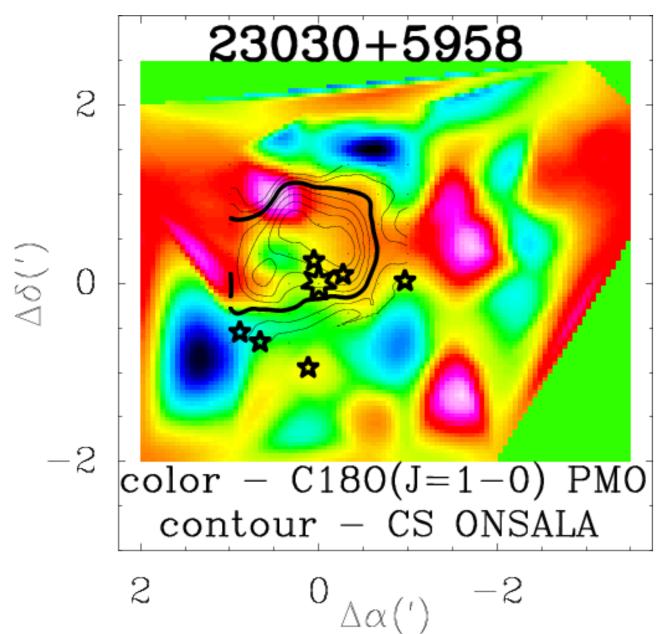


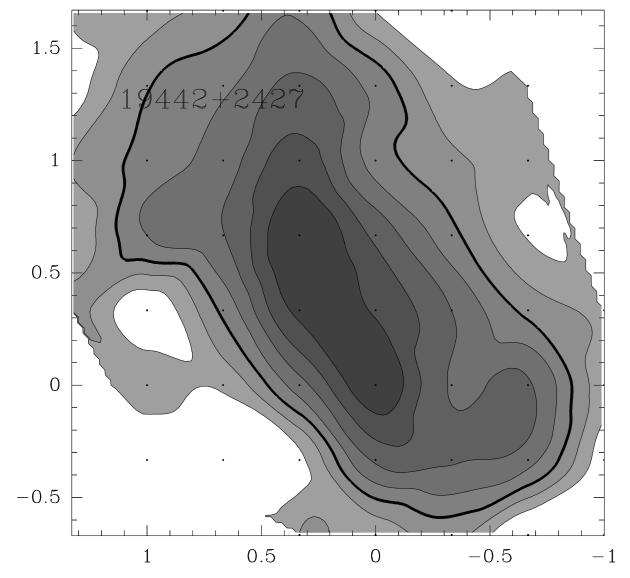
Selection criteria for PMO observations:

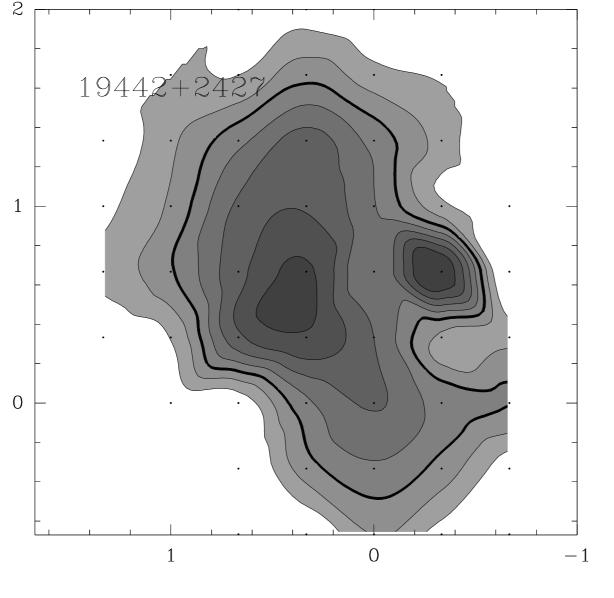

Sources are not associated with stars and with other sources not related to galactic star formation. Antenna temperature in CO line less than 10K according to survey [Ji Yang ApJS, 2002, v. 141, p. 157]

Flux at 12 μ m 25 μ m μ 60 μ m have to comply log(F₁₂/F₂₅)≤-0.4 and log(F₂₅/F₆₀)≤-0.4 or log(F₁₂/F₆₀)≤-0.4 assuming radiant flux on 25 μ m is equal 1.

Sources should be detected at least in three IRAS diapasons.

