiant i )
6 ; ismtau (PINTofALE)
7 ; e r r we igh t average , err mean , checksum , g e t f l e n g t h ( ed i t e d vers ion o f Jan−Uwe Ness ’

g e t f l e n count ing l i n e s o f an a s c i i f i l e , now accep t ing the ’ ; ’ as a comment symbol ) ,
r e ad l i n e s , r e a d c o r a f i l e

8 ;
9 ; inpu t :

10 ; name name of the s t a r the c a l c u l a t i o n should be done f o r
11 ;
12 ; keywords :
13 ; i n t e r p number o f i n t e r p o l a t i o n va lues to the temperature array
14 ; a l l auto−s e l e c t every da t a s e t found by the rou t ine i n d i v i d u a l da t a s e t s can be

confirmed or r e j e c t e d i f not s e t
15 ; p s p l o t make the p l o t s as PS− f i l e s
16 ; f e f i t doing an analogous f i t f o r the iron l i n e s only
17 ; maxslope f o r c e the s l o p e at l o g T = 8 to some va lue − sometimes he l p s to avoid

r a i s i n g s l o p e s
18 ; minslope l i k e maxslope , but f o r l o g T = 5
19 ; s t a r t o rd e r s t a r t i n g po in t f o r h igher oder f i t s − i n f l u e n c e s s l i g h t l y the i n i t i a l

c ond i t i on s !
20 ; order maximum order to f i t
21 ;
22 ; f i l e h i s t o r y :
23 ; 2005 08 23 by Carol in L i e f k e
24
25
26 ; p r e d i c t r a t i o s computes a t h e o r e t i c a l l i n e f l u x r a t i o from the i n t e g r a l o f the

con t r i bu t i on func t ion and a polynomia l w i thou t the c o e f f i c i e n t c 0 f o r the DEM
27 function p r e d i c t r a t i o s , x , y , c , x s h i f t
28 x=double ( x ) ; x i s the temperature array
29 y=double ( y ) ; y i s a 3D array o f con t r i bu t i on f unc t i on s : ( i n t e r p ∗30+1 , 2 , n r a t i o s )
30 order=n elements ( c )−1
31 exponent =0.d0
32 for i =1, order do exponent=exponent+c ( i ) ∗xˆ( i ) ; d e f i n e the exponent as a polynomia l

w i thou t the c o f f i c i e n t c 0
33 r a t i o=db lar r ( n e lements ( y ( 0 , 0 ,∗ ) ) )
34 for j =0, n e lements ( r a t i o )−1 do begin

35 good0=where ( y (∗ , 0 , j ) gt 0 ) ; c a l c u l a t e i n t e g r a l only where g o f t s are not zero
36 good1=where ( y (∗ , 1 , j ) gt 0 )
37 i n t 0=in t t abu l a t ed (x ( good0 ) , y ( good0 , 0 , j ) ∗10ˆ( exponent ( good0 )+x ( good0 )+x s h i f t ) ,/ double )
38 i n t 1=in t t abu l a t ed (x ( good1 ) , y ( good1 , 1 , j ) ∗10ˆ( exponent ( good1 )+x ( good1 )+x s h i f t ) ,/ double )
39 r a t i o ( j )=in t 0 / i n t 1
40 endfor

41 return , r a t i o
42 end

43
44 ; t h e o f l u x computes a t h e o r e t i c a l l i n e or continuum f l u x from the i n t e g r a l o f the

con t r i bu t i on func t ion and a complete po lynomia l
45 function theo f lux , x , y , c , d i s tance , x s h i f t , l i n e=l i n e
46 x=double ( x ) ; x i s the temperature
47 y=double ( y ) ; y i s a 2D array o f conr ibu t ion func t i on s : ( n e lements ( c temp ) ,

n e lements ( c wave ) )
48 i n t e g r a l=db lar r ( n e lements ( y ( 0 , ∗ ) ) )
49 for j =0, n e lements ( i n t e g r a l )−1 do begin

50 good=where ( y (∗ , j ) gt 0 ) ; c a l c u l a t e i n t e g r a l only where g o f t s are not zero
51 i n t e g r a l ( j )=in t t abu l a t ed (x ( good ) , y ( good , j ) ∗10ˆ( poly ( x ( good ) , c )+x ( good )+x s h i f t ) , /
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double )
52 endfor

53 th eo f l ux=i n t e g r a l ∗ a log (10) / d i s t an c e ˆ2 ; don ’ t f o r g e t ln 1 0 . . .
54 i f keyword set ( l i n e ) then t h eo f l ux=theo f l ux / ( 4∗ ! p i )
55 ; c on t r i bu t i on f unc t i on s f o r l i n e s and continuum are de f ined d i f f e r e n t l y in CHIANTI
56 return , t h e o f l ux
57 end

58
59 ; c h i s qua r e i s to be minimized by Powel l . Needs the common b l o c k because Powel l can not

dea l wi th f unc t i on s with parameters . The polynomia l c o e f f i c i e n t s are f r e e to vary
60 function ch i square , a
61 common r a t i o f i t , t , t s h i f t , go f t s , measured , measured errors , c t , c g o f t s , c f l ux ,

c f l u x e r r o r , d i s tance , f e g o f t s , fe measured , f e mea su r ed e r r o r s , max slope , min s lope
62 t h e o r e t i c a l=p r e d i c t r a t i o s ( t , go f t s , a , t s h i f t ) ; compute t h e o r e t i c a l r a t i o s
63 c t h e o r e t i c a l=theo f l ux ( c t , c g o f t s , a , d i s tance , t s h i f t ) ; compute t h e o r e t i c a l continuum
64 ch i s qua r e=t o t a l ( ( measured−t h e o r e t i c a l ) ˆ2/ measured er ror s ˆ2)+t o t a l ( ( c f l ux−c t h e o r e t i c a l )

ˆ2/( c f l u x e r r o r ) ˆ2)
65 maxslope=dblar r ( n e lements ( a ) )
66 mins lope=dblar r ( n e lements ( a ) )
67 for i =0, n e lements ( a )−1 do maxslope ( i )=a ( i ) ∗ i ∗max( t ) ˆ( i −1) ;max l o g T i s 8 , so 1 in

un i t s o f t
68 for i =0, n e lements ( a )−1 do minslope ( i )=a ( i ) ∗ i ∗min ( t ) ˆ( i −1) ;min l o g T i s 5 ,−2 in

un i t s o f t
69 i f t o t a l ( maxslope ) gt max slope then ch i s qua r e =10000.
70 i f t o t a l ( mins lope ) l t min slope then ch i s qua r e =10000.
71 return , c h i s qua r e
72 end

73
74 ; t he minimizat ion func t ion f o r the iron l i n e s . No r a t i o s are needed but f l u x e s f o r the

iron l i n e s . The iron abundance i s another f i t parameter ins tead .
75 function c h i s q u a r e f e , params
76 common r a t i o f i t , t , t s h i f t , go f t s , measured , measured errors , c t , c g o f t s , c f l ux ,

c f l u x e r r o r , d i s tance , f e g o f t s , fe measured , f e mea su r ed e r r o r s , max slope , min s lope
77 fe abund=params (0) ; d i v i d e the iron abundance from the parameter vec tor
78 a=params ( 1 : n e lements ( params )−1) ; t he r e s t are the po lynomia l c o e f f i c i e n t s
79 f e t h e o r e t i c a l=fe abund ∗ t h eo f l ux ( t , f e g o f t s , a , d i s tance , t s h i f t , / l i n e )
80 c t h e o r e t i c a l=theo f l ux ( c t , c g o f t s , a , d i s tance , t s h i f t )
81 ; compute iron l i n e f l u x and t h e o r e t i c a l continuum
82 c h i s q u a r e f e=t o t a l ( ( fe measured−f e t h e o r e t i c a l ) ˆ2/ f e mea su r ed e r r o r s ˆ2)+t o t a l ( ( c f l ux−

c t h e o r e t i c a l ) ˆ2/( c f l u x e r r o r ) ˆ2)
83 maxslope=dblar r ( n e lements ( a ) )
84 mins lope=dblar r ( n e lements ( a ) )
85 for i =0 , n e lements ( a )−1 do maxslope ( i )=a ( i ) ∗ i ∗max( t ) ˆ( i −1)
86 for i =0 , n e lements ( a )−1 do minslope ( i )=a ( i ) ∗ i ∗min ( t ) ˆ( i −1)
87 i f t o t a l ( maxslope ) gt max slope then ch i s qua r e =1000.
88 i f t o t a l ( mins lope ) l t min slope then ch i s qua r e =1000.
89 return , c h i s q u a r e f e
90 end

91
92 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
93 ; main program
94 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
95
96 pro f i t dem , name , i n t e rp=inte rp , order=order , a l l=a l l , p sp lo t=psplot , f e f i t=f e f i t ,

maxslope=maxslope , mins lope=minslope , s t a r t o r d e r=s t a r t o rd e r , t s h i f t=t s h i f t , j ou rna l=
j ou rna l

97 common r a t i o f i t , t , t s h i f t , go f t s , measured , measured errors , c t , c g o f t s , c f l ux ,
c f l u x e r r o r , d i s tance , f e g o f t s , fe measured , f e mea su r ed e r r o r s , max slope , min s lope

98
99 loadct , 3 8 , f i l e=’ /home/ h s l x r s r v3 / st1h314/IDL/ c o l o r s . t b l ’

100
101 ; p rede f ined l i n e l i s t , i nd i c e s f o r ch i an t i 5 . 0 !
102 l i n e l i s t =[ ’C 5 ’ , ’ C 6 ’ , ’N 6 ’ , ’N 7 ’ , ’O 7 ’ , ’O 8 ’ , ’ Ne 9 ’ , ’ Ne 10 ’ , ’Mg 11 ’ , ’Mg 12 ’ , ’ Al 12 ’ , ’

