
Winds from clusters with non-uniform stellar distribution

We present analytic and numerical models of the `cluster wind' resulting from the multiple interactions of the winds ejected by the stars of a dense cluster of massive stars. We consider the case
in which the distribution of stars (i.e., the number of stars per unit volume) within the cluster is spherically symmetric, has a power-law radial dependence, and drops discontinuously to zero at
the outer radius of the cluster. We carry out comparisons between an analytic model (in which the stars are considered in terms of a spatially continuous injection of mass and energy) and 3D

gasdynamic simulations (in which we include 100 stars with identical winds, located in 3D space by statistically sampling the stellar distribution function). From the analytic model, we find that
for stellar distributions with steep enough radial dependencies the cluster wind flow develops a very high central density and a non-zero central velocity, and for steeper dependencies it becomes
fully supersonic throughout the volume of the cluster (these properties are partially reproduced by the 3D numerical simulations). Therefore, the wind solutions obtained for stratified clusters can

differ dramatically from the case of a homogeneous stellar distribution (which produces a cluster wind with zero central velocity, and a fully subsonic flow within the cluster radius).
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1. INTRODUCTION

Super star clusters (SSCs) are dense clusters of young
massive stars first identified in NGC 1705 by Melnick et al.
(1985) and in NGC 1569 by Arp & Sandage (1985).
Recently, they have been observed in a wide range of star-
forming galaxies, such as merging systems  (NGC
4038/4039), dwarf galaxies, classical starbursts, as well
as in our galaxy amongst many other systems (for a review
see Whitmore 2001).
These star clusters can contain hundreds or thousands of
very young, energetic stars, and have stellar densities far
greater than those seen in normal OB associations. The
ages of most of these star clusters are around 1- 10 Myr,
their radii typically in the range of ~ 1 -10 pc, and their
total cluster masses in the 103 - 106 Msun range (Melo et al.
2005 reported a  mean  mass per star cluster, of ~ 2 X 105

Msun, for M82). The central stellar densities of SSCs reach
up to ~ 105 Msun pc-3 . However, we can find SSCs with
older ages and/or larger masses (Walcher et al. 2006
reports  a cluster with 6 X 107 Msun ).

Both in the stationary solution for spherically symmetric
winds (Chevalier & Clegg 1985, Canto et al. 2000) and in
the numerical calculations of Raga et al. (2001) the
stellar distribution (within the cluster) was assumed to
be homogeneous. Also, these models are adiabatic (or,
more precisely, non-radiative) solutions, which are
appropiate for SSCs with low to intermediate mass
and/or terminal velocity of SSCs (masses around 104 -
106 Msun and terminal velocities of ~ 1000 km/s). For
more massive stellar clusters, lower stellar wind terminal
velocities or higher metallicities, radiative losses within
the cluster wind may become important (see Silich et al.
2004).

2. THE ANALYTIC MODEL

4. CONCLUSIONS
We have extended the analytic cluster wind model of Paper I
to the case of a non-uniform stellar distribution. In particular,
we have studied the case of a radially dependent, n(R)=kc R-

power-law distribution.

Of particular interest is the =-2 distribution, which

corresponds to the stratification of a singular, isothermal,
self-gravitating sphere. Such a structure is of interest for
modelling the wind from a gravitationally bound stellar

cluster. Power-law stellar distributions with other values of 

do not have a clear physical justification, but can be
considered as a parametrization of stellar distributions with
different degrees of central condensation.

We find that for shallow distributions, with -1<  < 0, the

cluster wind has zero velocity in the cluster centre. However,

for more negative  values the cluster wind has a non-zero,

outwards directed velocity (subsonic for min <  < -1 and

supersonic for -3<  < min) in the centre of the cluster. The

solutions with a non-zero central velocity have an infinite
central density for the cluster wind.

We have then compared the analytic cluster wind solutions
with 3D numerical simulations. For carrying out the
simulations, we consider the winds from 100 stars, with a
spatial distribution obtained by statistically sampling the
appropriate stellar distribution function. We then carry out
angular averages of the computed flow variables, and
compare the radial dependence of these averages with the
predictions obtained from the analytic model.

