Turbulent Molecular Clouds to Dense Cores

RAR

Enrique Vázquez-Semadeni

Centro de Radioastronomía y Astrofísica, UNAM

Collaborators:

CRyA UNAM: Roberto Galván-M. Gilberto Gómez Javier Ballesteros-P. Ricardo González ABROAD: Mohsen Shadmehri (Dublin) Jongsoo Kim (KASI, Korea) Katharina Jappsen (CITA) Ralf Klessen (Heidelberg) Daniel Price (Exeter)

I. Introduction

- High-mass star-forming cores are systematically denser, more massive and more "turbulent" (have higher velocity dispersions) than low-mass star-forming cores (e.g., Garay & Lizano 1999; Kurtz et al. 2000; Beuther et al. 2007).
- Understanding the formation mechanisms of low- and high-mass cores is essential for understanding SF in general.
- This talk:
 - Recall ideas of core formation and control of SF efficiency (SFE) by turbulence in molecular clouds.
 - Revisit these ideas in light of preliminary results on properties of highdensity regions in simulations of MC formation and collapse out of the diffuse WNM.

II. Turbulent regulation of the SFE in isolated clouds.

- Turbulence is a *multiscale* phenomenon, with largest velocities and timescales at largest spatial scales (Kolmogorov 1941; Larson 1981; Heyer & Brunt 2004).
- Dual role of supersonic turbulence:
 - Prevent monolithic cloud collapse.
 - Promote *nonlinear* (large amplitude) small-scale density fluctuations that
 - Shorter formation and free-fall times than parent cloud's.
 - Involve only a fraction of the total cloud mass (a different kind of filter than AD-mediated cores).
 - Only a fraction of which proceeds to collapse (Elmegreen 1993; Padoan 1995; Vázquez-Semadeni et al. 1996, 2003, 2005; Klessen, Heitsch & Mac Low 2000; Heitsch, Mac Low & Klessen 2001; Padoan & Nordlund 2002; Nakamura & Li 2005).

 A model for the inhibitory effect of turbulence in stationary turbulent regimes (continuously driven), is based on the *sonic scale* λ_s (Padoan 1995; Vázquez-Semadeni et al. 2003; Krumholz & McKee 2005):

 λ_s : The scale across which the typical turbulent velocity difference equals the sound speed:

- Below λ_s :

- Turbulent subfragmentation becomes weaker ($\delta\rho/\rho \sim M_s^2 < 1$) (or ~ M_a for MHD turbulence - Padoan & Nordlund 2002)

– Turbulent support becomes subdominant ($\delta u_{turb} < c_s$).

→ Maybe SFE related to fraction of mass deposited by turbulence in Jeans-unstable cores of size < λ_s ? (i.e., "super-Jeans", subsonic cores).

- Supported by simulations of varying M_s and driving scale at constant J=L/L_J=4 (Vázquez-Semadeni, Ballesteros-Paredes & Klessen 2003, ApJ 585, L131).
 - Sonic scale and SFE measured in the simulations:

SFE depends monotonically on λ, (regardless of driving length)

Vázquez-Semadeni et al. 2003

- The model has been extended by Krumholz & McKee (2005) to use the ratio of λ_s to the Jeans length L_J as the criterion for gravitational collapse.

 Caveat : Fraction of mass in subsonic, super-Jeans cells as function of cell size may be lower than mass in collapsed objects, even zero at large Mach numbers (Vázquez-Semadeni & Ballesteros-Paredes, in prep.).

• Conclude:

- Not all collapsing mass may come from subsonic, super-Jeans structures (Bate, Bonnell et al...)
 - Supersonic regions may also be involved in collapse to form stars.
 - Must *flow* into the collapsed object.
 - What is the nature of the "turbulence" in these regions?
 - Support against collapse (e.g., Matzner, McKee, Krumholz, Tan, Li & Nakamura), or *driven* by gravity? (Goldreich & Kwan 1974; Burkert & Hartmann 2004; Hartmann & Burkert 2007; Peretto et al. 2007; Field et al. 2006) ("Chicken or egg"?).
- Need to study the *formation* of the cores in clouds with "natural" turbulence (Heitsch's talk).

