Evolution of the Massive Protostar with the High Accretion Rate

Takashi Hosokawa (National Astronomical Observatory of Japan) Collaborator : Kazuyuki Omukai

2007.9.12 MSF07@ Heidelberg

Accretion with high M

(e.g., Nakano '00, McKee & Tan '02)

- To overcome the radiation pressure barrier (Wolfire & Cassinelli '86)
- Some observational support (e.g., outflow, core SED)
- turbulent core model (McKee & Tan 02)

RHD calculation of the turbulent core collapse (Krumholz et al. '07)

Motivation

With the high acc. rate $(10^{-4} - 10^{-3} M_{\odot}/yr)$,

- How is the evolution of the protostar ? (e.g., radius, luminosity)
- How is the evolution different from the cases with low acc. rate?
- What causes the differences?

Problem Settings

(ref. Stahler, Shu & Taam '80, Palla & Stahler '90)

- accretion shock boundary
- initial mass : 0.01, $0.05 M_{\odot}$

Previous works : Low Acc. Rate

① D-burning ⇒-ds/dm > 0 ⇒ fully convective
 inner radiative region appears (T↑ ⇒ opacity↓)
 ② swelling by the D shell burning

High Accretion Rate

Mass-Radius Relation

➤ The radius is very large, and the protostar remains radiative.
 ➤ swelling at M_{*}~8-10M_☉ → contraction at M_{*}>10M_☉
 ➤ Without the D-burning, the evolution hardly change.

Adiabatic Accretion

entropy profile at $M_*=1, 3, 5 M_{\odot}$

Stellar mass increases conserving the post-shock entropy

➢ High acc. rate → short acc. time : t_acc < t_cool ; adiabatic accretion
 ➢ high entropy → large stellar radius

Swelling

free-free opacity ; $\kappa^{\infty}\rho T^{-3.5}$

$M_*\uparrow \ \rightarrow \ \kappa {\downarrow}$

Embedded entropy can be radiatively transported to the stellar surface. \rightarrow swelling

(Stahler, Palla & Salpeter '80)

K-H Contraction

Dependence on Accretion Rate

Mass-Radius Relation

- The stellar radius is larger, and protostar reaches M-S later with the higher acc. rate.
- The effect of D-burning appears later and becomes minor with the higher acc. rate.

Timing of D-ignition

Evolution of the maximum T in the star

With the higher acc. rate, T_{max} is lower at the same stellar mass, which delays the ignition of D.

Why radiative with high M?

Entropy is generated by the D-burning, but if this is efficiently transported to the outer part *only by the radiation*, the star remains radiative.

 \rightarrow low opacity enables this (Stahler'88)

Profile of $\rho T^{-3.5} \propto$ free-free opacity @ D-ignition

Opacity is lower with the higher acc. rate at the D-ignition

1-zone Polytrope Model

Numerical v.s. 1-zone Model

M=10⁻³M_☉/yr

Simple extrapolation of the 1-zone model can lead to the qualitatively different evolution at high acc. rate.

 \leftarrow our results are available for the better calibration

We have studied the detailed evolution of the accreting protostar focusing on cases with the high accretion rate of 10^{-4} - $^{-3}M_{\odot}/yr$.

The evolution with high accretion rate is fairly different from that with the low accretion rate $(10^{-6}-5M_{\odot}/yr)$.

adiabatic accretion \rightarrow swelling by luminosity wave \rightarrow K-H contraction

- High entropy in the star \Rightarrow very large radius (~10-100 R_{\odot})
- D-burning hardly affect the evolution of the protostar. The protostar remains almost fully radiative until it reaches the M-S.

> Dependence on the accretion rate

- R_* is larger, and protostar reaches M-S later with the higher acc. rate.
- The effect of D-burning appears later and becomes minor with the higher acc. rate; Free-free opacity at the D-ignition is important

> Our results are available for the better calibration of the 1-zone model.

Supplement files

Opacity decrease

Why radiative with high M?

Entropy is generated by the D-burning, but this is efficiently transported to the outer part *only by the radiation*, the star remains radiative

 \rightarrow low opacity enables this

Similarity to Primordial Protostar

: formation of protostar with the high acc. rate

(e.g., Stahler, Palla & Salpeter '86, Omukai & Palla '01,03)

evolution is qualitatively similar with the present-day protostar with $\dot{M} \sim 10^{-3} M_{\odot}/{
m yr}$

Comparison with Palla & Stahler (1)

Comparison with Palla & Stahler (2)