Coordinates have to be in: 16^h≤a(1950)≤8^h, β(1950)≥-35°, |b|≤25°, |b|≥1° with l≤60° or l≥300°


23030 + 5958Map of IRAS 23030+5958 with IRAS source (big 2



star) and MSX sources (small stars). Colour - PMO observations in C¹⁸O(1-0), contour -Onsala CS(2-1) About 20% of sources from the survey do not have

Maps of IRAS 19442+2427 (Onsala) in HCN (Left) and CS (right) lines

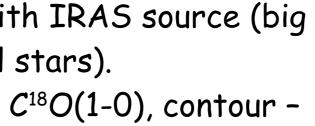
MSX associations.

	Angle	Size	Distance	$M_{_{LTE}}$		n(H ₂)			
IRAS name	J	(pc)		(M _{SUN})	$M_{_{ m VIR}}(M_{_{ m SUN}})$	(10^{3} cm^{-3})	L	В	Modeling
01202+6133	4.92	0.65	0.91	525	394	6	126.7	-0.8	-
03236+5836	5.29	0.53	0.69	479	442	11	139.9	0.2	In order t
05044-0325	3.74	0.36	0.67	184	163	13	142	-1.8	using Mon
05327-0457	1.95	0.24	0.85	306	144	75	203.5	-24.7	In genera
05338-0624	16.96	1.66	0.67	3310	2905	2.51	208.6	-19.2	parameter
05375+3536	5.97	21.22	24.44	262753	29273	<0.1	206.5	-16.3	•
05391-0152	6.58	0.7	0.73	1294	676	13	206.9	-16.5	explain so
05391-0217	8.21	0.87	0.73	1699	546	9	189.9	0.3	
06055+2034	5.64	1.26	1.54	4832	2690	8	189.8	0.3	
06055+2039	5.64	2.87	3.5	21384	5925	3	224.4	-2	
07028-1100	1.95	0.33	1.15	266	324	26	26.4	1.7	
18136-1347	7.74	2.28	2.03	3919	5514	1.14	29.1	2.2	
18162-2048	6.28	1.64	1.8	3447	2647	2.69	37.4	1.5	
18258-0737	7.65	3.1	2.78	11164	7293	1.29	38.9	-1	
19446+2505	4.22	1.23	2	1308	1133	3	60.9	-0.1	
20255+3712	3.91	2.28	4.01	10087	2649	3	76.4	-0.6	
21078+5211	3.57	0.76	1.46	787	1628	6	92.7	3.1	In total 6
21418+6552	4.65	0.69	1.02	486	458	5	105.4	9.9	
22176+6303	7.31	0.96	0.9	1578	1360	6	106.8	5.3	
22198+6336	3.39	0.48	0.97	184	170	6	107.3	5.6	
22543+6145	3.19	0.45	0.98	377	696	14	109.9	2.1	
22566+5830	3.57	1.87	3.6	6831	2777	4	108.8	-1	
23020+5948	11.83	8.73	5.08	74376	44316	0.38	110.1	0	
23030+5958	3.19	2.97	6.4	15179	7800	2	111.9	0.8	Kinem
23140+6121	4.07	2.79	4.71	11984	5643	2	113	1.0	

