Mid-Infrared Bubbles: Gas Structure and Star-Formation Analysis C. Watson, T. Corn (Manchester College) & The GLIMPSE Team

<u>Abstract</u>

We use 4 surveys (see Table 1) to determine the gas structure and YSO population surrounding 3 IR bubbles. The bubbles were selected from the catalog of Churchwell et al. (2007) which were identified in the GLIMPSE-II 8 μ m images. The 3 bubbles are likely produced by late-O or early-B stars ionizing their immediate surroundings, heating large dust grains and exciting a shell of PAHs. We use a SED-fitting, χ^2 -minimization technique using numerical radiative transfer models to identify the YSO population and measure their physical properties. We detect a significant YSO population toward the two powerful bubbles. We also identify candidate ionizing stars based on IR colors and luminosity.

Table 1: Surveys Used

Mission	Longitude	λ	Instrument
GLIMPSE-II	$-10^{\circ} \rightarrow +10^{\circ}$	3.6 μm, 4.5 μm,	Spitzer-IRAC
		5.8 µm, 8.0 µm	
MIPSGAL-II	$-10^{\circ} \rightarrow +10^{\circ}$	24 µm	Spitzer-MIPS
MAGPIS	$-10^{\circ} \rightarrow +42^{\circ}$	20 cm, 6 cm	VLA
2MASS	All	1.25 μm, 1.65 μm, 2.17 μm	, Two 1.3-m telescopes

CN 108

Fig 1: 4.5 μ m (stellar-dominated), 8.0 μ m (PAH-dominated), 24 μ m (hot dust-dominated) and 20 cm (ionized gas) in contours. The 20 cm emission is equivalent to a O8 star or earlier. The kinematic distance is 4.9 kpc. The radius is 340" (12 pc).

Fig 4: Same as fig 1. The 20 cm emission is equivalent to B0-0.5 star or earlier. The kinematic distance is 4.3 ± 0.6 kpc. The radius is 80" (1.7 pc).

353.40 353.38 353.36 353.34 353.32 353.30 Gelectic Longitude

Fig 7: Same as fig 1. The near kinematic distance is 6.2 kpc. The radius is 81" (4.9 pc).

Fig 2: 4.5 μ m, 8.0 μ m & 24 μ m emission. Circles indicate YSOs in stage 1, stage 2 and stage 3, using the criteria of Robitaille et al. 2007.

Fig 5: Same as fig. 2

Fig 6: Same as fig. 3

Fig 8: Same as fig. 2

<u>Conclusions</u>

In all 3 bubbles PAHs surround hot dust.
In 2 bubbles PAHs surround ionized gas.
We detect 20, 91 & 4 YSOs in CN138, CN108 & CS57, respectively.
In CN108 & CN138 YSOs may have formed due to material being compressed by UV-radiation and stellar winds from hot, central star(s).
In 2 bubbles ionizing star candidates were identified
In CN108 & CS57 the 24 µm emission is shell-shaped, possibly indicating stellarwind blown hot dust.

Table2: YSO Population

Mass				Luminosity			Mass Change		
ID	best	min	max	best	min	max	best	min	max
CN108-86	38.0	17.3	49.6	333700	37170	376600	3.80E-3	1.11E-3	4.94E-3
CN108-48	14.0	11.3	23.7	19060	9714	70880	0	0	0
CN108-23	10.0	8.0	16.2	4035	2714	17220	2.24E-3	0	6.90E-3
CN108-26 9.2	2.3	10.7	4922	81	4922	1.58E-4	0	7.44E-4	
CN138-5	1.9	0.3	6.3	36	5	1100	9.14E-5	0	5.38E-4
CN138-7	2.4	0.7	10.5	55	8	2306	1.36E-4	0	2.10E-3
CN138-12	2.4	1.0	6.5	60	24	331	1.14E-5	4.18E-7	1.44E-3
CN138-13	4.4	2.7	7.3	292	49	1942	0	0	0
CS57-1	7.3	1.0	11.6	443	110	10020	4.13E-5	0	1.62E-3
CS57-2	13.0	6.0	20.0	13420	993	46230	0	0	4.03E-3
CS57-3	5.1	2.3	11.5	517	85	5111	0	0	2.74E-3
CS57-4	5.2	3.7	11.6	533	152	9883	0	0	1.75E-3

<u>Source</u>
CN108
G8.0903-0.4912
G8.1090-0.5168
G8.1375-0.4282
G8.1541-0.4920
G8.1565-0.4337
G8.1566-0.5274
CN138
G9.84200-0.7134
G9.8421-0.7127
CS57
G353.3171-0.1416
G353.4059-0.1466

Table3: Driving Star Candidates

<u>Acknowledgements</u>: We would like to thank the Lilly Foundation and NASA, through grant #1275394 and 1282620 for funding that made this project possible.

<u>Bibliography</u>: Robitaille, T. P., Whitney, B. A., Indebetouw, R., Wood, K., & Denzmore, P. 2006, ApJS, 167, 256. Churchwell, E., et al. 2007, ApJ, submitted

<u>Type</u>

07

O9.5

O9.5

07.5

O8.5

O6.5

O6.5

O9

06

07