Al 13 ’ , ’ S i 13 ’ , ’ S i 14 ’ , ’ S 15 ’ , ’ S 16 ’ , ’ Ar 17 ’ , ’ Ar 18 ’ , ’ Ca 19 ’ , ’ Ca 20 ’ , ’ Fe 9 ’ , ’ Fe 10 ’ , ’
Fe 15 ’ , ’ Fe 16 ’ , ’ Fe 17 ’ , ’ Fe 17a ’ , ’ Fe 17b ’ , ’ Fe 17c ’ , ’ Fe 18 ’ , ’ Fe 18a ’ , ’ Fe 18b ’ , ’ Fe 19 ’ , ’
Fe 19a ’ , ’ Fe 19b ’ , ’ Fe 20 ’ , ’ Fe 20a ’ , ’ Fe 20b ’ , ’ Fe 21 ’ , ’ Fe 21a ’ , ’ Fe 21b ’ , ’ Fe 22 ’ , ’ Fe 22a ’ , ’
Fe 22b ’ , ’ Fe 23 ’ , ’ Fe 23a ’ , ’ Fe 24 ’ , ’ Fe 25 ’ ]

103 ; i nd i c e s o f l i n e s to s e l e c t a l l ow ing g o f t to run wi thou t widget
104 i n d e x l i s t = [ [ 3 , 3 ] , [ 6 , 8 ] , [ 6 , 6 ] , [ 6 , 8 ] , $ ;C V r , C VI Ly a , N VI r , N VII Ly a
105 [ 6 , 6 ] , [ 6 , 8 ] , [ 6 , 6 ] , [ 2 0 , 2 2 ] , $ ;O VII r , OVIII Ly a , Ne IX r , Ne X Ly a
106 [ 6 , 6 ] , [ 6 , 8 ] , [ 6 , 6 ] , [ 6 , 8 ] , $ ;Mg XI r , Mg XII Ly a , Al XII r Al XIII Ly a
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107 [ 6 , 6 ] , [ 6 , 8 ] , [ 6 , 6 ] , [ 6 , 8 ] , $ ; S i XIII r , Si XIV Ly a , S XV r , S XVI Ly a
108 [ 6 , 6 ] , [ 6 , 8 ] , [ 6 , 6 ] , [ 6 , 8 ] , $ ;Ar XVII r , Ar XVIII Ly a , Ca XIX r , Ca XX
109 [ 2 3 8 , 2 3 8 ] , [ 1 3 8 1 , 1 3 8 1 ] , [ 2 0 6 1 , 2 0 6 1 ] , [ 1 9 , 1 9 ] , $ ; Fe IX 171 . 1 , Fe X, 1 7 4 . 5 , Fe XV

69 . 68 , Fe XVI 63 .7
110 [ 5 5 , 5 5 ] , [ 6 8 , 6 9 ] , [ 5 8 , 5 8 ] , [ 6 7 , 6 7 ] , $ ; Fe XVII 15 . 01 , 17 . 07 , 15 . 26 , 16 . 78
111 [ 4 4 0 , 4 4 1 ] , [ 5 8 9 2 , 5 8 9 2 ] , [ 6 3 8 9 , 6 3 8 9 ] , $ ; Fe XVIII 14 . 20 , 93 . 9 , 103 . 9
112 [ 2 0 0 8 , 2 0 0 8 ] , [ 1 7 1 9 8 , 1 7 1 9 8 ] , [ 1 6 4 4 9 , 1 6 4 4 9 ] , $ ; Fe XIX 13 . 52 , 108 . 4 , 101 . 5
113 [ 2 3 7 2 4 , 2 3 7 2 4 ] , [ 2 3 4 0 8 , 2 3 4 0 8 ] , [ 3 8 7 4 , 3 8 9 8 ] , $ ; Fe XX 121 . 8 , 118 . 7 , 12 . 83
114 [ 1 6 2 9 1 , 1 6 2 9 1 ] , [ 1 5 8 9 4 , 1 5 8 9 4 ] , [ 3 6 9 3 , 3 6 9 3 ] , $ ; Fe XXI 128 . 1 , 117 . 5 , 12 . 28
115 [ 1 3 4 3 1 , 1 3 4 3 1 ] , [ 1 3 8 1 8 , 1 3 8 1 8 ] , [ 2 9 6 4 , 2 9 6 4 ] , $ ; Fe XXII 117 . 1 , 135 . 8 , 11 . 76
116 [ 5 0 2 2 , 5 0 2 2 ] , [ 1 0 8 3 , 1 0 8 3 ] , [ 6 9 , 7 0 ] , [ 6 , 9 ] ] ; Fe XXIII 132 . 9 , 11 . 73 , Fe XXIV 11 . 17 , Fe

XXV 1.86
117 ; wave l eng ths o f l i n e s ( needed f o r e f f e c t i v e area i n t e r p o l a t i o n )
118 wave l eng th l i s t = [ 4 0 . 2 6 8 , 3 3 . 7 3 7 , 2 8 . 7 8 7 , 2 4 . 7 8 2 , 2 1 . 6 0 2 , 1 8 . 9 7 , 1 3 . 4 4 7 , 1 2 . 1 3 4 5 , 9 . 1 6 8 8 , $
119 8 . 4 2 1 , 7 . 7 5 7 3 , 7 . 1 7 3 , 6 . 6 4 8 , 6 . 1 8 3 , 5 . 0 3 8 7 , 4 . 7 3 , 3 . 9 4 8 8 , 3 . 7 3 3 , 3 . 0 2 1 2 , 3 . 1 7 7 3 , $
120 1 7 1 . 0 7 3 , 1 7 4 . 5 , 6 9 . 6 8 2 , 6 3 . 7 1 1 , 1 5 . 0 1 5 , 1 7 . 0 7 5 , 1 5 . 2 6 2 , 1 6 . 7 7 8 , 1 4 . 2 0 5 , 9 3 . 9 2 3 , 1 0 3 . 9 3 7 , $
121 1 3 . 5 2 1 , 1 0 8 . 3 5 5 , 1 0 1 . 5 4 9 8 , 1 2 1 . 8 4 5 , 1 1 8 . 6 8 0 1 , 1 2 . 8 3 , 1 2 8 . 7 5 , 1 1 7 . 5 , 1 2 . 2 8 5 , 1 1 7 . 1 5 4 , $
122 1 3 5 . 7 9 1 , 1 1 . 7 6 7 5 , 1 3 2 . 9 0 6 5 , 1 1 . 7 3 6 3 , 1 1 . 1 7 1 , 1 . 8 5 6 ]
123
124 i f n elements ( maxslope ) eq 0 then max slope=!VALUES. F INFINITY else max slope=maxslope
125 i f n elements ( mins lope ) eq 0 then min slope=−!VALUES. F INFINITY else min slope=mins lope
126 ; i f keyword not set , a l l ow any s l op e
127
128 i f keyword set ( j ou rna l ) then begin

129 j o u r n a l f i l e=’ ’
130 read , j o u r n a l f i l e , prompt=’ Enter j ou rna l f i l e name : ’
131 i f j o u r n a l f i l e eq ’ ’ then j o u r n a l f i l e=name
132 journa l , j o u r n a l f i l e+’ . out ’
133 endif

134 ; p ipe the standard output to a f i l e
135
136 ;−−−−c o l l e c t a v a i l a b l e data
137 print , ’−−−−−−−−−−−−−−−−−−−−−−−’
138 print , ’ Searching f o r a v a i l a b l e l i n e data ’
139 r o o t d i r=’ / data /hspc58/ st1h314/ ’
140 f i l ename=f i n d f i l e ( r o o t d i r+’ ∗/ ’+name+’ /∗/ l i n e s ∗ . dat ’ )
141 n f i l e s=n elements ( f i l ename )
142 ; f i l ename conta ins now a l l f i l enames o f the chosen s t a r with measured l i n e counts
143 i f f i l ename (0) ne ’ ’ then begin ; s e c u r i t y check i f any l i n e count data found
144
145 ;−−−− choosing da t a s e t s to inc lude in c a l c u l a t i o n s
146 i f not keyword set ( a l l ) then begin

147 print , ’Which o f these da t a s e t s s h a l l be inc luded ? ’
148 print , ’ Confirm with ” y ” or ” n” ’
149 s e l e c t=in t a r r ( n f i l e s )
150 input=’ ’
151 for m=0 , n f i l e s −1 do begin

152 read , input , prompt=f i l ename (m)+’ : ’
153 i f input ne ’ n ’ then s e l e c t (m)=1
154 endfor

155 chosen=where ( s e l e c t eq 1 , n chosen )
156 i f n chosen eq 0 then begin ; f i l ename ge t s undef ined when a l l data r e j e c t e d
157 print , ’ A l l l i n e count data r e j e c t e d . Aborting . ’
158 return

159 endif

160 f i l ename=f i l ename ( chosen )
161 n f i l e s=n elements ( f i l ename )
162 endif

163
164 f l ux t ab=dblar r ( n e lements ( l i n e l i s t ) , n f i l e s )
165 f l u x e r r o r t a b=dblar r ( n e lements ( l i n e l i s t ) , n f i l e s )
166 f l u x l i s t=db lar r ( n e lements ( l i n e l i s t ) )
167 f l u x e r r o r l i s t=db lar r ( n e lements ( l i n e l i s t ) )
168 ; f l u x e s c a l c u l a t e d f o r the l i n e s measured with the d i f f e r e n t d e t e c t o r s w i l l be en t r i e d in

f l u x t a b , t h e i r errors in f l u x e r r o r t a b .
169 ; f l u x l i s t w i l l contain weightend means f o r each l ine , f l u x e r r o r the standard dev i a t i on o f

t h i s mean
170
171 datase t=’ ’
172 for m=0 , n f i l e s −1 do begin

173 s p l i t f i l e n a m e=s t r s p l i t ( f i l ename (m) , ’ l i n e s ’ , / ext rac t , / regex )
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174 d i r=s p l i t f i l e n a me (0) ; ge t expanded d i r e c t o r y name o f f i l e
175 f i l e=’ l i n e s ’+s p l i t f i l e n a m e (1) ; ge t expanded f i lename
176 ; f i nd cora spectrum f i l e be long ing to data f i l e
177 i n v a l i d=0
178 case f i l e of

