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These are (more or less) the original slides from my 
presentation at Ringberg. I have added these little notes 
for the benefit of the person reading this presentation 
posted on the internet.

If you have feedback or questions, you may email me at:
meisner@strw.leidenuniv.nl 



• Coherent Integration Methods;
• Measurement of visibility phase and effects of dispersion
• Examples from VINCI and early results from MIDI.

• Cross-calibration of VINCI data and solving for diameters
• Examples of results from VINCI

Jeff Meisner
Leiden Observatory

Note: The talk I am giving today is really two separate 
talks. These are the themes addressed in the first part:

And in the second part:



First I describe and briefly discuss interferometric data 
reduction methods and their characteristics. This 
includes:

Incoherent integration of fringe visibility

Coherent integration

Coherent integration with dispersion tracking

“Quasi-coherent” integration 

In some cases I show implementations of these methods 
both for delay-scanned interferometry and for spectrally-
dispersed interferometric detection.



Incoherent, coherent and 
quasi-coherent integration

• No attempt to find the atmospheric OPD 
• Treats signal as additional noise source 

(perhaps with a particular spectral content)
• Result dependent on subtraction of assumed 

noise level

Raw Scan       Fourier Transform     Sum PSD’s

FT |S|2 Σ
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… Vest

Incoherent integration



Incoherent, coherent and quasi-coherent integration

• Use the data (possibly from a different source) 
itself to estimate the atmospheric OPD τ

• Uses the estimate of τ to correct the data

• Integrate the corrected data to obtain an average
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Coherent integration using spectrally dispersed detection.
Assumes little or no random dispersion.

Note that coherent integration, as shown, is an unacceptable solution at most 
wavelengths under normal conditions, because it does not account for the effects of 
random dispersion fluctuations due to atmospheric water vapor inhomogeneities.

Coherent integration with a “dispersion tracker” as shown in the next slide solves 
this problem.
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with dispersion tracking
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“Quasi-coherent” integration
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Similar to coherent integration, except:

• Uses the group delay estimator to shift the signal by a large amount

• Applies an additional phase shift as a proxy for the remaining required OPD 
correction to ensure coherence 

• Therefore applies a frequency-dependent time shift of τG + φ/ν 
instead of τG + φ/ν0

• Very practical for data from medium-narrow bandwidth instruments.
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The “quasi-coherent” method shown in these two slides is an 
alternative solution to dispersion fluctuations. It is simpler (and 
less model dependent) than a dispersion tracker which models 
the index of refraction of water vapor in detail. Instead it treats 
dispersion as being constant in phase across the entire band. 
Each scan or frame is treated independently rather than using a 
“tracking” algorithm which expects continuity in the dispersion 
time series. However it is very adaquate in many situations, 
such as with the medium-narrowband VINCI data I have 
reduced.



Disadvantage of quasi-coherent approach:

With wide bandwidth and substantial dispersion fluctuations, there 
will be a reduction in the visibility spectrum toward the band edges
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This slide shows the reduction in visibility estimates at the edges of the N band 
due to using the quasi-coherent method, as a function of different amounts of 
random dispersion fluctuations. The next slide shows that in one particular case 
where this was measured, the rms of atmospheric dispersion fluctuations (at 10 
microns) was found to be 1.65 radians.



Actual water-vapor dispersion fluctuations measured with 
VLTI instruments.

K band dispersion using VINCI on
16 meter baseline. Dispersion 
phase ΦGD in degrees over 100 
second run with error bars. Full 
range of graph = 150 degrees = 
2.2 moles/m^2 H2O

N band dispersion using 
MIDI, courtesy Walter Jaffe. 
Dispersion phase ΦGD in 
degrees over 170 seconds 
Full range of graph = 10 
radians = 4 moles/m^2 H2O. 
RMS level = 1.65 = .66 
moles/m^2 H2O



Actual water-vapor dispersion fluctuations measured with MIDI: 
Power spectrum

Frequency in Hz

Random walk: slope=2
Kolmogorov process: slope=2.67



Calibrating out instrumental dispersion (including air 
paths) for detection of true source phase

Method:
Excess air path = D
Air dispersion = dφA/dl
Beamcombiner phase = φB

Measured phase of visibility = φRAW
Then the corrected phase for an 
observation is found as:

φCORR  = φRAW  - φB - (dφA/dl) D

Example:
Observation of Sirius, JD2200.36409

UNCORRECTED PHASE:

CORRECTED PHASE:

Optical frequency in Tera-Hertz

radians

This is just showing 2nd (and higher) order 
dispersion, from a VINCI observation. The 
quasi-coherent estimator has removed the 
first order component of the phase function 
(which will always be difficult/impossible to 
detect on a source, due to water vapor 
fluctuations).



Therefore we consider it unfeasible 
to detect planets (from the ground) 
by measuring a 1st order dispersion 
phase offset of ~.001 radian.

However large phase offsets can 
still be detected (after subtracting 
air and instrumental dispersion).

What happened in this observation 
of a very bright M giant?

