Mid-Infrared Bubbles: Gas Structure and Star-Formation Analysis

C. Watson, T. Corn (Manchester College) \& The GLIMPSE Team

Abstract

We use 4 surveys (see Table 1) to determine the gas structure and YSO population surrounding 3 IR bubbles. The bubbles were selected from the catalog of Churchwell et al. (2007) which were identified in the GLIMPSE-II $8 \mu \mathrm{~m}$ images. The 3 bubbles are likely produced by late-O or early-B stars ionizing their immediate surroundings, heating large dust grains and exciting a shell of PAHs. We use a SED-fitting, χ^{2}-minimization technique using numerical radiative transfer models to identify the YSO population and measure their physical properties. We detect a significant YSO population toward the two powerful bubbles. We also identify candidate ionizing stars based on IR colors and luminosity.

Table 1: Surveys Used

Mission	Longitude	λ	Instrument
GLIMPSE-II $-10^{\circ} \rightarrow+10^{\circ}$	$3.6 \mu \mathrm{~m}, 4.5 \mu \mathrm{~m}$,	Spitzer-IRAC	
		$5.8 \mu \mathrm{~m}, 8.0 \mu \mathrm{~m}$	
MIPSGAL-II $-10^{\circ} \rightarrow+10^{\circ}$	$24 \mu \mathrm{~m}$	Spitzer-MIPS	
MAGPIS	$-10^{\circ} \rightarrow+42^{\circ}$	$20 \mathrm{~cm}, 6 \mathrm{~cm}$	VLA
2MASS	All	$1.25 \mu \mathrm{~m}, 1.65 \mu \mathrm{~m}$, Two 1.3-m	
		$2.17 \mu \mathrm{~m}$	telescopes

CN 108

Fig 1: $4.5 \mu \mathrm{~m}$ (stellar-dominated), $8.0 \mu \mathrm{~m}$ (PAH-dominated), $24 \mu \mathrm{~m}$ (hot dust-dominated) and 20 cm (ionized gas) in contours. The 20 cm emission is equivalent to a O 8 star or earlier. The kinematic distance is 4.9 kpc . The radius is 340 (12 pc).

Fig 2: $4.5 \mu \mathrm{~m}, 8.0 \mu \mathrm{~m}$ \& $24 \mu \mathrm{~m}$ emission. Circles indicate YSOs in of Robitaille et al. 2007

Fig 3: SED (left) and stellar mass-luminosity range (right) of the solid YSO in figure 3. Well-fit numerical radiative transfer models are shown in gray (left) and as dots (right).

Fig 5: Mass function of the YSO population. The high-mass end has a best-fit slope $\Gamma=-1.5 \pm 0.6$.

Fig 9: Mass function of the YSO Fig 9: Mass function of the YSO
population. The high-mass end has a best-fit slope $\Gamma=-2.5 \pm 0.5$.

Table2: YSO Population

	Mass			Luminosity			Mass Change		
ID	best	min	max	best	min	max	best	min	max
CN108-86	38.0	17.3	49.6	333700	37170	376600	3.80E-3	1.11E-3	4.94E-3
CN108-48	14.0	11.3	23.7	19060	9714	70880	0	0	0
CN108-23	10.0	8.0	16.2	4035	2714	17220	2.24E-3	0	$6.90 \mathrm{E}-3$
CN108-26	9.2	2.3	10.7	4922	81	4922	1.58E-4	0	7.44E-4
CN138-5	1.9	0.3	6.3	36	5	1100	9.14E-5	0	5.38E-4
CN138-7	2.4	0.7	10.5	55	8	2306	1.36E-4	0	2.10E-3
CN138-12	2.4	1.0	6.5	60	24	331	1.14E-5	4.18E-7	$1.44 \mathrm{E}-3$
CN138-13	4.4	2.7	7.3	292	49	1942	0	0	0
CS57-1	7.3	1.0	11.6	443	110	10020	4.13E-5	0	1.62E-3
CS57-2	13.0	6.0	20.0	13420	993	46230	0	0	4.03E-3
CS57-3	5.1	2.3	11.5	517	85	5111	0	0	$2.74 \mathrm{E}-3$
CS57-4	5.2	3.7	11.6	533	152	9883	0	0	$1.75 \mathrm{E}-3$

Table3: Driving Star Candidates

Source	Type
CN108	
G8.0903-0.4912	O7
G8.1090-0.5168	O9.5
G8.1375-0.4282	O9.5
G8.1541-0.4920	O6
G8.1565-0.4337	O7.5
G8.1566-0.5274	CN138
G9.84200-0.7134	
G9.8421-0.7127	O8.5
G353.3171-0.1416	O9
G353.4059-0.1466	O6.5
	O6.5

CS 57

Fig 7: Same as fig 1. The near kinematic distance is 6.2 kpc . The radius is 81 " (4.9 pc)

Fig 8: Same as fig. 2

Fig 9: Same as fig. 3

Conclusions

-In all 3 bubbles PAHs surround hot dust.

- In 2 bubbles PAHs surround ionized gas.
-We detect 20, 91 \& 4 YSOs in CN138,
CN108 \& CS57, respectively.
- In CN108 \& CN138 YSOs may have formed due to material being compressed by UV-radiation and stellar winds from hot, central star(s).
-In 2 bubbles ionizing star candidates were identified
-In CN108 \& CS57 the $24 \mu \mathrm{~m}$ emission is shell-shaped, possibly indicating stellarwind blown hot dust.

Bibliography:

Churchwell, E., et al. 2007, ApJ, submitted

