Evolution of the Massive Protostar with the High Accretion Rate

Takashi Hosokawa (National Astronomical Observatory of Japan)

Collaborator: Kazuyuki Omukai

Accretion with high M

(e.g., Nakano '00, McKee & Tan '02)

- To overcome the radiation pressure barrier (Wolfire & Cassinelli '86)
- Some observational support (e.g., outflow, core SED)
- turbulent core model (McKee & Tan 02)

RHD calculation of the turbulent core collapse (Krumholz et al. '07)

Motivation

Going to the much smaller scale ...

Accretion flow Accretion shock

With the high acc. rate $(10^{-4} - 10^{-3} M_{\odot}/yr)$,

200

400

- How is the evolution of the protostar? (e.g., radius, luminosity)

gas photosphere

protostar

- How is the evolution different from the cases with low acc. rate?
- What causes the differences?

x (AU)

-200

-400

-400

Problem Settings

(ref. Stahler, Shu & Taam '80, Palla & Stahler '90)

Basic eqs: 4 stellar structure eqs.

Continuity :
$$\frac{\partial r}{\partial m} = \frac{1}{4\pi \rho r^2}$$

Momentum : $\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4}$

Energy : $\frac{\partial l}{\partial m} = \epsilon_{\rm nuc} + T\left(\frac{\partial s}{\partial t}\right)_m$

Heat transport :
$$\frac{\partial T}{\partial m} = -\frac{T}{P} \frac{Gm}{4\pi r^4} \nabla$$

- under the constant acc. rate
- accretion shock boundary
- initial mass : 0.01, $0.05M_{\odot}$

Previous works: Low Acc. Rate

- ① D-burning $\Rightarrow -ds/dm > 0 \Rightarrow$ fully convective inner radiative region appears ($\uparrow \uparrow \Rightarrow \downarrow \uparrow \downarrow)$
- 2 swelling by the D shell burning

High Accretion Rate

Mass-Radius Relation

- The radius is very large, and the protostar remains radiative.
- >swelling at $M_* \sim 8-10 M_{\odot} \rightarrow \text{contraction at } M_* > 10 M_{\odot}$
- Without the D-burning, the evolution hardly change.

Adiabatic Accretion

entropy profile at M_∗=1, 3, 5 M_☉

- Stellar mass increases conserving the post-shock entropy
- ightharpoonup High acc. rate ightharpoonup short acc. time: t_acc < t_cool; adiabatic accretion
- \triangleright high entropy \rightarrow large stellar radius

Swelling

Radiative transport : L_{rad} \leftarrow limited by opacity

free-free opacity ; $\kappa^{\infty} \rho T^{\text{-3.5}}$

$$M_* \uparrow \rightarrow \kappa \downarrow$$

Embedded entropy can be radiatively transported to the stellar surface. → swelling

(Stahler, Palla & Salpeter '80)

K-H Contraction

Dependence on Accretion Rate

Mass-Radius Relation

- The stellar radius is larger, and protostar reaches M-S later with the higher acc. rate.
- The effect of D-burning appears later and becomes minor with the higher acc. rate.

Timing of D-ignition

Evolution of the maximum T in the star

With the higher acc. rate, T_{max} is lower at the same stellar mass, which delays the ignition of D.

Why radiative with high M?

Entropy is generated by the D-burning, but if this is efficiently transported to the outer part *only by the radiation*, the star remains radiative.

→ low opacity enables this (Stahler'88)

Opacity is lower with the higher acc. rate at the D-ignition

1-zone Polytrope Model

(ref. Nakano et al.'00, McKee & Tan '02)

Total energy of star:
$$E = -a_E \frac{GM_*^2}{R_*} + \phi_I \frac{M_*}{m_H} - \phi_D \frac{f_DM_*}{m_H}$$
 grav. energy lonization dissociation $\frac{dE}{dt} = L_{\rm int} + L_{\rm acc} \sim L_{\rm MS}(M_*) + \frac{GM_*\dot{M}}{R_*}$ $\frac{d\log R}{d\log M}$ $\frac{dE}{dt} = L_{\rm int} + L_{\rm acc} \sim L_{\rm MS}(M_*) + \frac{GM_*\dot{M}}{R_*}$ $\frac{15}{12.5}$ $\frac{1}{12.5}$ $\frac{1}{1$

Numerical v.s. 1-zone Model

Simple extrapolation of the 1-zone model can lead to the qualitatively different evolution at high acc. rate.

← our results are available for the better calibration

Summary

We have studied the detailed evolution of the accreting protostar focusing on cases with the high accretion rate of 10^{-4} - $^{-3}$ M $_{\odot}$ /yr.

The evolution with high accretion rate is fairly different from that with the low accretion rate $(10^{-6} - 5 M_{\odot}/yr)$.

adiabatic accretion → swelling by luminosity wave → K-H contraction

- High entropy in the star \Rightarrow very large radius (~10-100 R_•)
- D-burning hardly affect the evolution of the protostar.

 The protostar remains almost fully radiative until it reaches the M-S.
- Dependence on the accretion rate
 - R_{*} is larger, and protostar reaches M-S later with the higher acc. rate.
 - The effect of D-burning appears later and becomes minor with the higher acc. rate; Free-free opacity at the D-ignition is important
- Our results are available for the better calibration of the 1-zone model.

Supplement files

Opacity decrease

10

€ 1e+06

500000

0 L

2

M (M sun)

With increasing the stellar mass, free-free opacity within the star decreases owing to its T-dependence.

Why radiative with high M?

Entropy is generated by the D-burning, but this is efficiently transported to the outer part *only by the radiation*, the star remains radiative

→ low opacity enables this

10

0.01

0.1

M (M_sun)

Similarity to Primordial Protostar

Star formation in the early universe : formation of protostar with the high acc. rate (e.g., Stahler, Palla & Salpeter '86, Omukai & Palla '01,03)

evolution is qualitatively similar with the present-day protostar with $\dot{M} \sim 10^{-3} M_{\odot}/{\rm yr}$

Comparison with Palla & Stahler 1

Comparison with Palla & Stahler 2

