SPH Simulations of Clustered Star Formation with Dust and Gas Energetics Andrea Urban

Neal J. Evans II - University of Texas at Austin Hugo Martel - University of Laval Steven Doty - Denison University

September 12, 2007

Modeling Clustered Star Formation (i. e. Clump)

- Turbulence
- Hydrodynamics
- Gravity
- Magnetic Fields
- Dust Temperature
 - Radiative Heating from Stars
 - Gas-Dust collisional coupling
 - Dust Formation, Evolution, and Destruction Composition
- Gas Temperature
 - Molecular Cooling Functions
 - Gas-Dust collisional coupling
 - Gas Formation, Evolution, and Destruction Chemistry
- Stellar Feedback
 - Radiation
 - Stellar Winds & Outflows
 - Ionization

Early Simulations of Clustered Star Formation

- Isothermal Klessen et al. (1998), Martel et al. (2006), + many others.
- Barotropic Bate et al. (2003), more realistic Equation of State, but actual star formation feedback not included
- Radiative Transfer Krumholz et al. (2007)
 - FLD approximates treatment of dust (opaque), but in 3D
 - assumes $T_{Dust} = T_{Gas}$, true in dense regions only.
 - Focus on single massive star formation

Our Model...

Cluster Formation - IMF

• SPH with Particle Splitting.

- More accurate treatment of dust properties and response to radiation field.
- Calculate Gas Temperature via Energy Balance.

SPH with Particle Splitting

- Developed by Kitsionas & Whitworth (2002)
 - Applied to clustered star formation by Martel et al. (2006)
- Prevents artificial fragmentation

Artificial Fragmentation Jeans Criterion - minimum number of particles needed to resolve Jeans Mass. •Bate & Burkert (1997) •Truelove et al. (1997)

1M_{leans}

 F_{P}

0th Generation 1st Generation 2nd Generation Sink Particles (initial) ~0.1Msun

Martel, Evans, & Shapiro 2006 • Closed system – periodic boundary conditions • T=10K • $n_{avg} = 10^5$ • total mass $3.2 \times 10^2 M_{\odot}$ • length of box

- =0.38 pc
- time $2x10^5$ yr

Modeling Cluster Formation

- M=1300 M_{sun}
- $L_{box} = .6 \text{ pc}$
- $n_{initial} = 10^5 \text{ cm}^{-3}$
- $n_{sink} = 6 \times 10^8 \text{ cm}^{-3}$
- N_{Gen} = 2
- $N_{\text{Particles}} = 64^3 = 260,000$
- $N_{\text{effective}} = 256^3 = 17$ million

Our Model...

Cluster Formation - IMF

- SPH with Particle Splitting.
- More accurate treatment of dust properties and response to radiation field.
- Calculate Gas Temperature via Energy Balance.

Dust Temperature

 Create a grid of models
 Look up Table - Spherical, radiative transfer code, DUSTY (Ivezić, et al. 1997) – Dust properties: OH5 dust (Ossenkopf & Henning 1994) - Density profile - $n=n_0(r/1000AU)^{-\alpha}$ - Range of Luminosities: 10⁻² - 10⁶ L_{sun} 10,000K black body – Dust temperature $T_{dust}(r) = K (L/r^2)^{\overline{4+\beta}}$ profile approximation

Dust Temperature

n=n₀(r/1000AU)^{-α}

$$T_{dust}(r) = K \left(L/r^2 \right)^{\frac{1}{4+\beta}}$$

Our Model...

Cluster Formation - IMF

- SPH with Particle Splitting.
- More accurate treatment of dust properties and response to radiation field.
- Calculate Gas Temperature via Energy Balance.

Gas Temperature

Energy rate balance code

Doty & Neufeld 1997 Young et al. 2004

gas-dust collisional temperature coupling

GAS

- cosmic-ray heating
- molecular cooling

Cosmic Ray Ionization

DUST T_{dust}>T_{gas}

> Dust-Gas Collisions transfer heat

CO and other molecular cooling

Three Sources

Source	Luminosity (L_{\odot})	$n_o({ m cm}^{-3}$)	α	r_{out} (pc)
1	1	10 ³	2	0.1
2	100	10^{5}	2	0.1
3	10	10^{4}	2	0.1

-T_{Gas} drops more quickly than T_{dust}
 -Source 1 still visible

15

3

DUST

Our Model... Cluster Formation - IMF

- SPH with Particle Splitting.
- More accurate treatment of dust properties and response to radiation field.
- Calculate Gas Temperature via Energy Balance.

Conclusion

- Using three methods
 - SPH with particle splitting
 - Dust Energetics
 - Gas Energetics
- Still to come
 - Put everything together.

We can get one step closer to understanding clustered star formation.