Cloud formation and evolution studies

Use simulations of MC formation by transonic compressions in diffuse WNM (Vázquez-Semadeni et al. 2007, ApJ 657, 870).

SPH simulation includes cooling (leading to TI) and self-gravity.

L = 256 pc
Dt = 39 Myr

$$= 1 \text{ cm}^{-3}$$

 $v_{inf} = 9.2 \text{ km s}^{-1}$
 $T_{ini} = 5000 \text{ K}$

Cloud formation and turbulence generation proceed by TI, KHI, and NTSI as described by Fabian Heitsch. 11

6.5 – 39 Myr

• E_{kin} driven first by inflow, then by gravitational contraction.

Turbulence driven by compression, through NTSI, TI and KHI

(Walder & Folini1998; Koyama & Inutsuka 2002; Audit & Hennebelle 2005; Heitsch et al. 2005, 2006; Vázquez-Semadeni et al 2006)

– Focus on time and place of central collision

22.1 – 24.7 Myr (∆t = 2.6 Myr)

22.1 - 24.7 Myr ($\Delta t = 2.6$ Myr)

- Physical properties:
 - Whole 8-pc region:
 - <n> = 450 cm⁻³

•
$$\sigma_{3D} = 5.0 \text{ km s}^{-1}$$
; $\sigma_x = 2.3 \text{ km s}^{-1}$; $\sigma_y, \sigma_z \sim 3.1 \text{ km s}^{-1}$

- M ~ 7000 M_{sun}
- Clump A (L = 1.5 pc):
 - <n> = 1.27 x 10⁴ cm⁻³
 - $\sigma_{3D} = 3.6 \text{ km s}^{-1}$
 - M ~ 1400 M_{sun}
- Clump B (L = 0.8 pc):
 - $<n> = 1.72 \times 10^4 \text{ cm}^{-3}$
 - $\sigma_{3D} = 2.8 \text{ km s}^{-1}$
 - M = 300 M_{sun}

"Typical" Motte et al. (2007) clump: L ~ 0.8 pc n ~ 7000 cm⁻³

- High-density cores: (simple density threshold criterion, n > 5 x 10⁴ cm⁻³, M > 4 M_{sun}).
 - Found 15 cores with
 - n_{max} ~ 10⁵⁻⁶ cm⁻³.
 - Lifetimes << 1.3 x 10⁵ yr (appear and disappear in << dt between frames). Compare to Motte's estimate: ~ 10³ yr.

• Core statistics:

(Zeroth order confrontation with observations.)
 — Simulation

 Cygnus X-North (57 cores) (Motte et al. 2007 [arXiv:0708.2774]).

Conclude:

The central region of collapse exhibits similar statistical properties to regions of massive SF.

Note: Velocity field has a large infall component, not just random turbulence.

Conclusions:

- Random turbulence provides an effective filter for the mass that can collapse in a MC.
 - Super Jeans-, subsonic-fraction model of "mass filtering" for collapse explains low SFE.
- However:
 - Subsonic, super-Jeans model may possibly miss part of the total mass involved in collapse.
 - Numerical simulations of molecular cloud formation with self-gravity (Vázquez-Semadeni et al. 2007) with global cloud contraction (Goldreich & Kwan 1974; Hartmann & Burkert 2007 [Orion]; Andre et al. 2007 [Oph]) suggest that
 - Clouds may follow a secular evolutionary path, without equilibrium.
 - » Appear virialized, though, due to gravitational contraction.
 - "Turbulence" (at all scales) may contain a significant infall component.
 - Cores in center of global collapse resemble high-mass SF regions.
 - SFE probably regulated by stellar feedback in this case.
 - » Equilibrate the cloud or disperse it??
 - Work in progress: magnetic fields (Banerjee); stellar feedback (Gómez).

The End