Time-resolved infrared emission from a radiation-driven dusty AGN torus

Marc Schartmann, Keiichi Wada, Almudena Prieto, Andreas Burkert
3D Radiative Transfer models for Clumpy tori

- distribute clumps in a 3D geometry
- simultaneously account for high spatial resolution data as well as interferometric data
- good idea of torus structure

AMBIGUITIES
- toy models
- dynamical stability

NEED FOR PHYSICAL MODELS
Radiation-driven AGN tori

- self-gravitating gas disc \(10^6 \, M\odot\)
- central SMBH \(10^7 \, M\odot\)
- fixed DM and stellar potential
- X-ray heating, dust radiation pressure
- ray-tracing method
- 3 Eddington ratios: 0.01, 0.1, 0.2
- 0.125pc resolution
- \(32^3\) pc box

Wada 2012
Radiation-driven AGN tori

- self-gravitating gas disc \((10^6 \, M_\odot)\)
- central SMBH \((10^6 \, M_\odot)\)
- fixed DM and stellar potential

- X-ray heating, dust radiation pressure
- ray-tracing method
- 3 Eddington ratios: 0.01, 0.1, 0.2
- 0.125pc resolution
- \(32^3\) pc box

Wada 2012
Radiation-driven AGN tori

- X-ray heating and radiation pressure
 - 0.01 \(L_{\text{Edd}} \)
 - thin disk
 - tenuous outflow
 - 0.10 \(L_{\text{Edd}} \)
 - dense, puffed-up structure
 - outflow ceases
 - 0.20 \(L_{\text{Edd}} \)
 - dense, puffed-up structure
 - tenuous outflow

gas density distribution

MIDI Science Group Meeting
Marc Schartmann
06/05/2014
“Radiation pressure driven fountain”

3-component obscuring structure replaces the classical “torus”:

- + hot, dusty, low density outflow
- + puffed-up “torus”
- + thin disk

Wada 2012
Dust Continuum Radiative Transfer & RADMC-3D

\[
\frac{1}{c} \frac{\partial I_\nu(\vec{x}, \hat{n})}{\partial t} + \hat{n} \cdot \vec{\nabla} I_\nu(\vec{x}, \hat{n}) = \frac{1}{4\pi} \rho_d(\vec{x}) j_\nu(\vec{x}, T) \\
- \rho_d(\vec{x}) \left\{ \kappa_{\nu, \text{abs}}(T) + \kappa_{\nu, \text{sca}}(T) \right\} I_\nu(\vec{x}, \hat{n}) \\
+ \rho_d(\vec{x}) \int \frac{d\Omega}{4\pi} \Phi(\hat{n}, \hat{n}') \kappa_{\nu, \text{sca}}(T) I_\nu(\vec{x}, \hat{n}')
\]

- solve radiative transfer equation with 3D Monte-Carlo code RADMC-3D (Dullemond et al.)
- primary source SED, point-like with \(\cos(\theta)\) radiation characteristic
Dust Continuum Radiative Transfer & RADMC-3D

\[
\frac{1}{c} \frac{\partial I_\nu(\vec{x}, \vec{n})}{\partial t} + \vec{n} \cdot \vec{\nabla} I_\nu(\vec{x}, \vec{n}) = \frac{1}{4\pi} \rho_d(\vec{x}) j_\nu(\vec{x}, T) \\
- \rho_d(\vec{x}) \left\{ \kappa_{\nu,\text{abs}}(T) + \kappa_{\nu,\text{sca}}(T) \right\} I_\nu(\vec{x}, \vec{n}) \\
+ \rho_d(\vec{x}) \int d\Omega' \Phi(\vec{n}, \vec{n}') \kappa_{\nu,\text{sca}}(T) I_\nu(\vec{x}, \vec{n}')
\]

- solve radiative transfer equation with 3D Monte-Carlo code RADMC-3D (Dullemond et al.)
- primary source SED, point-like with \(\cos(\theta) \) radiation characteristic
- local ISM dust model:
 - 62.5% silicate, 37.5% graphite
- spectral features
- cut at \(r_{\text{in}} = 1 \text{pc} \)
Wavelength-dependent appearance

orders of magnitude different intensity levels

- scattered light within the cone
- cone edge
- inner disk rim
- clumpy disk in absorpt.
- cold filaments and clumpy disk

20% L_{Edd}
Time evolution of MIR images

- filamentary outflow
- wide opening angle
- ceasing outflow
- vert. elongation changes to spherical shape
- vertical elongation
- low density cone

12 micron
Spectral Energy Distributions

• “Big Blue Bump”, IR re-emission bump
• spectral features
• evolution for ~ 2 Myr

• 0,30 and 60 very similar
• large differences to edge-on view

typical for a thin disk
Spectral Energy Distributions

- much larger differences between inclination angles
- strong absorption in the visible
- deep silicate absorption features

- ceased wind
- (completely) dust enshrouded AGN

10% Eddington
Spectral Energy Distributions

• large differences between inclination angles
• large variety of absorption in the visible
• moderately deep abs. features in IR

three-component system: disk plus low density outflow plus puffed-up structure
Comparison to observed SEDs

- Seyfert galaxy templates (Prieto et al. 2010)
- type I - black stars
- type 2 - red triangles
- normalised to total bolometric luminosity

• edge-on case: overall good agreement
• face-on case: reasonable agreement at short and long wavelengths
• too much flux at NIR wavelengths (outflow, resolution?)

20% Eddington
Comparison to observed SEDs

- Seyfert galaxy templates (Prieto et al. 2010)
- type 1 - black stars
- type 2 - red triangles
- normalised to total bolometric luminosity

- edge-on case: similarly good agreement, but too strong silicate absorption
- face-on case: too much extinction at short wavelengths
Comparison to observed SEDs

- Seyfert galaxy templates (Prieto et al. 2010)
- type I - black stars
- type 2 - red triangles
- normalised to total bolometric luminosity

• neither explains face-on nor edge-on case very well
Comparison with observations: silicate feature vs gas column density

- red line = Seyfert sub-sample
- black line = all objects
- NH probes single line of sight
- silicate feature = mixture of emission and absorption components within the beam
- linear relation found with large amount of scatter
- interpreted as being the result of clumpiness

Comparison with observations: silicate feature vs gas column density

ER20 - stars
• overall best match

ER01 - squares
• too little scatter

ER10 - triangles
• 90: compactness problem

too strong silicate feature emission missing clumpiness in central region?
Seyfert Light Curves

- 500 micron (triangles): cold, dense disk, optically thin, in quasi-steady state
 - no time evolution
- at shorter wavelengths, the curves for the inclination angles split up
- the strongest evolution visible for 0.1 micron (max of opacity): scattering plus primary
 - ER01: constant (low density lifted dust)
 - ER10: rising trend, decreasing optical depth in cone (no steady state)
 - ER20: episode of strong and dense outflows
Summary

• X-ray heating plus radiation pressure on dust able to maintain geometrical thickness by invoking a “fountain” process (Wada 2012)
• dust continuum radiative transfer calculations to connect to available and future observations
• best agreement with observations is found for models which show a three-component obscuring structure: a dense disk and a puffed-up structure in combination with a tenuous outflow component
• strong morphological differences between MIR and FIR images
• might be testable with ALMA observations (work in progress)