179 ’ lines MEG . dat ’ : c o r a f i l e=d i r+’meg . dat ’
180 ’ lines HEG . dat ’ : c o r a f i l e=d i r+’ heg . dat ’
181 ’ lines LETG . dat ’ : c o r a f i l e=d i r+’ l e g . dat ’
182 ’ l ines RGS1 1 . dat ’ : c o r a f i l e=d i r+’RGS/rgs1 m1 . spec ’
183 ’ l ines RGS1 2 . dat ’ : c o r a f i l e=d i r+’RGS/rgs1 m2 . spec ’
184 ’ l ines RGS2 1 . dat ’ : c o r a f i l e=d i r+’RGS/rgs2 m1 . spec ’
185 ’ l ines RGS2 2 . dat ’ : c o r a f i l e=d i r+’RGS/rgs2 m2 . spec ’
186 else : i n v a l i d=1 ; s a f e t y check i f f i l ename i s a l l owed
187 endcase

188 i f i n v a l i d eq 1 then begin

189 print , f i l ename (m) , ’ : i n v a l i d f i l e name ’
190 cont inue ; jumps to m+1 in loop
191 endif

192 ; read each f i l e conta in ing l i n e counts
193 r e a d l i n e s , f i l ename (m) , counts , counts e r r , l i n e s , starname , d i s tance , nh , data
194 datase t =[ dataset , data ]
195 ; read cora spectrum f i l e to ge t e f f e c t i v e areas
196 r e a d c o r a f i l e , c o r a f i l e , wave , cts , c t s e r r , back , back err , e f f , exposure
197 ; cut empty space from linenames
198 l i n e s=st rcompres s ( l i n e s , / r emove a l l )
199 ; f o r each l i n e l i s t e d in data f i l e f i nd corresponding l i n e in l i n e l i s t
200 for n=0 , n e lements ( l i n e s )−1 do begin

201 ; s a f e t y check : I f l i n e mentioned in f i l e t ha t i s not in l i s t i gnore and message
202 i f t o t a l ( strcmp ( l i n e l i s t , l i n e s (n) ) ) eq 1 then begin

203 k=where ( strcmp ( l i n e l i s t , l i n e s (n) ) eq 1 )
204 i on2 sp e c t r o s c op i c , l i n e l i s t ( k ) , l a b e l
205 print , ’ Found data f o r l i n e ’+l a b e l+’ , ’+cut ( wave l eng th l i s t ( k ) , 6 )+’ Angstrom ’
206 ; took t h i s k ind o f c a l c u l a t i o n von Jan−Uwe’ s rou t ine g e t a e f f
207 ; i t ’ s j u s t a l i n e a r i n t e r p o l a t i o n
208 l=0
209 while wave l eng th l i s t ( k ) ge wave ( l ) do l=l+1
210 a e f f=e f f ( l −1)+( e f f ( l )−e f f ( l −1) ) /(wave ( l )−wave ( l −1) ) ∗( wave l eng th l i s t ( k )−wave ( l −1) )
211 ; a e f f=s p l i n e (wave , e f f , w a v e l e n g t h l i s t ( k ) , 0 . 1 )
212 ; but c a l c u l a t i o n o f a e f f by s p l i n e r e s u l t s sometimes in a r i t hme t i c error messages
213 f l ux=counts (n ) /( exposure ∗ a e f f ) ; c a l c u l a t e f l u x . . .
214 f l u x e r r=coun t s e r r (n) /( exposure ∗ a e f f ) ; . . . and error o f f l u x
215 f l ux t ab (k , m)=f l ux ; f i l l f l u x t a b . . .
216 f l u x e r r o r t a b (k , m)=f l u x e r r ; . . . and f l u x e r r o r t a b
217 endif else begin

218 print , l i n e s (n) , ’ : i n v a l i d l i n e d e s i gna t i on ’
219 cont inue ; jump to n+1 loop
220 endelse

221 endfor

222 endfor

223
224 ; compute t ransmiss ion f a c t o r s due to ISM at tenuat ion
225 a t t e nu a t i o n l i s t=exp(− ismtau ( wave l ength l i s t , nh=nh , / bam) )
226 ; app ly f l u x co r r e c t i on cons ider ing a t t enuat ion
227 for i =0 , n e lements ( l i n e l i s t )−1 do begin

228 f l ux t ab ( i , ∗ )=f l ux t ab ( i , ∗ ) / a t t e nu a t i o n l i s t ( i )
229 f l u x e r r o r t a b ( i , ∗ )=f l u x e r r o r t a b ( i , ∗ ) / a t t e n u a t i o n l i s t ( i )
230 endfor

231 ; c a l c u l a t i n g a weighted mean tha t cons iders the f l u x errors ( and t h e r e f o r e i n d i r e c t l y the
exposure time and e f f e c t i v e area )

232 for j =0 , n e lements ( f l u x l i s t )−1 do begin

233 measured=where ( f l ux t ab ( j , ∗ ) gt 0 , num)
234 i f num ne 0 then begin

235 ; f l u x l i s t ( j )=mean( f l u x t a b ( j , measured ) , / doub le )
236 er r we ight average , f l ux t ab ( j , measured ) , f l u x e r r o r t a b ( j , measured ) , average ,

av e r ag e e r r
237 f l u x l i s t ( j )=average
238 f l u x e r r o r l i s t ( j )=ave r ag e e r r
239 endif

240 endfor

241 d i s t an c e=double ( d i s t an c e ∗3.09 e+18)
242 measured=where ( f l u x l i s t gt 0 )
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243 f l ux=f l u x l i s t ( measured )
244 f l u x e r r o r=f l u x e r r o r l i s t ( measured )
245 l i n e s=l i n e l i s t ( measured )
246 index=i n d e x l i s t ( ∗ , measured )
247
248 ;−−−− c a l c u l a t i n g g o f t s and emiss ion measure l o c i curves
249 print , ’−−−−−−−−−−−−−−−−−−−−−−−’
250 print , ’ Ca l cu la t ing con t r i bu t i on func t i on s and emis s i on measure ’
251
252 i f n elements ( i n t e rp ) eq 0 then begin

253 i n t e rp=3 ; d e f a u l t f o r how many i n t e r p o l a t i o n va lues between the d e f a u l t va lues
254 print , ’Number o f i n t e r p o l a t i o n va lues s e t to 3 ( d e f au l t value ) ’
255 endif else print , ’Number o f i n t e r p o l a t i o n va lues s e t to ’ , s t r compres s ( s t r i n g ( i n t e rp ) , /

r emove a l l )
256 n l i n e s=n elements ( l i n e s )
257 temp=f indgen (41) /10+5
258 ; For each measured l i n e the l i n e information , f l u x , expanded con t r i bu t i on func t ion

g o f t i n t e r p , and log em i s s tored in the s t ru c t u r e l i n eda t a
259 l i n eda t a=r e p l i c a t e ({ l i n e : ’ ’ , i z : 0 , ion : 0 , f l ux : db la r r (1 ) , f l u x e r r o r : db la r r (1 ) ,

g o f t i n t e r p : db la r r ( i n t e rp ∗40+1) , log em : db la r r ( i n t e rp ∗40+1) } , n l i n e s )
260 ; l i n eda t a has n l i n e s en t r i e s , g o f t i n t e r p and log em in t e rp ∗40+1
261 for i =0 , n l i n e s −1 do begin

262 i n d i c e s=i n t a r r ( index ( 1 , i )−index ( 0 , i )+1)
263 for j =0 , n e lements ( i n d i c e s )−1 do i n d i c e s ( j )=index ( 0 , i )+j
264 convertname , l i n e s ( i ) , i z , ion
265 i on2 sp e c t r o s c op i c , l i n e s ( i ) , l a b e l
266 l i n eda t a ( i ) . l i n e=l i n e s ( i )
267 l i n eda t a ( i ) . i z=i z
268 l i n eda t a ( i ) . ion=ion
269 l i n eda t a ( i ) . f l ux=f l ux ( i )
270 l i n eda t a ( i ) . f l u x e r r o r=f l u x e r r o r ( i )
271 print , ’ Ca l cu la t ing l i n e : ’+l a b e l+’ , ’+cut ( wave l eng th l i s t ( where ( l i n e s ( i ) eq l i n e l i s t ) )

, 6 )+’ Angstrom ’
272 go f t=g o f t ( iz , ion , index=ind i c e s , i o n e q f i l e =! i o n e q f i l e , abund f i l e =! abund f i l e , /

no de , / qu i e t )
273 go f t=go f t ( 1 0 : 5 0 ) ; reduce s i z e o f g o f t array by cropping l o g T from 4 to 5
274 bad=where ( go f t l t 1 e−30) ; s t range numbers appear with Fe IX tha t confuse

i on in t e r p
275 i f bad (0) ne −1 then go f t ( bad ) =0.
276 i on i n t e rp , temp , goft , temp interp , g o f t i n t e rp , i n t e rp
277 temp interp=double ( temp interp )
278 s e l=where ( g o f t i n t e r p gt 0 )
279 log em=dblar r ( i n t e rp ∗40+1)
280 log em ( s e l )=alog10 ( 4∗ ! p i ∗ d i s t an c e ˆ2∗ f l ux ( i ) / g o f t i n t e r p ( s e l ) )
281 l i n eda t a ( i ) . g o f t i n t e r p=g o f t i n t e r p
282 l i n eda t a ( i ) . log em=log em
283 endfor

284
285 endif else begin

286 print , ’No f i l e s conta in ing l i n e counts found . Aborting . ’
287 return