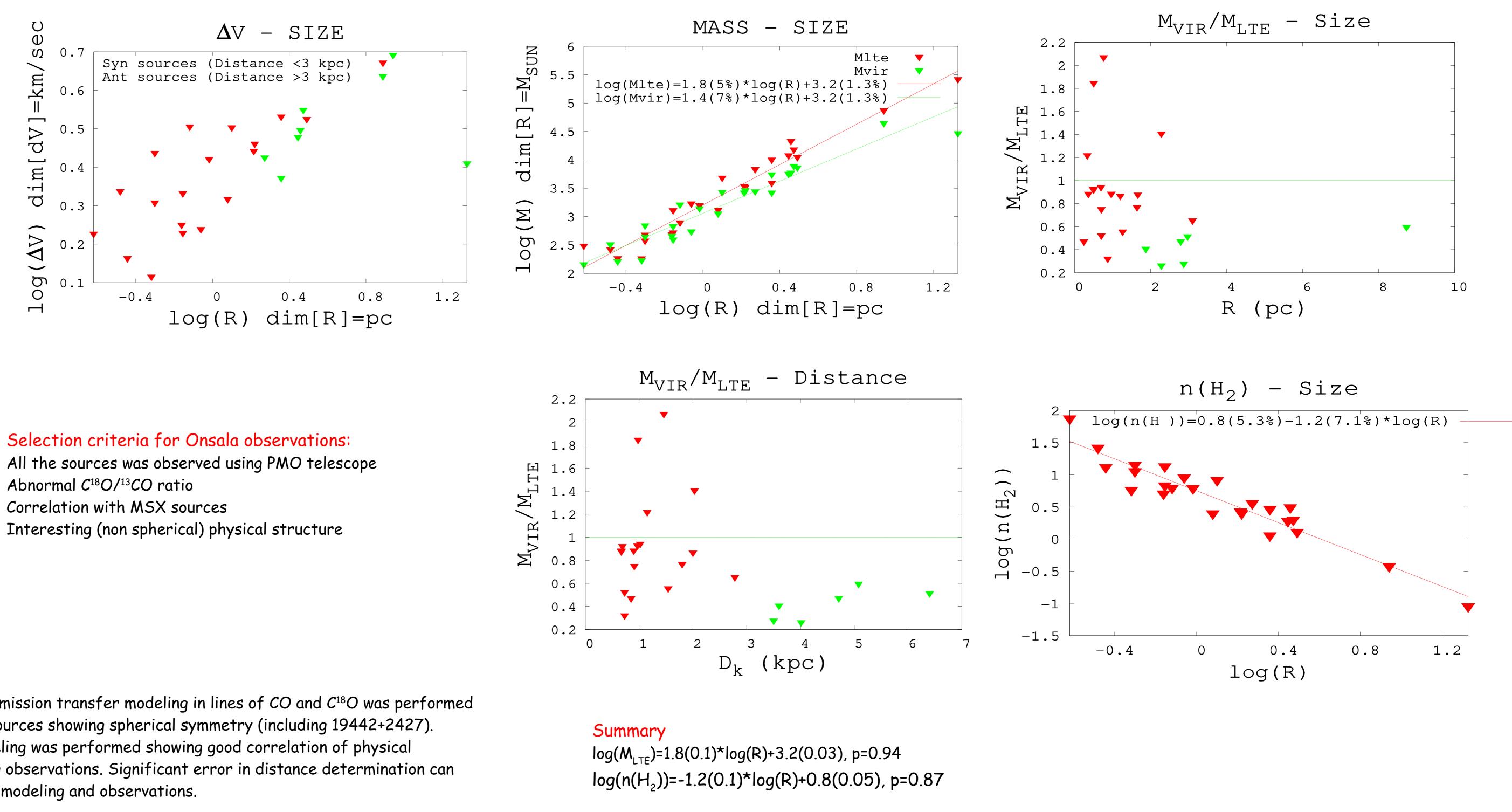
A CO, ¹³CO and C¹⁸O survey of cold IRAS sources

Troitskiy Nikita R.¹, Zinchenko Igor I.¹, Pirogov Lev E.¹, Ji Yang², Johansson Lars E. B.³

¹ - Institute of Applied Physics Russian Academy of Sciences ² - Purple Mountain Observatory Chinese Academy of Sciences


³ – Onsala space observatory contact e-mail: troitsky@appl.sci-nnov.ru

Spectra reduction


Spectra reduction was held with GILDAS package [http://www.iram.fr/IRMFR/GILDAS/] taking into account baseline (polynomial with power not higher than 3) and standing wave. For integrated criteria moment method was used.

Observation

Most sources were observed on 13.7-m Purple Mountain Observatory telescope (China) in emission lines of CO, C¹⁸O, ¹³CO (J=1-0) using position switching with noise temperature from 250K to 500K. About 10 sources were observed in Onsala space observatory in emission lines of N₂H⁺, HCN, C¹⁸O, HCO+, CS and ¹³CO with average noise temperature about 550K.

All the sources was observed using PMO telescope Abnormal C¹⁸O/¹³CO ratio Correlation with MSX sources

to verify physical parameters, emission transfer modeling in lines of CO and C18O was performed onte-Carlo method for simplest sources showing spherical symmetry (including 19442+2427). al, three sources for which modeling was performed showing good correlation of physical ers derived from model and using observations. Significant error in distance determination can some lack of correlation between modeling and observations.

Conclusions

62 objects were observed using PMO telescope physical parameters of 24 objects were determined, 10 objects from the initial list were observed using Onsala telescope Variation of physical parameters are. Masses vary: from 140 to 210*10³ Sun masses, hydrogen density from <1.10³ to 7.5.10⁴ (cm⁻³), sizes from 0.3 to 8 (pc), M_{VTR}/M_{ITF} from 0.1 to 2 with average 0.7(0.1)

> Dependences : masses and sizes M~R², averaged density and sizes : n~R⁻¹, line width and sizes dV~R^{0.3} Good correlation with simple models

matic distance has up to 35% errors for our objects, so distances has significant errors - this can explain some lack of correlation between modeling and observations

Physical parameters

