Collapse of Massive Cloud Cores

Robi Banerjee ITA, University of Heidelberg

Based on 3D MHD, AMR* Simulations

Collapse of Hydrostatic Cores

- Core density: 10³ cm⁻³
- Cooling due to molecular excitations, gas-dust interaction

-5.0×10¹⁸

-1.5×10¹⁹

 $time = -2.5269e \pm 14.9$

AMR levels =

number of blocks = 46969

10

-1.0×10¹⁹

y (cm)

-23.0

Cooling

- Molecular cooling (Neufeld & Kaufman, 1993; Neufeld et al. 1995); main coolants H_2O , CO, H_2 , $O_2 \Rightarrow$ efficient cooling in lower density regime: n < 10⁷
- Dust-gas interactions (Goldsmith 2001) keeps the gas isothermal until n ~ 10¹¹ cm⁻³ ⇒ scale of warm core: R = few x 10 AU
- **Optically thick** at $n \sim 10^{11} \text{ cm}^{-3} \Rightarrow$ heating with T ~ $n^{1/3}$ ('local' radiation diffusion approximation)
- H₂ dissociation at ~ 1200 K (Shapiro & Kang 1987)
 - \Rightarrow isothermal collapse (second collapse; *Larson 1969*)
- dissociation process is "selfregulating" due to strong temperature dependence

Isothermal Collapse

density

infall velocity

Outside-in

non-homologous collapse

(Larson '69, Penston '69, Forster & Chevalier '93, Hennebelle et al. 2003 ...)

Collapse of Massive Cloud Cores

Evolution of warm core region

Collapse of Massive Cloud Cores

- **Supersonic** in-fall velocities
- Observations: eg. Furuya et al 2006, Beltrán 2006

Mass accretion comparision

• dM/dt ~ $v^3/G = Mach^3 c^3/G >> c^3/G$ • Higher speed of sound \Rightarrow higher accretion rate $\dot{M} = 20 - 100 c^3 / G$

Density and Mass distribution

- So far disk dominated (after t ~ t_{ff})
- Massive disk
- $1M_{sol}$ at few x 10^{15} cm

Disk Structure, Fragmentation

initial rotation: $t_{\rm ff} \ \Omega = 0.1$ ($\Omega = 2.8 \times 10^{-15} \text{ rad/sec}$)

 \Rightarrow bar

initial rotation: $t_{ff} \Omega = 0.2$ \Rightarrow fragmentation into binary

Fragmentation

initial rotation $t_{ff} \Omega = 0.2$: ring => binary ring size ~ 10^{16} cm (cf. inner torus in M 17, *Chini et al. 2004*, Poster: Hoffmeister, Nielbock)

Collapse of massive turbulent cores

Initial setup as "seen" by the FLASH code

Initial data from *Tilley* & Pudritz 2004: ZEUS simulations of core formation within a supersonic turbulent environment $\sim L = 0.32 \text{ pc, } M_{\text{tot}} = 105 \text{ M}_{\text{sol}}$ • Follow the collapse of the densest most massive region: $\sim 23 M_{sol}$ • Final resolution: ~ R_{sol}

Collapse of massive turbulent cores

Filament with an attached sheet
small disk within the filament (perpendicular)
adiabatic (optically thick) core
very efficient gas accretion through the filament

Collapse of massive turbulent cores

Mass accretion

Very high accretion rates: up to 10⁻³ - 10⁻² M_{sol}/year
 Mass accretion rates are higher than limits from radiation pressure by burning massive stars

 (e.g. *Wolfire & Cassinelli 1987*: 10⁻³ M_{sol}/year)

 Protostars and disks assemble very rapidly within a supersonic turbulent environment (*McKee & Tan 2002, 2003*)

Magnetic Fields

Similar simulations by: *Machida et al. 2005 Fromang et al. 2006*

Jets from Young Stars PRC95-24a · ST Scl OPO · June 6, 1995 C. Burrows (ST Scl), J. Hester (AZ State U.), J. Morse (ST Scl), NASA

- Jets / Outflow from YSOs magnetically driven?
- Ideally coupled to the gas (no ambipolar diffusion)
- Initially not dominant;

 $P_{\text{therm}}/P_{\text{mag}} \sim 80; B \sim 10 \,\mu\text{Gauss}$

Onset of large scale outflow: at few 100 AU magnetic tower configuration (e.g. *Lynden-Bell 2003*)

collapse phase pinched in magnetic field 1430 years later: onstet of a large scale outflow

Large scale outflow

- Magnetic field is compressed with the gas (hourglass configuration)
- Rotating disk generates toroidal magnetic field
- Shock fronts are pushed outwards (magnetic tower; Lynden-Bell 2003)
- Outflow velocities v ~ 0.4 km/sec
- Accretion funneled along the rotation axis and through the disk

Onset of inner disk jet launch inside 0.07 AU

- magneto-centrifugally launched jet (Blandford & Payne 1982)
- jets rotate and carry off angular momentum of disk

3D Visualization of field lines, disk, and outflow:

- Upper; magnetic tower flow

- Lower; zoomed in by 1000, centrifugally driven disk wind

Observations: FU Ori disk Donati et al. Nature 2005

Summary

- Supersonic infall velocities
- High accretion rates, up to $10^{-3} M_{sol}/year$ dM/dt ~ $v^3/G = Mach^3 c^3/G$
- Quick massive star assembly ~ few x 10⁴ years
- Large massive disks possible
- Binary formation in the disk
- Outflows and Jets launched already during early collapsing phase
- Outflow blown cavities (channels for radiation pressure, *Krumholz et al. 2005*)

Magnetic field structure / evolution

- [∞] $B_z > B_\phi$ in the core and disk (expectation from a stationary accretion disk B ∝ R^{-1.25}; *Blandford & Payne 1982*)
- $B_{\rm core} \propto n^{0.6}$
- Expected field strength in the protostar ~ $10^4 10^5$ G
- Potential seed field for Ap stars (Braithwaite & Spruit, 2004)

Angular Momentum

Banerjee & Pudritz 2007