288 endelse

289
290 ;−−−−−− continuum
291 print , ’−−−−−−−−−−−−−−−−−−−−−−−’
292 print , ’ Searching a v a i l a b l e continuum data ’
293 f i l e 1=f i n d f i l e ( r o o t d i r+’XMM/ ’+name+’ /∗/ continuum ∗ . dat ’ )
294 f i l e 2=f i n d f i l e ( r o o t d i r+’Chandra/ ’+name+’ /∗/ [ hml ] eg . dat ’ )
295 n1=where ( f i l e 1 ne ’ ’ , n f i l e 1 ) ; counters n f i l e 1 and n f i l e 2 have to be

de f ined t ha t way
296 n2=where ( f i l e 2 ne ’ ’ , n f i l e 2 )
297
298 ; f i l ename conta ins now a l l f i l enames o f the chosen s t a r with measured continuum f l u x
299 i f n f i l e 1+n f i l e 2 gt 0 then begin ; s e c u r i t y check i f any f l u x data found
300
301 ;−−−− choosing da t a s e t s to inc lude in c a l c u l a t i o n s
302 i f not keyword set ( a l l ) then begin

303 print , ’Which o f these da t a s e t s s h a l l be inc luded ? ’
304 print , ’ Confirm with ” y ” or ”n” ’
305 i f n f i l e 1 gt 0 then begin

306 s e l e c t=i n t a r r ( n f i l e 1 )
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307 input=’ ’
308 for m=0 , n f i l e 1 −1 do begin

309 read , input , prompt=f i l e 1 (m)+’ : ’
310 i f input ne ’ n ’ then s e l e c t (m)=1
311 endfor

312 chosen=where ( s e l e c t eq 1 , n f i l e 1 )
313 i f n f i l e 1 gt 0 then begin ; f i l e 1 g e t s undef ined when a l l EPIC data r e j e c t e d
314 f i l e 1=f i l e 1 ( chosen )
315 endif else f i l e 1=’ ’
316 endif

317 i f n f i l e 2 gt 0 then begin

318 s e l e c t=i n t a r r ( n f i l e 2 )
319 input=’ ’
320 for m=0 , n f i l e 2 −1 do begin

321 read , input , prompt=f i l e 2 (m)+’ : ’
322 i f input ne ’ n ’ then s e l e c t (m)=1
323 endfor

324 chosen=where ( s e l e c t eq 1 , n f i l e 2 )
325 i f n f i l e 2 gt 0 then begin ; f i l e 2 g e t s undef ined when a l l HEG data r e j e c t e d
326 f i l e 2=f i l e 2 ( chosen )
327 endif else f i l e 2=’ ’
328 endif

329 endif

330 i f n f i l e 1+n f i l e 2 eq 0 then begin

331 print , ’ A l l continuum data r e j e c t e d . Aborting . ’
332 return

333 endif else begin

334
335 c f l ux t ab=dblar r ( 4 , n f i l e 1+n f i l e 2 )
336 c f l u x l i s t=db lar r (4 )
337 c f l u x e r r o r l i s t=db lar r (4 )
338 for m=0 , n f i l e 1 −1 do begin

339
340 ;−−−− EPIC f i l e s
341 r e a d l i n e s , f i l e 1 (m) , f lux , f l u x e r r , wrange , starname , d i s tance , / continuum ; , data
342 d i s t an c e=double ( d i s t an c e ∗3.09 e+18)
343 ; f o r each wave length range l i s t e d in data f i l e
344 for n=0 , n e lements ( wrange )−1 do begin

345 ; s a f e t y check : I f wave length range i s not in l i s t i gnore and message
346 i n v a l i d=0
347 case s t r compres s ( wrange (n) , / remove a l l ) of

348 ’3−4 ’ : c f l ux t ab ( 0 , m)=f l ux (n )
349 ’2−3 ’ : c f l ux t ab ( 1 , m)=f l ux (n )
350 ’1−2 ’ : c f l ux t ab ( 2 , m)=f l ux (n )
351 else : print , wrange (n) , ’ Angstrom : i n v a l i d wavelength range ’
352 endcase

353 endfor

354
355 endfor

356 ;−−−−HEG f i l e s
357 for m=0 , n f i l e 2 −1 do begin

358 r e a d c o r a f i l e , f i l e 2 (m) , wave , counts , counts e r r , background , back err , a e f f ,
exposure

359 counts=counts−background
360 i f strmid ( f i l e 2 (m) , 6 , / r ev e r s e ) eq ’ heg . dat ’ then range=where (wave gt 2 . 0 and wave

le 3 . 0 ) else range=where (wave gt 1 9 . 5 and wave le 2 0 . 5 )
361 f l ux=counts ( range ) /( exposure ∗ a e f f ( range ) )
362 f l ux=t o t a l ( f l ux )
363 i f strmid ( f i l e 2 (m) , 6 , / r ev e r s e ) eq ’ heg . dat ’ then c f l ux t ab ( 1 , n f i l e 1+m)=f l ux else

c f l ux t ab ( 3 , n f i l e 1+m)=f l ux
364 endfor

365
366 pe r c en t e r r o r = [ 0 . 1 , 0 . 1 , 0 . 2 , 0 . 2 ]
367 for j =0 , n e lements ( c f l u x l i s t )−1 do begin

368 measured=where ( c f l ux t ab ( j , ∗ ) gt 0 , num)
369 i f num ne 0 then begin

370 c f l u x l i s t ( j )=mean( c f l ux t ab ( j , measured ) )
371 i f num gt 1 then c f l u x e r r o r l i s t ( j )=err mean ( c f l ux t ab ( j , measured ) ) else

c f l u x e r r o r l i s t ( j )=pe r c en t e r r o r ( j ) ∗ c f l u x l i s t ( j )
372 endif

373 endfor
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374
375 c wav e l i s t = [ 3 . 5 , 2 . 5 , 1 . 5 , 2 0 . ]
376 measured=where ( c f l u x l i s t gt 0 )
377 f l ux=c f l u x l i s t ( measured )
378 f l u x e r r o r=c f l u x e r r o r l i s t ( measured )
379 c wave=c wav e l i s t ( measured )
380 c temp=f indgen (30) /10+6
381 n c=n elements ( c wave )
382 continuumdata=r e p l i c a t e ({wave : ’ ’ , f l ux : db la r r (1 ) , f l u x e r r o r : db la r r (1 ) , continuum : db la r r

( n e lements ( c temp ) ) , log em : db la r r ( n e lements ( c temp ) ) } , n e lements ( f l ux ) )
383
384 for k=0 , n c −1 do begin

385 continuumdata (k ) . wave=c wave (k )
386 continuumdata (k ) . f l ux=f l ux (k )
387 continuumdata (k ) . f l u x e r r o r=f l u x e r r o r ( k )
388
389 ; t he f a c t o r 4∗ ! p i i s not needed f o r continuum processes
390 ; but mu l t i p l i c a t i o n with 0 . 83 to convert from N e N H to N eˆ2
391 ; ( see d e f i n i t i o n s in gofnt , g o f t , f r e e f r e e e tc . and the User ’ s Guide )
392 f r e e f r e e , 1 0ˆ c temp , c wave ( k ) , f f , / photons , / no setup
393 f f=f f ∗1 .0 e−40
394 freebound , 10ˆ c temp , c wave (k ) , fb , / photons , / no setup
395 fb=fb ∗1 .0 e−40
396 two photon , 1 0ˆ c temp , c wave ( k ) , tp , / photons , / no setup
397 tp=tp ∗1 .0 e−40
398 continuum=( f f+fb+tp ) ∗0.83
399 log em=alog10 ( d i s t an c e ˆ2∗ f l ux ( k ) /continuum )
400 continuumdata (k ) . continuum=continuum
401 continuumdata (k ) . log em=log em
402 endfor

403 endelse

404
405 endif else begin

406 print , ’No f i l e s conta in ing continuum data found . Aborting . ’
407 return

408 endelse

409
410 ;−−−−−− making the EM l o c i p l o t
411 em min=min ( ( l i n eda t a . log em ) ( where ( l i n eda t a . log em gt 0 ) ) )
412 o f f s e t=0
413 for i =0 , n l i n e s −1 do begin

414 i on2 sp e c t r o s c op i c , l i n eda t a ( i ) . l i n e , l a b e l
415 case l i n eda t a ( i ) . i z of

416 l i n eda t a ( i ) . ion : s t y l e=0 ;H− l i k e ions
417 l i n eda t a ( i ) . ion +1: s t y l e=5 ;He− l i k e ions
418 else : s t y l e =(( l i n eda t a ( i ) . i z−l i n eda t a ( i ) . ion ) mod 4 )+1
419 endcase

420 s e l=where ( l i n eda t a ( i ) . g o f t i n t e r p gt 0 )
421 i f i eq 0 then begin

422 i f keyword set ( psp lo t ) then begin

423 s e t p l o t , ’ ps ’
424 device , f i l ename=name+’ EM. ps ’ , / c o l o r
425 endif else wset , 0
426 plot , / nodata , temp interp ( s e l ) , l i n eda t a ( i ) . log em ( s e l ) , yrange=[em min−1.5 , em min

+3 . 5 ] , / ys ty l e , xrange = [ 5 . 0 , 8 . 0 ] , / xs ty l e , t i t l e=starname+’ : raw emis s i on measure l o c i
curves ’ , x t i t l e=’ log T [ K ] ’ , y t i t l e=’ log EM [ cm !U−3!N ] ’

427 endif

428 i f l i n eda t a ( i ) . i z ne 26 then begin

429 oplot , temp interp ( s e l ) , l i n eda t a ( i ) . log em ( s e l ) , l i n e s t y l e=s ty l e , c o l o r=l i n eda t a ( i ) . i z
430 i f strmatch ( l i n eda t a ( i ) . l i n e , ’ ∗ [ a−z ] ’ ) and strcmp ( l i n eda t a ( i ) . l i n e , l i n eda t a ( ( i −1)>0) .

l i n e , s t r l e n ( l i n eda t a ( i ) . l i n e )−1) then o f f s e t=o f f s e t +1 else l a b e l l i n e , 5 . 1 , 5 . 3 ,
em min+3.20−0.17∗( i−o f f s e t ) , l ab e l , c o l o r=l i n eda t a ( i ) . i z , l i n e s t y l e=s t y l e

431 ; t he >0 s t u f f i s need to avoid comparison with l i n eda t a (−1) f o r i=0
432 endif

