MIDI observations of T Tauri stars and their companions
Introduction

Observables
The VLT Interferometer
The VLT Interferometer
Interferometric Observables

\[
\frac{V_r(\vec{p})}{V_r(0)} = \frac{\int I(\vec{x}) \exp\left(-i2\pi \frac{\vec{x} \cdot \vec{p}}{\lambda}\right) \, d\vec{x}}{\int I(\vec{x}) \, d\vec{x}}
\]

\[
V_{r,\text{norm}}(u, v) = \frac{\int \int I(\alpha, \beta) \exp\left(-i2\pi (u\alpha + v\beta)\right) \, d\alpha \, d\beta}{\int \int I(\alpha, \beta) \, d\alpha \, d\beta}
\]

A) Fringe Contrast

sometimes known as »Michelson visibility«, and related to the measured maximum and minimum intensities in the fringe pattern:

\[
V_{\text{Michelson}} = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}
\]

visibility varies between 0 (I_{\text{min}} = I_{\text{max}}) and 1 (I_{\text{min}} = 0); indicates »compactness« of the source

B) Fringe Phase

location of the central fringe with respect to the zero optical path difference; indicates »asymmetry« of the source
T Tauri – The Prototype
T Tauri – The Prototype
The Grid
The resolution of the interferometer decreases with wavelength, the emitting region becomes larger due to the temperature gradient.

\Rightarrow decreasing visibilities
\Rightarrow direct size estimates

The Spectral Energy Distribution ...
The Radiative Transfer Model ...
The Radiative Transfer Model ...

star

\begin{align*}
M_* &= 2.1 M_\odot \\
T_* &= 5250 \text{ K} \\
L_* &= 7.3 R_\odot \\
R_* &= 3.3 R_\odot
\end{align*}

disk

\begin{align*}
M_d &= 0.04 M_\odot \\
r_d &= 0.1 \text{ ... } 80 \text{ AU} \\
i &< 30^\circ \\
h_{100} &= 18 \text{ AU} \\
\beta &= 1.25
\end{align*}

everenlope

\begin{align*}
c_1 &= 1 \cdot 10^{-5} \\
c_2 &= -5.0
\end{align*}

accretion

\[\frac{dM}{dt} = 3 \cdot 10^{-8} M_\odot \text{yr}^{-1} \]

extinction (foreground)

\[A_V = 1.5 \text{ mag} \]
Structure of Transitional Disks
TW Hya - The Prototypical Transitional Disk

classical T Tauri star

distance of 51 ± 4 pc

age of $5\text{-}15\text{ Myr}$

K7V ($T \sim 4000\text{ K, } 0.19L_\odot$)

actively accreting at a low rate: $4 \times 10^{-10} M_\odot/\text{yr}$

images taken at various wavelengths reveal a dust disk:

- nearly face-on
- diameter: $\sim 300\text{ AU}$

Ratzka et al., A&A 471, 2007
The Grid
The Total and the Correlated Flux

Ratzka et al., A&A 471, 2007
Modified Chiang & Goldreich Model

\[\dot{V} = 0.25 \Rightarrow d \sim 1-2 \text{ AU} \]
The Transitional Disk of TW Hya

KI & CHARA

\[R_{\text{in}} = 0.42 \ldots 0.52 \text{AU} \]
\[\Delta R < 0.13 \text{AU} \]

The Dust Composition and Distribution
Dust Species and Properties

Pyroxene Group

\[\text{Mg}_{n-1}\text{Fe}_n\text{Si}_2\text{O}_6 \]

Olivine Group

\[\text{Mg}_{n}\text{Fe}_{n-1}\text{SiO}_4 \]

Enstatite

\[\text{Mg}_2\text{Si}_2\text{O}_6 \]

Forsterite

\[\text{Mg}_2\text{SiO}_4 \]

Quartz

\[\text{SiO}_2 \]

Processing / thermal stability

Schegerer et al., A&A 456, 2006
Dust Processing in the RY Tau Disc!

Comparison of interferometric and single-dish observations shows for the first time dust evolution in a T Tauri star with a reduced fraction of small amorphous and an increased fraction of crystalline particles closer to the star.

\[F_\nu = B_\nu(T_{\text{cold}})C_0 + B_\nu(T_{\text{dust}}) \left(\sum_{i=1}^{3} \sum_{j=1}^{6} C_{i,j} \kappa_{\nu,i,j} \right) \]

Comparison of interferometric and single-dish observations shows for the first time dust evolution in a T Tauri star with a reduced fraction of small amorphous and an increased fraction of crystalline particles closer to the star.
Dust Processing around T Tau?

