

Massive star formation in 30-Dor type cluster

And feedback

Ian Bonnell (St Andrews)

Hans Zinnecker, Paul Clark, Jim Dale, Tom Robitaille Total mass 10⁶ M_{sun}

R136: rich central cluster ~10⁴ M_{sun} in 0.25 pc

'Distributed' O-stars

Consistent with hierarchical cluster formation?

30 Doradus

Andersen et al 2007

Initial conditions

- 10⁶ M_{sun} in 50 pc radius
- Gaussian density distribution
- Mean density: $2 M_{sun} pc^{-3}$; n ~ $10^2 cm$ -3

NO FEEDBACK

M_{Jeans} ~ 250 M_{sun}

log p

- Turbulent support : E_{kin}~|E_{grav}| ; Mach 12.5
- 2.5 10⁷ SPH particles; M_{min}~ 4 M_{sun}
- Sink radii: 0.05 pc

0

Formation of very massive stellar cluster

10⁶ M_{sun} in 100 pc

Forms ~ 6000 sinks with $10^5 M_{sun}$

Resolves to 4 M_{sun}

Bonnell, Clark & Zinnecker in prep

Evolution of massive cluster

Star formation over several Myr : Age spreads

Mass density in sinks

Mass density using 10 nearest neighbours Mass density in 0.25 pc

Upper-mass limit?

- Massive stars formed by accreting from large reservoir
- Does a time limit imply mass limit?

0

Feedback from OB stars

• 10³ M_{sun} cluster

 Ionisation from massive stars HII region one-sided

• Accretion continues relatively unimpeded

Dale et al. 2005

Feedback and Accretion

Accretion largely unimpeded by feedback Dale et al 2005; Krumholz etal 2005

Escapes along preferential directions

Triggering of star formation

40x40pc

Control run

Induced run

 $Time = 0.00t_r$

Radiative driven implosion

Some SF triggered 1/3 more stars

Some just revealed

Can we tell which? Not from end-result

Need observable tests, predictions

Winds/outflows from young stars

Weakly collimated flow

I. Bonnell, University of St Andrews, 2004

Externally collimated flow

Feedback from stellar winds

Monte Carlo: Radiative transfer

Robitaille et al 2006

RT: a simplified approach

fudge to MC models

$$T = 100K \left(\frac{M}{10M_o}\right)^a \left(\frac{R}{1000AU}\right)^q$$

a: 0.33 M < 10 a: 1.1 M > 10 q: -0.4 to -0.5

Overestimates feedback

- Spherical symmetric
- Isolated

0

- Underestimates column densities
- Ignores cluster structure, discs etc

1000 M_{sun} cluster T 10-100K

Fragments Early Large separations

Later fragmentation suppressed Heating from massive stars

Cluster formation with MC-RT fudge

Upper limit on radiative heating

0

Early fragmentation unaffected

1/4 of stars

Accretion in hot cores

Forms massive stars

But fewer stars
higher mean mass
Shallow IMF

No late formation of massive cores in cluster

10 number 0.1 10

mas

Infalling gas accreted

Conclusions

- Massive SF in 30 Doradus consistent with hierarchical cluster formation
 - age spread ~ several Myr
 - 'Distributed' O-stars should have small clusters

Feedback

- Doesn't stop competitive accretion
- Maximal radiative feedback will change IMFs
- No massive cores form in clusters