433 endfor

434 for i =0 , n c −1 do begin

435 oplot , c temp , continuumdata ( i ) . log em , co l o r =250
436 endfor

437
438 i f !D.NAME eq ’PS ’ then device , / c l o s e ; c l o s e f i l e only when p l o t crea ted
439
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440 ;−−−−−− de r i v e and p l o t r a t i o s
441 print , ’−−−−−−−−−−−−−−−−−−−−−−−’
442 print , ’ Co l l e c t i n g r a t i o data ’
443 i z l i s t = [ 6 , 7 , 8 , 1 0 , 1 2 , 1 3 , 1 4 , 1 6 , 1 8 , 2 0 ]
444 ; e lements used f o r r a t i o f i t t i n g , e qu i v a l en t to [C, N, O, Ne , Mg, Al , Si , S , Ar , Ca ]
445 r a t i oda t a=r e p l i c a t e ({cmp : [ 0 , 0 ] , r a t i o : ’ ’ , f l u x r a t i o : db la r r (3 ) , f l u x r a t i o e r r o r : db la r r (1 )

, f luxra t i o t emp : db la r r (3 ) , g o f t s : db la r r ( i n t e rp ∗40+1 , 2) , g o f t r a t i o : db la r r ( i n t e rp ∗40+1) } ,
n e lements ( i z l i s t ) )

446
447 for i =0 , n e lements ( i z l i s t )−1 do begin

448 cmp up=where ( i z l i s t ( i ) eq l i n eda t a . i z and i z l i s t ( i ) eq l i n eda t a . ion ) ;H− l i k e
449 cmp down=where ( i z l i s t ( i ) eq l i n eda t a . i z and i z l i s t ( i ) eq l i n eda t a . ion+1) ;He− l i k e
450 i f cmp up ge 0 and cmp down ge 0 then begin

451 i on2 sp e c t r o s c op i c , l i n eda t a ( cmp up ) . l i n e , l ab e l up
452 i on2 sp e c t r o s c op i c , l i n eda t a ( cmp down ) . l i n e , labe l down
453 ra t i oda t a ( i ) . r a t i o=l abe l up+’ / ’+label down
454 print , ’ Ca l cu la t ing r a t i o ’+ra t i oda t a ( i ) . r a t i o
455 f l u x r a t i o=l i n eda t a ( cmp up ) . f l ux / l i n eda t a ( cmp down) . f l ux
456 f l u x r a t i o e r r o r=sq r t ( ( l i n eda t a ( cmp up ) . f l u x e r r o r ) ˆ2+( f l u x r a t i o ˆ2) ∗( l i n eda t a ( cmp down ) .

f l u x e r r o r ) ˆ2) / l i n eda t a ( cmp down ) . f l ux
457 r a t i oda t a ( i ) . cmp=[cmp up , cmp down ]
458 r a t i oda t a ( i ) . f l u x r a t i o (1 )=f l u x r a t i o
459 r a t i oda t a ( i ) . f l u x r a t i o e r r o r=f l u x r a t i o e r r o r
460 r a t i oda t a ( i ) . f l u x r a t i o (0 )=f l u x r a t i o−f l u x r a t i o e r r o r
461 r a t i oda t a ( i ) . f l u x r a t i o (2 )=f l u x r a t i o+f l u x r a t i o e r r o r
462 s e l=where ( l i n eda t a ( cmp up ) . g o f t i n t e r p gt 0 and l i n eda t a ( cmp down ) . g o f t i n t e r p gt 0 )
463 r a t i oda t a ( i ) . g o f t r a t i o ( s e l )=l i n eda t a ( cmp up ) . g o f t i n t e r p ( s e l ) / l i n eda t a ( cmp down ) .

g o f t i n t e r p ( s e l )
464 endif

465 endfor

466
467 a v a i l a b l e=where ( r a t i oda t a . r a t i o ne ’ ’ )
468 r a t i oda t a=ra t i oda t a ( a v a i l a b l e )
469 i z l i s t=i z l i s t ( a v a i l a b l e )
470 n r a t i o s=n elements ( r a t i oda t a )
471
472 for i =0 , n r a t i o s −1 do begin

473 s e l=where ( r a t i oda t a ( i ) . g o f t r a t i o gt 0 and r a t i oda t a ( i ) . g o f t r a t i o l t 100)
474 f luxra t i o t emp=sp l i n e ( r a t i oda t a ( i ) . g o f t r a t i o ( s e l ) , temp interp ( s e l ) , r a t i oda t a ( i ) .

f l u x r a t i o )
475 r a t i oda t a ( i ) . f luxra t i o t emp=f luxrat i o t emp
476 i f i eq 0 then begin

477 i f keyword set ( psp lo t ) then begin

478 device , f i l ename=name+’ r a t i o s . ps ’ , / c o l o r
479 endif else begin

480 window , 1
481 wset , 1
482 endelse

483 plot , / nodata , temp interp ( s e l ) , a log10 ( r a t i oda t a ( i ) . g o f t r a t i o ( s e l ) ) , xrange
= [ 5 . 0 , 8 . ] , / xs ty l e , t i t l e=starname+’ : Rat ios o f H− l i k e Ly ! 4 a ! 3 to He− l i k e r ’ , yrange
=[ −2 . , 2 . ] , / ys ty l e , x t i t l e=’ log T [ K ] ’ , y t i t l e=’ log photon f l ux r a t i o ’

484 endif

485 oplot , temp interp ( s e l ) , a log10 ( r a t i oda t a ( i ) . g o f t r a t i o ( s e l ) ) , c o l o r=i z l i s t ( i ) , l i n e s t y l e=2
486 l a b e l l i n e , 5 . 1 , 5 . 3 , 1 − 0 . 2 ∗ i , r a t i oda t a ( i ) . r a t i o , c o l o r=i z l i s t ( i ) , l i n e s t y l e=2
487 oplot , r e p l i c a t e ( r a t i oda t a ( i ) . f luxra t i o t emp (1) , 1 ) , r e p l i c a t e ( a log10 ( r a t i oda t a ( i ) .

f l u x r a t i o (1 ) ) , 1 ) , psym=2 , c o l o r= i z l i s t ( i )
488 p lo t s , r a t i oda t a ( i ) . f luxra t i o t emp (0) , a log10 ( r a t i oda t a ( i ) . f l u x r a t i o (0 ) )
489 p lo t s , r a t i oda t a ( i ) . f luxra t i o t emp (2) , a log10 ( r a t i oda t a ( i ) . f l u x r a t i o (2 ) ) , / cont inue ,

th i ck =2 , c o l o r=i z l i s t ( i )
490 endfor

491 i f !D.NAME eq ’PS ’ then device , / c l o s e ; c l o s e f i l e only when p l o t crea ted
492
493 ;−−−−−− c a l c u l a t e f i t
494
495 ;−−−− choosing r a t i o s to inc lude in r a t i o f i t c a l c u l a t i o n s
496 i f not keyword set ( a l l ) then begin

497 print , ’−−−−−−−−−−−−−−−−−−−−−−−’
498 print , ’Which l i n e r a t i o s and continuum i n t e r v a l s s h a l l be inc luded in the r a t i o f i t ? ’
499 print , ’ Confirm with ” y ” or ”n” ’
500 s e l e c t=i n t a r r ( n r a t i o s )
501 input=’ ’
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502 for m=0 , n ra t i o s −1 do begin

503 read , input , prompt=’ Ratio ’+ra t i oda t a (m) . r a t i o+’ : ’
504 i f input ne ’n ’ then s e l e c t (m)=1
505 endfor

506 chosen=where ( s e l e c t eq 1 , n r a t i o s )
507 i f n r a t i o s gt 0 then begin ; on ly s t a r t f i t t i n g when not a l l r a t i o s r e j e c t e d
508 r a t i oda t a=ra t i oda t a ( chosen )
509 endif else begin

510 print , ’ A l l l i n e r a t i o s r e j e c t e d . Aborting c a l c u l a t i o n s . ’
511 return

512 endelse

513
514 s e l e c t c=i n t a r r ( n c )
515 input=’ ’
516 for m=0 , n c −1 do begin

517 read , input , prompt=’Continuum from ’+cut ( c wave (m) −0.5 ,4)+’ to ’+cut ( c wave (m) +0.5 ,4)+
’ Angstrom : ’

518 i f input ne ’n ’ then s e l e c t c (m)=1
519 endfor

520 chosen c=where ( s e l e c t c eq 1 , n c )
521 i f n c gt 0 then begin

522 continuumdata=continuumdata ( chosen c )
523 endif else begin

524 print , ’ A l l continuum i n t e r v a l s r e j e c t e d . Aborting c a l c u l a t i o n s . ’
525 return

526 endelse

527
528 endif

529
530 g o f t s=l i n eda t a ( r a t i oda t a . cmp) . g o f t i n t e r p
531 measured=ra t i oda t a . f l u x r a t i o (1 )
532 measured er ror s=ra t i oda t a . f l u x r a t i o e r r o r
533 c f l u x=continuumdata . f l ux
534 c f l u x e r r o r=continuumdata . f l u x e r r o r
535 c g o f t s=continuumdata . continuum
536
537 print , ’−−−−−−−−−−−−−−−−−−−−−−−’
538 print , ’ S ta r t f i t t i n g the H− l i k e / He− l i k e r a t i o s ’
539 i f n elements ( order ) eq 0 then begin

540 order=3 ; d e f a u l t order o f po lynomia l to f i t to the data
541 print , ’ Order o f polynomial to f i t the r a t i o s s e t to 3 ( d e f au l t value ) ’
542 endif else print , ’ Order o f polynomial to f i t the r a t i o s s e t to ’ , s t r compres s ( s t r i n g (

order ) ,/ r emove a l l )
543
544 i f n elements ( t s h i f t ) eq 0 then t s h i f t =7. else t s h i f t=t s h i f t
545 ; s e t t i n g the zero po in t to l o g T = 7 to make make f i t t i n g ea s i e r ( avoid in t e g ra t i on with

high numbers in the exponent , l e ad ing to ov e r f l ows )
546 t=temp interp−t s h i f t
547 c t=c temp−t s h i f t
548 i f n elements ( s t a r t o r d e r ) eq 0 then s t a r t o r d e r=3 ; d e f a u l t f o r order o f polynom to s t a r t

the f i t
549 c o e f f i c i e n t s=r e p l i c a t e ({p : db la r r ( order +1) , t h e o r e t i c a l : db la r r ( n r a t i o s ) , t h e o r e t i c a l c :

db la r r ( n c ) } , order−s t a r t o r d e r+1) ; d e f i n in g t h i s as a s t ru c t u r e makes i t e a s s i e r to
overwr i t e the array with a sma l l e r one