Where is the Processed Dust in TW Hya?

~8% of the mass is in sub-micron sized crystalline dust particles; ~83% of the mass is in sub-micron sized amorphous dust grains.

Comparison of the spectrally dispersed correlated flux with the dust model shows that most of the crystalline material is concentrated within 1 AU from the central star.

The disk of TW Hya is not well mixed.

Where is the Processed Dust in TW Hya?
T Tauri – N + S = N + Sa + Sb ≠ Prototype
A Non-Prototypical Prototype

T. A. Rector (University of Alaska Anchorage) & H. Schweiker (WIYN and NOAO/AURA/NSF)

The Grid
The Binary Signal

\[V_{\text{fit}}(u) = V_0(u) \cdot \frac{\sqrt{1 + f^2(u) + 2f(u) \cos[2\pi s(u)]}}{1 + f(u)} \]

\[s(u) = s_0 + s_1 u \]

\[V_0(u) = a_0 + a_1 u \]

\[f(u) = f_0 + f_1 u + f_2 u^2, \quad f(u) < 1 \]
The Relative Position of T Tau Sb

s ≈ 103.0 ± 1.2 mas (87.6°)

s ≈ 123.0 ± 5.9 mas (111.4°)

⇒ 124.3 ± 7.6 mas @ 299.7 ± 5.3°
Separating the Spectra

![Graph showing spectral separations for different astronomical sources.](image-url)
Separating the Spectra

\[F_{\text{meas}}^{\text{corr}} \cdot \frac{1}{1 + f} = F_{P}^{\text{corr}} = V_P \cdot F_{P}^{\text{tot}} + \]
\[F_{\text{meas}}^{\text{corr}} \cdot \frac{f}{1 + f} = F_{C}^{\text{corr}} = V_C \cdot F_{C}^{\text{tot}} \]

\[\tau = 1.7 \]
\[\tau = 0.8 \]

Model for T Tau Sa

Binaries in the Mid-Infrared
“Family Portraits”
GV Tau – Another Infrared Companion

- binary separated by 1.2"

- distance of 140-160 pc

- variable on short timescales due to
 - inhomogeneities in the circumstellar material around the southern component?
 - variable accretion of the northern component?

- presence of a circumbinary envelope suggested

F606 (HST) + H / Ks (NACO)
<table>
<thead>
<tr>
<th></th>
<th>GV Tau N</th>
<th>GV Tau S</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1) [AU]</td>
<td>1.5 ± 0.5</td>
<td>1.0 ± 0.5</td>
</tr>
<tr>
<td>(T_1) [K]</td>
<td>900 ± 100</td>
<td>900 ± 300</td>
</tr>
<tr>
<td>(r_2) [AU]</td>
<td>10 ± 2</td>
<td>7 ± 3</td>
</tr>
<tr>
<td>(T_2) [K]</td>
<td>150 ± 50</td>
<td>100 ± 50</td>
</tr>
<tr>
<td>(i) [deg]</td>
<td>80 ± 10</td>
<td>10 ± 5</td>
</tr>
<tr>
<td>(\text{PA}) [deg]</td>
<td>50 ± 20</td>
<td>50 ± 20</td>
</tr>
<tr>
<td>(A_V) [mag]</td>
<td>13 ± 4</td>
<td>19 ± 4</td>
</tr>
</tbody>
</table>

GV Tau – Another Infrared Companion

SVS 20 – In the Core of Serpens

- binary separated by 1.5“ (actually a triple system!)
- distance of about 250 AU

SVS 20 N
- $T = 3300$ K
- $L = 0.9 \, L_{\odot}$

SVS 20 S
- $T = 6000 - 10000$ K
- $L = 20 - 80 \, L_{\odot}$

SVS 20 – In the Core of Serpens

80% large amorphous
20% large crystalline

~50 m
~120 m

Beyond Science
Mid on vibroplate

- 11. December 2002
 - UT 23:50
 - 0.70 standard acquisition
 - if will visible = overlay test after reverberation
 - 3h 15
 - check acquisition
 - overlay check beams A and B

- 15. December 2002
 - UT 22:00
 - SNR > 4
 - 8 and 22 mm
 - 8/100 = good overlap

Thanks UWE

11. December 2002
 “First Fringes on α Ori”

15. December 2002
 “UT-Fringes on ε Car & Z CMa”
Epilog

Beyond Science