For different values of , we obtain a good agreement

between the analytic and numerical predictions in the outer
regions of the cluster. However, the analytic and numerical
solutions have large differences in the central region of the
cluster. These differences are a direct result of the fact that
only a small number of stars are present in this spatially
reduced region, and therefore the continuous mass and
energy source distribution assumed in the analytic model is
inappropriate for describing the real cluster wind flow.

We consider N identical stars in a spherical cluster with an
outer radius  Rc. The stars have a spatial distribution
(number of star per unit volume) of the form:

Where R  is the spherical radius and  and kc are the
constants.
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3. THE ANALYTIC AND NUMERICAL MODELS
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 where a, b, c, p, q are constants:

The wind velocity inside the cluster is subsonic, the velocity at the
centre of the cluster is zero and the density is finite. The gas
velocity increases towards the outer cluster boundary, and the flow
at this boundary (r=1).The cluster wind at the centre of the cluster:

Thus the velocity inside the cluster is subsonic and has a non-zero
value at the cluster centre (r=0):

(vii)

(viii)

(ix)

(vi)

The equation (iv) indicates that the mass flux of the wind is
inversely proportional to a positive power of r.  This implies that
the central gas density tend to infinite. And the central
temperature is,

Solving the conservation equations
we get,

The equation (v) admit solutions,

This indicates that the mass flux of
the wind is inversely proportional
to a positive power of r. On the
other hand, solving the momentum
equation (ii) obtained,

Above figure shows the stellar
distribution of x-y plane for the =0

model. The solid line represent the
outer boundary of the cluster. The
right figures show the spherically
average flow obtained from the =0

model. The density (top), radial
velocity (centre) and temperature
(bottom) obtained from numerical
simulation (dashed lines and the
analytic model (solid lines) is shown
as a function of spherical radius R.

The velocity of the wind remains constant (with a supersonic
value) within the cluster. Its magnitude is given by equation
(x). The temperature is also uniform inside the cluster and is
given by equation (xi). The density also goes to infinity at
the centre of the cluster and decreases outwards. But the
wind escapes from the cluster surface supersonically, and
accelerates outwards, until it reaches the terminal velocity.

3D rendition of the model with 100 stars distributed homogeneously

( =0) inside of a sphere of 10 pc in radius. In logarithmic color-

scale, we present five isosurfaces of density. Depicted by arrows we
overlaid the velocity field, the largest arrows corresponds to a
magnitude of 1000 km/s.

Above figure shows the stellar
distribution of x-y plane for the =-2

model. The right figures show the
spherically average flow obtained
from the =-2 model. Substantial

differences between the numerical
and the analytical solution are found
for radii smaller than ~4 pc. This is
direct result of the under sampling of
the stellar distribution function which
occurs as a result of the ‘proximity
criterion’ applied for placing the stars
in the computational grid. For larger
radii, a reasonable agreement
between the analytical and numerical
result obtained.
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Above figure shows the stellar
distribution of x-y plane for the

=-2.5 model. The right figures
show the spherically average
flow obtained from the =-2.5

model. For this model, the
analytic solution has a
supersonic, outwards velocity in
the inner region of the cluster.
Again, we obtain substantial
deviation between the analytic
and the numerical solution in
the central region of the cluster
and better agreement for larger
radii.

We do not consider power-law stellar distribution with =-3

because they have an infinit number of star  (resulting from
the strong divergence of the distribution function in the
cluster centre).

For an adiabatic, spherically symmetric cluster wind (and
neglecting the gravity due to the stellar distribution), the
mass, momentum and energy equation are:

WITHIN CLUSTER VOLUME CLUSTER WIND

Solving the conservation
equations  we get,

~ r-2density

~ r-4/3temperature

Combining the equation (vii)
y (viii) we obtain

We assumed that the computational domain was initially filled by
a homogeneous, stationary ambient medium with T=500 K and
n=0.1 cm-3 . The stellar winds are imposed in sphere of radius
Rw=2.2x1018 cm  (6 pixels). Within these spheres we impose (at all
time) a Tw=15000 K and outwardly directed Vw=1000 km/s
velocity. The density within the spheres has a r-2 law, scaled so
that the mass-loss rate is dM/dt=10-5 Msun/yr for each stars . We
then place 100 such stellar wind sources within a spherical cluster
of outer radius RC=10 pc centred in the computational domain.
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