## Massive-star formation triggered by Galactic HII regions



Determine what kind of stars is formed at the peripheries of HII regions, and how. Are massive stars formed there?

The different processes triggering star formation at the borders of HII regions

Can several processes be at work in the same region?
Does the collect and collapse process work in an inhomogeneous medium?

The masses of the second-generation stars: how massive can they be?

Different processes triggering star formation
at the peripheries of HII regions
Review: Elmegreen 1998

## The radiation driven implosion of a molecular condensation (RDI)

 Formation and evolution of "cometary globules", surrounded by "bright rims" Analytical analysis and simulations:Lefloch \& Lazareff 1994
Kessel-Deynet \& Burkert 2003
Miao et al. 2006
Miao et al. 2006


## Signatures of RDI: example BRC37



Presence of a bright rim seen in $\mathrm{H} \alpha$

dense molecular core $18 \mathrm{M} \odot$
\& tail

The collect and collapse process, or how to make massive fragments out of an homogeneous medium


First proposed by Elmegreen \& Lada 1977

Analytical formulation
Whitworth et al. 1994
$10^{3} \mathrm{~cm}^{-3}$
O6V
turbulence in the collected
layer 0.3 km/s

## Simulations

Hosokawa \& Inutsuka 2005, 2006 Dale et al. 2007

Signatures of C\&C: for example RCW 79


Spitzer-GLIMPSE $8 \mu \mathrm{~m} \quad \mathrm{H} \alpha$ SuperCOSMOS

1.2 mm continuum emission $\mathrm{H} \alpha$ SuperCOSMOS

Fragmented collected layer surrounding the ionized gas

Ionization front
\& associated PAHs emission
second-generation exciting cluster

UC HII region observed in the direction of the, collected layer

Dense molecular condensations, potential sites of star formation, can also be formed by

Dynamical instabilities of the ionization front
Garcia-Segura \& Franco 1996
Mizuta et al. 2006
or by
Turbulence
Elmegreen, Kimura \& Tosa 1995
Dale et al. 2005
Gritschneder, Heitsch \& Burkert 2006
in the same region?

Zavagno et al. 2007, A\&A in press details in poster M. Pomares

## Distance $=1.3 \mathrm{kpc}$

## Exciting star O8V

Diameter $=3.2 \mathrm{pc}$

Ha Supercosmos ionized gas
Spitzer-GLIMPSE $4.5 \mu \mathrm{~m}$
Spitzer-GLIMPSE $8.0 \mu \mathrm{~m}$
PAH emission indicative of ionizationstionts.

## RCW120



## Star formation in RCW 120

 with SpitzerSpitzer-GLIMPSE $8 \mu \mathrm{~m}$
Spitzer-MIPS $24 \mu \mathrm{~m}$


Spitzer MIPS $24 \mu \mathrm{~m}+$ SEST 1.2 mm (contours)

Condensation 1: 500Mo
No massive object at the 1.2 mm emission peak


Aligment of low luminosity sources regularly spaced
(separation: 0.09 pc )
$\rightarrow$ Formed by dynamical instabilities?

SED $\rightarrow$ class $\mid$ sources
low mass ~0.5 Mo
Temperature ~ 3700 K
luminosity ~ 7 L॰
high extinction ~ 120 mag

Low mass stars are formed in the collected layer

IRAC colors and SED (Robitaille et al. 2007, SED fitting tool)
$\rightarrow$ Class I source
~ 3 Mo
~ 4400 K
~ 100 L。
extinction ~ 94 mag


At the peak of condensation 2
$\rightarrow$ possibly formed by collect and collapse
IRAC colors and SED (Robitaille et al. 2007)
$\rightarrow$ Class I source
~4 Mo
~ 4400 K
~ 120 L॰
Extinction ~ 67 mag

Possibly formed by RDI
At the top of a triangular bright rim, in a region of dynamical instability between two condensations
$\rightarrow$ possibly formed by dynamical unstabilities.

IRAC colors $\rightarrow$ Class II source

- Star formation far from the ionization front, outside the collected layer,
- Class I - class II objects ? spontaneous or triggered star formation
- Observed in the direction of IRDCs
- The IRDCs present radial structures

?
Influence of the radiation of the central object

Spitzer $8.0 \mu \mathrm{~m}$ MIPS $24 \mu \mathrm{~m}$


## APEX Laboca

## $870 \mu \mathrm{~m}$

Science Verification
July 2007
$-38.3$
-38.4
$-38.5$



Does the collect and collapse process work in an inhomogeneous medium?

Sh 212


Ha [SII] ionization fronts
Observatoire de Haute Provence

Sh 212


MSX $8.3 \mu \mathrm{~m}$

Sh 212
$-36.6 \mathrm{~km} / \mathrm{s}$ to $-38.4 \mathrm{~km} / \mathrm{s}$ 促
C 5 t 50 t

## $-35.1 \mathrm{~km} / \mathrm{s}$ to $-36.1 \mathrm{~km} / \mathrm{s}$




Condensation 1 13CO 200 Mo


JHK CFHT near-IR excess

radio-continuum 1.3 cm VLA UC HII region dynamical age $\sim 15000 \mathrm{yr}$ B1 exciting star or earlier


SED fitting tool Robitaille et al. 2007
central source ~14 Mo
30000 K
~18000 L®
envelope+disk view edge on


The collect \& collapse process forms massive stars out of an inhomogeneous medium

Two other such cases: Sh 217 and Sh 241 associated with various masers


The masses of the second-generation stars
How massive can they be?

## Massive-star formation in Bright Rims Clouds



Several BCRs harbor small HII regions. They are of type A, around a massive molecular cloud (Yamaguchi et al., 1997).
No second-generation star more massive than O8 ( in SFO 59).

## Massive-star formation by collect \& collapse



## Conclusions

Several different processes are at work at forming stars in a given region; the RDI process should not be the only one put forward to explain triggered star-formation.

The "collect" part of collect and collapse is at work almost everywhere at the periphery of the ionized gas. The processes which trigger star formation in the collected layer are many, and are often difficult to identify even in HII regions with simple morphologies.

No second-generation stars more massive than 07-08... but it does not mean that they do not exist. We are still looking for them.