550
551 for j=s t a r t o rd e r , order do begin ; increase f i t order by 1 un t i l order va lue i s

reached
552 i f j eq s t a r t o r d e r then begin

553 print , ’ S ta r t i n i t i a l f i t with order=’ , s t r compres s ( s t r i n g ( s t a r t o r d e r ) , / r emove a l l )
554 p=dblar r ( s t a r t o r d e r+1) ;
555 p (0) =45. ; s t a r t i n g po in t f o r norma l i za t ion . Avoids s t range l o c a l minima in ch i

square
556 endif else begin

557 print , ’ F i t t i n g order=’ , s t r compres s ( s t r i n g ( j ) , / r emove a l l )
558 p=[p , 0 ]
559 endelse

560 x i=db lar r ( j +1 , j +1)
561 for i =0 , j do x i ( i , i ) =1.
562 powell , p , xi , 1 . e−8 , chi min , ’ c h i s qua r e ’ , / double , itmax=500
563 c o e f f i c i e n t s ( j−s t a r t o r d e r ) . p=p
564 c o e f f i c i e n t s ( j−s t a r t o r d e r ) . t h e o r e t i c a l=p r e d i c t r a t i o s ( t , go f t s , p , t s h i f t )
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565 c o e f f i c i e n t s ( j−s t a r t o r d e r ) . t h e o r e t i c a l c=theo f l ux ( c t , c g o f t s , p , d i s tance , t s h i f t )
566 i f j eq s t a r t o r d e r then r ed ch i=chi min /( n r a t i o s+n c−s t a r t o rd e r −1) else r ed ch i =[

red ch i , ch i min /( n r a t i o s+n c−j −1) ]
567 ; degrees o f freedom : r a t i o s+continuum−(order o f po lynomia l+1) (<− c o e f f i c i e n t a 0 )
568 endfor

569
570 ;−−−−−−−−−F i t t i n g the iron l i n e s
571 i f keyword set ( f e f i t ) then begin

572 ;−−−− choosing iron l i n e s to inc lude in f i t c a l c u l a t i o n s
573 f e l i n e s=l i n eda t a ( where ( l i n eda t a . i z eq 26 ) ) . l i n e
574 f e g o f t s=l i n eda t a ( where ( l i n eda t a . i z eq 26 ) ) . g o f t i n t e r p
575 fe measured=l i n eda t a ( where ( l i n eda t a . i z eq 26 ) ) . f l ux
576 f e mea su r ed e r r o r s=l i n eda t a ( where ( l i n eda t a . i z eq 26 ) ) . f l u x e r r o r
577 n f e=n elements ( fe measured )
578 i f not keyword set ( a l l ) then begin

579 print , ’−−−−−−−−−−−−−−−−−−−−−−−’
580 print , ’Which i r on l i n e s and continuum i n t e r v a l s s h a l l be inc luded in the f i t ? ’
581 print , ’ Confirm with ” y ” or ” n” ’
582 s e l e c t=in t a r r ( n f e )
583 input=’ ’
584 for m=0 , n f e −1 do begin

585 i on2 sp e c t r o s c op i c , f e l i n e s (m) , l a b e l
586 read , input , prompt=l a b e l+’ , ’+cut ( wave l eng th l i s t ( where ( f e l i n e s (m) eq l i n e l i s t ) ) , 6 )+

’ Angstrom : ’
587 i f input ne ’n ’ then s e l e c t (m)=1
588 endfor

589 cho s en f e=where ( s e l e c t eq 1 , n f e )
590 i f n f e gt 0 then begin ; on ly s t a r t f i t t i n g when not a l l r e j e c t e d
591 f e l i n e s=f e l i n e s ( cho s en f e )
592 f e g o f t s=f e g o f t s ( ∗ , c ho s en f e )
593 fe measured=fe measured ( cho s en f e )
594 f e mea su r ed e r r o r s=f e mea su r ed e r r o r s ( cho s en f e )
595 endif else begin

596 print , ’ A l l i r on l i n e s r e j e c t e d . Aborting c a l c u l a t i o n s . ’
597 return

598 endelse

599
600 s e l e c t c=i n t a r r ( n c )
601 input=’ ’
602 for m=0 , n c −1 do begin

603 read , input , prompt=’Continuum from ’+cut ( c wave (m) −0.5 ,4)+’ to ’+cut ( c wave (m) +0.5 ,4)
+’ Angstrom : ’

604 i f input ne ’n ’ then s e l e c t c (m)=1
605 endfor

606 chosen c=where ( s e l e c t c eq 1 , n c )
607 i f n c gt 0 then begin

608 continuumdata=continuumdata ( chosen c )
609 endif else begin

610 print , ’ A l l continuum i n t e r v a l s r e j e c t e d . Aborting c a l c u l a t i o n s . ’
611 return

612 endelse

613 endif

614
615 print , ’−−−−−−−−−−−−−−−−−−−−−−−’
616 print , ’ S ta r t f i t t i n g the i r on l i n e s ’
617
618 f e c o e f f i c i e n t s=r e p l i c a t e ({p : db la r r ( order +1) , fe abund : db la r r (1 ) , t h e o r e t i c a l : db la r r (

n r a t i o s ) , t h e o r e t i c a l c : db la r r ( n c ) } , order−s t a r t o r d e r+1)
619 ; d e f i n in g t h i s as a s t ru c t u r e makes i t e a s i e r to overwr i t e the array with a sma l l e r one
620 for j=s t a r t o rd e r , order do begin

621 i f j eq s t a r t o r d e r then begin

622 print , ’ S ta r t i n i t i a l f i t with order=’ , s t r compres s ( s t r i n g ( s t a r t o r d e r ) , / r emove a l l )
623 p f e=db lar r ( s t a r t o r d e r+2) ;
624 p f e (0 ) =1. ; s e t i n i t i a l i ron abundance to 1
625 p f e (1 ) =45.
626 endif else begin

627 print , ’ F i t t i n g order=’ , s t r compres s ( s t r i n g ( j ) , / r emove a l l )
628 p f e =[ p f e , 0 ]
629 endelse

630 x i=db lar r ( j +2 , j +2)
631 for i =0 , j +1 do x i ( i , i ) =1.

140



632 powell , p f e , xi , 1 . e−8 , ch i min f e , ’ c h i s q u a r e f e ’ , / double , itmax=500
633 f e c o e f f i c i e n t s ( j−s t a r t o r d e r ) . p=p f e ( 1 : j +1)
634 f e c o e f f i c i e n t s ( j−s t a r t o r d e r ) . fe abund=p f e (0 )
635 f e c o e f f i c i e n t s ( j−s t a r t o r d e r ) . t h e o r e t i c a l=p r e d i c t r a t i o s ( t , go f t s , p f e ( 1 : j +1) , t s h i f t )
636 f e c o e f f i c i e n t s ( j−s t a r t o r d e r ) . t h e o r e t i c a l c=theo f l ux ( c t , c g o f t s , p f e ( 1 : j +1) , d i s tance

, t s h i f t )
637 i f j eq s t a r t o r d e r then r e d c h i f e=ch i m in f e /( n f e+n c−s t a r t o rd e r −2) else r e d c h i f e =[

r e d c h i f e , c h i m in f e /( n f e+n c−j −2) ]
638 ; degrees o f freedom : r a t i o s+continuum−(order o f po lynomia l+1)−1 (<− fe abund )
639 endfor

640 fe abund=p f e (0 )
641 a f e=p f e ( 1 : order +1)
642
643 endif

644
645 ;−−−−−− output o f the f i t r e s u l t s
646 print , ’−−−−−−−−−−−−−−−−−−−−−−−’
647 print , ’ F it r e s u l t s from H− l i k e / He− l i k e r a t i o s : ’
648 ; c a l c u l a t e s i z e o f output . . .
649 n columns=st rcompres s ( s t r i n g ( order−s t a r t o r d e r+1) , / remove a l l )
650 print , format=’ ( ” r a t i o ” , t24 , ” measured ” , t39 , ” pred i c t ed ”) ’
651 for i =0 , n r a t i o s −1 do print , format=’ (A, t19 , f 7 .3 ,” +/ − ” , f 5 . 3 , ’+n columns+’ (4x , f 6 . 3 ) ) ’

, r a t i oda t a ( i ) . r a t i o , measured ( i ) , measured er ror s ( i ) , c o e f f i c i e n t s . t h e o r e t i c a l ( i )
652 print , ’−−−−−−−−−−−−−−−−−−−−−−−’
653 print , ’ Normal izat ion and continuum f l ux from H− l i k e / He− l i k e r a t i o s : ’
654 print , format=’ (” wavelength ” , t21 , ” measured ” , t45 , ” pred i c t ed ”) ’
655 for i =0 , n c −1 do print , format=’ ( t4 , f 4 . 1 , t12 , f 6 .3 ,” +/ − ” , f 5 . 3 , ’+n columns+’ (5x , f 6 . 3 ) ) ’

, c wave ( i ) , continuumdata ( i ) . f l ux /1e−4 , continuumdata ( i ) . f l u x e r r o r /1e−4 , c o e f f i c i e n t s .
t h e o r e t i c a l c ( i ) /1e−4

656
657 i f keyword set ( f e f i t ) then begin

658 print , ’−−−−−−−−−−−−−−−−−−−−−−−’
659 print , ’ F it r e s u l t s from i r on l i n e s : ’
660 print , format=’ ( ” r a t i o ” , t24 , ” measured ” , t39 , ” pred i c t ed ”) ’
661 for i =0 , n r a t i o s −1 do print , format=’ (A, t19 , f 7 .3 ,” +/ − ” , f 5 . 3 , ’+n columns+’ (4x , f 6 . 3 ) ) ’

, r a t i oda t a ( i ) . r a t i o , measured ( i ) , measured er ror s ( i ) , f e c o e f f i c i e n t s . t h e o r e t i c a l ( i )
662 print , ’−−−−−−−−−−−−−−−−−−−−−−−’
663 print , ’ Normal izat ion and continuum f l ux from i r on l i n e s : ’
664 print , format=’ (” wavelength ” , t21 , ” measured ” , t45 , ” pred i c t ed ”) ’
665 for i =0 , n c −1 do print , format=’ ( t4 , f 4 . 1 , t12 , f 6 . 3 , ” +/ − ” , f 5 . 3 , ’+n columns+’ (5x ,

f 6 . 3 ) ) ’ , c wave ( i ) , continuumdata ( i ) . f l ux /1e−4 , continuumdata ( i ) . f l u x e r r o r /1e−4 ,
f e c o e f f i c i e n t s . t h e o r e t i c a l c ( i ) /1e−4

666 endif

667
668 dem max=max( poly ( temp interp <7.5>6.− t s h i f t , c o e f f i c i e n t s ( n columns−1) . p ) )
669 ; doing the <7.5 >6 s t u f f to f i nd a l o c a l maximum . . .
670 for j =0 , n columns −1 do begin

671 i f keyword set ( psp lo t ) then begin

672 device , f i l ename=name+’ DEM’+strcompres s ( s t r i n g ( s t a r t o r d e r+j ) , / r emove a l l )+’ . ps ’ , /
c o l o r

673 plot , temp interp , poly ( t , c o e f f i c i e n t s ( j ) . p ) , yrange=[dem max−3.5 ,dem max +0 . 5 ] , xrange
= [ 5 . 5 , 8 . ] , x t i t l e=’ log T [ K ] ’ , y t i t l e=’ log DEM [ cm !U−3!N K!U−1!N ] ’ , / xs ty l e , /
ys ty l e , t i t l e=starname+’ : d i f f e n t i a l emi s s i on measure d i s t r i b u t i o n ’

674 ; l a b e l l i n e , 5 . 6 , 5 . 8 , dem max+0.25 , ’ r a t i o H− l i k e / He− l i k e red . ! 4 v ! 3 !U2 !N: ’+ cut (
r ed ch i (0) , 4)

675 i f keyword set ( f e f i t ) then oplot , temp interp , poly ( t , f e c o e f f i c i e n t s ( j ) . p ) , c o l o r=8
676 ; i f keyword se t ( f e f i t ) then l a b e l l i n e , 5 . 6 , 5 . 8 , dem max+0.1 , ’ iron l i n e s red . ! 4 v ! 3 !

U2 !N: ’+ cut ( r e d c h i f e ( j ) , 4 ) , c o l o r=8
677 device , / c l o s e
678 endif else begin

679 window , 2
680 wset , 2
681 plot , temp interp , poly ( t , c o e f f i c i e n t s ( j ) . p ) , xrange = [ 6 . , 8 . ] , yrange=[dem max−3.5 ,

dem max +0 . 5 ] , x t i t l e=’ log T [ K ] ’ , y t i t l e=’ log DEM [ cm !U−3!N K!U−1!N ] ’ , / xs ty l e , /
ys ty l e , t i t l e=starname+’ : d i f f e n t i a l emi s s i on measure d i s t r i b u t i o n ’

682 ; l a b e l l i n e , 5 . 6 , 5 . 8 , dem max−0.25 , ’ r a t i o H− l i k e / He− l i k e red . ! 4 v ! 3 !U2 !N: ’+ cut ( r ed ch i
(0) ,4)

683 i f keyword set ( f e f i t ) then oplot , temp interp , poly ( t , f e c o e f f i c i e n t s ( j ) . p ) , c o l o r=8
684 ; i f keyword se t ( f e f i t ) then l a b e l l i n e , 5 . 6 , 5 . 8 , dem max+0.1 , ’ iron l i n e s red . ! 4 v ! 3 !U2 !N

: ’+ cut ( r e d c h i f e ( j ) ,4) , c o l o r=8
685 endelse
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686 endfor

687
688 print , ’−−−−−−−−−−−−−−−−−−−−−−−’
689 print , ’ Goodness o f r a t i o f i t : ’ , r e d ch i
690 i f keyword set ( f e f i t ) then print , ’ Goodness o f i r on l i n e f i t : ’ , r e d c h i f e
691
692 ;−−−−−−−−− abundance c a l c u l a t i o n s
693
694 ;−−−−−−−−− ab so l u t e abundance f o r each l i n e
695 print , ’−−−−−−−−−−−−−−−−−−−−−−−’
696 print , ’ Line f l u x e s and abundances from H− l i k e / He− l i k e r a t i o s : ’
697 e lements =[ ’C ’ , ’N ’ , ’O ’ , ’Ne ’ , ’Mg ’ , ’ Al ’ , ’ S i ’ , ’ S ’ , ’Ar ’ , ’Ca ’ , ’Fe ’ ]
698 e l emen t s i z = [ 6 , 7 , 8 , 1 0 , 1 2 , 1 3 , 1 4 , 1 6 , 1 8 , 2 0 , 2 6 ]
699
700 abundance l ine=db lar r ( n l i n e s , 2 , n columns )
701 print , format=’ (” l i n e ” , t8 , ” wavelength ” , t23 , ” abundance ”) ’
702 for i =0 , n l i n e s −1 do begin

703 i on2 sp e c t r o s c op i c , l i n eda t a ( i ) . l i n e , l a b e l
704 for j =0 , n columns −1 do begin

705 abundance l ine ( i , 0 , j )=l i n eda t a ( i ) . f l ux / th eo f l ux ( t , l i n eda t a ( i ) . g o f t i n t e rp ,
c o e f f i c i e n t s ( j ) . p , d i s tance , t s h i f t , / l i n e )

706 abundance l ine ( i , 1 , j )=l i n eda t a ( i ) . f l u x e r r o r / th eo f l ux ( t , l i n eda t a ( i ) . g o f t i n t e rp ,
c o e f f i c i e n t s ( j ) . p , d i s tance , t s h i f t , / l i n e )

707 endfor

708 print , format=’ (A, t10 ,A, t20 , ’+n columns+’ ( f6 .3 , ” +/ − ” , f 5 . 3 , 4 x ) ) ’ , l ab e l , cut (
wave l eng th l i s t ( where ( l i n eda t a ( i ) . l i n e eq l i n e l i s t ) ) , 6 ) , abundance l ine ( i , ∗ , ∗ )

709 endfor

710
711 ;−−−−−−−−− ab so l u t e abundance per element
712 print , ’−−−−−−−−−−−−−−−−−−−−−−−’
713 print , ’ Abundances from H− l i k e / He− l i k e r a t i o s per element : ’
714 print , format=’ (” element ” , t13 , ” abundance ”) ’
715
716 abundance element=dblar r ( n e lements ( e lements ) , 2 , n columns )
717 abund l ine=dblar r ( n l i n e s , 2 , n columns ) ; t h i s i s a dummy with the same s i z e as

l i n eda t a f o r the new em l o c i p l o t
718 for i =0 , n e lements ( e lements )−1 do begin

719 cmp=where ( l i n eda t a . i z eq e l emen t s i z ( i ) )
720 i f cmp(0) ge 0 then begin

721 for k=0 , n columns −1 do begin

722 i f e l emen t s i z ( i ) eq 26 then begin ; s p e c i a l treatment f o r iron
723 i f keyword set ( f e f i t ) then begin ; i f f e f i t s e t and not a l l Fe l i n e s chosen f o r

the f i t
724 cmp good=i n t a r r ( n f e ) ; t ake only those in to account t ha t are were

chosen
725 for j =0 , n f e −1 do cmp good ( j )=where ( f e l i n e s ( j ) eq l i n eda t a . l i n e )
726 endif else cmp good=cmp
727 endif else cmp good=cmp
728 ; use only the good iron l i n e s f o r the mean abundance
729 er r we ight average , abundance l ine ( cmp good , 0 , k ) , abundance l ine ( cmp good , 1 , k ) ,

abund , abund err
730 abundance element ( i , 0 , k )=abund
731 abundance element ( i , 1 , k )=abund err
732 abund l ine (cmp , ∗ , k ) =[ [ r e p l i c a t e ( abund , n e lements (cmp) ) ] , [ r e p l i c a t e ( abund err ,

n e lements (cmp) ) ] ]
733 endfor

734 print , format=’ (A, t10 , ’+n columns+’ ( f6 .3 , ” +/ − ” , f 5 . 3 , 4 x ) ) ’ , e lements ( i ) ,
abundance element ( i , ∗ , ∗ )

735 endif

736 endfor

737
738 ;−−−−−−−−− abundances r e l a t i v e to oxygen
739 i f abundance element ( 2 , 0 , 0 ) ne 0 then begin

740 ; s e c u r i t y check : the u n l i k e l y case t ha t no oxygen l i n e s were measured
741 r e l a t i v e=where ( e lements ne ’O ’ )
742 other e l ements=elements ( r e l a t i v e )
743 other abundance=abundance element ( r e l a t i v e , ∗ , ∗ )
744 re la t ive abundance=dblar r ( n e lements ( o ther e l ements ) , 2 , n columns )
745 for i =0 , n columns −1 do begin

746 re la t ive abundance (∗ , 0 , i )=other abundance (∗ , 0 , i ) / abundance element (2 ,0 , i )
747 re la t ive abundance (∗ , 1 , i )=sq r t ( other abundance (∗ , 1 , i ) ˆ2+( abundance element (2 ,1 , i ) ˆ2) ∗(
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r e l a t ive abundance (∗ , 0 , i ) ˆ2) ) / abundance element ( 2 , 0 , i )
748 endfor

749 print , ’−−−−−−−−−−−−−−−−−−−−−−−’
750 print , ’ Abundances from H− l i k e / He− l i k e r a t i o s r e l a t i v e to oxygen : ’
751 print , format=’ (” element ” , t11 , ” abundance r a t i o ”) ’
752 for i =0 , n e lements ( o ther e l ements )−1 do i f r e l a t ive abundance ( i ) gt 0 . then print ,

format=’ (A, ” / O” , t10 , ’+n columns+’ ( f6 .3 , ” +/ − ” , f 5 . 3 , 4 x ) ) ’ , o ther e l ements ( i ) ,
r e l a t ive abundance ( i , ∗ , ∗ )

753 endif

754
755 ;−−−−−−−−−−doing the same i f f e f i t p resen t
756 i f keyword set ( f e f i t ) then begin

757 print , ’−−−−−−−−−−−−−−−−−−−−−−−’
758 print , ’ Line f l u x e s and abundances from i r on l i n e s : ’
759 f e abundanc e l i n e=db lar r ( n l i n e s , 2 , n columns )
760 print , format=’ (” l i n e ” , t8 , ” wavelength ” , t23 , ” abundance ”) ’
761 for i =0 , n l i n e s −1 do begin

762 for j =0 , n columns −1 do begin

763 i on2 sp e c t r o s c op i c , l i n eda t a ( i ) . l i n e , l a b e l
764 f e abundanc e l i n e ( i , 0 , j )=l i n eda t a ( i ) . f l ux / th eo f l ux ( t , l i n eda t a ( i ) . g o f t i n t e rp ,

f e c o e f f i c i e n t s ( j ) . p , d i s tance , t s h i f t , / l i n e )
765 f e abundanc e l i n e ( i , 1 , j )=l i n eda t a ( i ) . f l u x e r r o r / th eo f l ux ( t , l i n eda t a ( i ) . g o f t i n t e rp ,

f e c o e f f i c i e n t s ( j ) . p , d i s tance , t s h i f t , / l i n e )
766 endfor

767 print , format=’ (A, t10 ,A, t20 , ’+n columns+’ ( f6 .3 ,” +/ − ” , f 5 . 3 , 4 x ) ) ’ , l ab e l , cut (
wave l eng th l i s t ( where ( l i n eda t a ( i ) . l i n e eq l i n e l i s t ) ) , 6 ) , f e abundanc e l i n e ( i , ∗ , ∗ )

768 endfor

769 ;−−−−−−−−− ab so l u t e abundance per element
770 print , ’−−−−−−−−−−−−−−−−−−−−−−−’
771 print , ’ Abundances from i r on l i n e s per element : ’
772 print , format=’ (” element ” , t13 , ” abundance ”) ’
773 fe abundance e lement=dblar r ( n e lements ( e lements ) , 2 , n columns )
774 f e abund l i n e=dblar r ( n l i n e s , 2 , n columns )
775 for i =0 , n e lements ( e lements )−1 do begin

776 cmp=where ( l i n eda t a . i z eq e l emen t s i z ( i ) )
777 i f cmp(0) ge 0 then begin

778 for k=0 , n columns −1 do begin

779 i f e l emen t s i z ( i ) eq 26 then begin ; t he new determinat ion o f the iron abundance
would not be

780 i f keyword set ( f e f i t ) then begin ; necessary i f there was not the error . . .
781 cmp good=i n t a r r ( n f e )
782 for j =0 , n f e −1 do cmp good ( j )=where ( f e l i n e s ( j ) eq l i n eda t a . l i n e )
783 endif else cmp good=cmp
784 endif else cmp good=cmp
785 er r we ight average , f e abundanc e l i n e ( cmp good , 0 , k ) , f e abundanc e l i n e ( cmp good , 1 , k )

, abund , abund err
786 fe abundance e lement ( i , 0 , k )=abund ; va lue i s i d e n t i c a l to f e c o e f f i c i e n t s . fe abund
787 fe abundance e lement ( i , 1 , k )=abund err
788 f e abund l i n e (cmp , ∗ , k ) =[ [ r e p l i c a t e ( abund , n e lements (cmp) ) ] , [ r e p l i c a t e ( abund err ,

n e lements (cmp) ) ] ]
789 endfor

790 print , format=’ (A, t10 , ’+n columns+’ ( f6 .3 , ” +/ − ” , f 5 . 3 , 4 x ) ) ’ , e lements ( i ) ,
fe abundance e lement ( i , ∗ , ∗ )

791 endif

792 endfor

793 ;−−−−−−−−− abundances r e l a t i v e to oxygen
794 i f f e abundance e lement ( 2 , 0 , 0 ) ne 0 then begin

795 f e o ther abundance=fe abundance e lement ( r e l a t i v e , ∗ , ∗ )
796 f e r e l a t i v e abundanc e=dblar r ( n e lements ( o ther e l ements ) , 2 , n columns )
797 for i =0,n columns −1 do begin

798 f e r e l a t i v e abundanc e (∗ , 0 , i )=fe o ther abundance (∗ , 0 , i ) / fe abundance e lement (2 ,0 , i )
799 f e r e l a t i v e abundanc e (∗ , 1 , i )=sq r t ( f e o ther abundance (∗ , 1 , i ) ˆ2+( fe abundance e lement

(2 ,1 , i ) ˆ2) ∗( f e r e l a t i v e abundanc e (∗ , 0 , i ) ˆ2) ) / fe abundance e lement (2 ,0 , i )
800 endfor

801 print , ’−−−−−−−−−−−−−−−−−−−−−−−’
802 print , ’ Abundances from i r on l i n e s r e l a t i v e to oxygen : ’
803 print , format=’ (” element ” , t11 , ” abundance r a t i o ”) ’
804 for i =0 , n e lements ( o ther e l ements )−1 do i f f e r e l a t i v e abundanc e ( i ) gt 0 . then print ,

format=’ (A, ” / O” , t10 , ’+n columns+’ ( f6 .3 , ” +/ − ” , f 5 . 3 , 4 x ) ) ’ , o ther e l ements ( i ) ,
f e r e l a t i v e abundanc e ( i , ∗ , ∗ )

805 endif
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806 endif

807
808 ;−−−−−− making the new EM l o c i p l o t s
809
810 em m=f l t a r r ( n l i n e s )
811 for i =0 , n l i n e s −1 do begin

812 em m( i )=min ( ( l i n eda t a ( i ) . log em−alog10 ( abund l ine ( i , 0 ) ) ) ( where ( l i n eda t a ( i ) . log em gt 0 ) )
)

813 endfor

814 em min=min (em m)
815 o f f s e t =0
816 for i =0 , n l i n e s −1 do begin

817 i on2 sp e c t r o s c op i c , l i n eda t a ( i ) . l i n e , l a b e l
818 case l i n eda t a ( i ) . i z of

819 l i n eda t a ( i ) . ion : s t y l e=0 ;H− l i k e ions
820 l i n eda t a ( i ) . ion +1: s t y l e=5 ;He− l i k e ions
821 else : s t y l e =(( l i n eda t a ( i ) . i z−l i n eda t a ( i ) . ion ) mod 4 )+1
822 endcase

823 s e l=where ( l i n eda t a ( i ) . g o f t i n t e rp gt 0 )
824 i f i eq 0 then begin

825 i f keyword set ( psp lo t ) then begin

826 s e t p l o t , ’ ps ’
827 device , f i l ename=name+’ EM korr . ps ’ , / c o l o r
828 endif else begin

829 window , 3
830 wset , 3
831 endelse

832 plot , / nodata , temp interp ( s e l ) , l i n eda t a ( i ) . log em ( s e l )−alog10 ( abund l ine ( i , 0 ,
n columns−1) ) , yrange=[em min−1.5 , em min +3 . 5 ] , / ys ty l e , xrange = [ 5 . 0 , 8 . 0 ] , / xs ty l e ,
t i t l e=starname+’ : emi s s i on measure l o c i curves ’ , x t i t l e=’ log T [ K ] ’ , y t i t l e=’ log EM
[ cm !U−3!N ] ’

833 endif

834 i f l i n eda t a ( i ) . i z ne 26 then begin

835 oplot , temp interp ( s e l ) , l i n eda t a ( i ) . log em ( s e l )−alog10 ( abund l ine ( i , 0 , n columns −1) )
, l i n e s t y l e=s ty l e , c o l o r=l i n eda t a ( i ) . i z

836 i f strmatch ( l i n eda t a ( i ) . l i n e , ’ ∗ [ a−z ] ’ ) and strcmp ( l i n eda t a ( i ) . l i n e , l i n eda t a ( ( i −1)>0) .
l i n e , s t r l e n ( l i n eda t a ( i ) . l i n e )−1)then o f f s e t=o f f s e t +1 else l a b e l l i n e , 5 . 1 , 5 . 3 ,
em min+3.20−0.17∗( i−o f f s e t ) , l ab e l , c o l o r=l i n eda t a ( i ) . i z , l i n e s t y l e=s t y l e

837 endif

838 endfor

839 for i =0 , n c −1 do begin

840 oplot , c temp , continuumdata ( i ) . log em , co l o r =250
841 endfor

842 i f !D.NAME eq ’PS ’ then begin

843 device , / c l o s e
844 s e t p l o t , ’ x ’
845 endif

846
847 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
848 i f keyword set ( j ou rna l ) then begin

849 print , c o e f f i c i e n t s . p
850 i f keyword set ( f e f i t ) then print , f e c o e f f i c i e n t s . p
851 j ou rna l
852 endif

853
854 end
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und ich hätte das vergangene Jahr nicht mit diesem ungemein interessanten Thema verbracht.

– dem CHIANTI Team –
dessen Datenbasis und dazugehörige Auswerteroutinen die Grundlage für diese Arbeit bilden

– Birgit Fuhrmeister, Jan Robrade und Jan-Uwe Ness –
meine fleißigen Korrekturleser

– Jan Robrade –
immer hilfsbereiter Zimmergenosse

– Jan-Uwe Ness –
für die ganzen Skripte und Rat und Tat auch aus der Ferne
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der angegebenen Quellen verfaßt habe. Desweiteren erkläre ich mich mit einer Veröffentlichung
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