Measurement of 1st order dispersion (group-delay 
offset phase) of astronomical sources (??)

First Order Dispersion:
• Inherently difficult to measure with a medium/narrow-band interferometer
• Automatically cancelled using quasi-coherent integration (but can be 

estimated by averaging the phase residuals)
• Even with the brightest sources, only measurable with about .2 radian rms 

using VINCI (25% bandwidth). Water vapor dispersion is major noise source
• Must first subtract air dispersion as a function of delay-line position:

Unwrapped group-delay offset phase 
vs. unbalanced air path, JD 2195

Here we see the 1 st order dispersion phase 
measurements vs. delay-line position from 
one night of VINCI observations, due to the 
dispersion of dry air at 2.2 microns. The one 
way-off point is from Belelgeuse, because it 
was measured beyond the first null where its 
true visibility phase is therefore (approx.) 180 
degrees.



Measurement of stellar diameters by observing the 
null in the coherently integrated visibility spectrum

The spatial frequency observed at optical frequency ν is given by:
SF = νB/c

Therefore, if the visibility null at 1.22/D occurs within the passband 
of the instrument, the coherently integrated visibility will go 
through zero at that point!

Optical frequency THz



Raw visibilities (uncalibrated), alf sco, from VINCI B=16m

Comparison of alf sco diameters obtained from visibility 
nulls in spectra, with broadband visibility points

Nulls measured in spectra

Alright, what 
happened 
here?!

Here I have just plotted the RAW 
measured visibilities vs. spatial 
frequency of VINCI observations of 
alf sco (Antares) and a 34.45 mas UD 
fit, to compare with the positions of 
the nulls measured using the 
method described on the previous 
page.

THIS point was surely a 
mistake! Probably VINCI 
was looking at a 
different star altogether.



Measurement of stellar diameters by observing the 
null in the coherently integrated visibility spectrum

More examples:

What are we looking at here? This

Observations past 1st null, visibility inverted:

<0
V=0
>0

Calibrated spectrum, W hya JD2297.3789

Calibrated spectrum, alf Ori JD2195.3415

<0
V=0
>0

Observation of 2nd visibility null!



End of part I
Now we begin part 2 of my 
presentation. That is on the 
approach to calibration I am working 
on to obtain stellar diameters from 
the totallity of some 13,000 VINCI 
observations (visibility points) 
measured over the last 2 years.



First I mention some of the problems with the “standard approach” to calibrating 
interferometric observations. The “standard approach” says that you find a 
suitable “calibrator star” which is similar to your target star, but whose 
diameter you (think you) know for sure. From a measurement of the raw 
visibility of the  calibrator star just before or after the target observation, you 
deduce the intrumental calibration or “transfer function.”

1) You generally can’t find a “perfect” calibrator which matches the target star in 
position, color/type, magnitude, etc.

2) You CERTAINLY will not also find one which is the same color but is less 
resolved (smaller angular diameter), unless it is much dimmer!

3) If the calibrator is not smaller (less resolved) than the target, then the 
sensitivity to errors on the assumed diameter of the calibrator is >= 1.

4) And that is a fatal flaw, because you don’t have an independent means of 
verifying the size of the calibrator. If you did, then you could have used that for 
the target as well! That would only not be true if your target had different 
characteristics than the calibrator, in which case 1) is violated. In other words, 
the chain of calibration is circular at best.

My approach therefore is to destroy the distinction between “calibrators” and 
targets, and treat all stars equally with no a priori diameters known. Every star 
will be used to calibrate every other star observed on the same night. Of course 
some stars have more stable diameters than others (pulsating stars etc.) but 
we make no assumptions about the diameter of any one star.



Global calibration approach applied to VINCI visibilities

Allowing for stellar diameter solutions which include a 
UD diameter, plus a proper calibration, which may 
not =1.

Why allow for a proper calibration?

1) Many stars (not most) especially the further you go 
into the infrared, contain correlated flux from a 
compact disk, but some uncorrelated flux from 
circumstellar emission.

2) A specific instrument like VINCI may have a transfer 
function which is not flat, but somewhat wavelength 
dependent. Thus stars with different spectra, may 
show slightly different transfer functions (at the level 
of a few percent).



Model for instrument calibration (transfer function) and 
proper calibration.

Measured visibility = True visibility of star alone * net calibration
VRAW = VSTAR*CNET

Net calibration = Nightly calibration * proper calibration
CNET = C(t) * CP

Proper calibration = “type calibration” * individual calibration
CP = CTYPE * CSTAR

Type calibration is specific to a type of star due to its spectrum 
interacting with the instrument.

Individual calibration is due to uncorrelated flux detected photometrically 
but not contributing to the visibility at any baseline within a 
reasonable range (highly overresolved).

Measured visibility:
VRAW = C(t) * CTYPE * VSTAR * (Correlatable flux) / (Total flux)

Individual calibration  C STAR = (Correlatable flux) / (Total flux)
= extrapolated visibility at zero baseline



Detection of proper calibration.

Here is an example (which we will come back to!) of a star 
observed by VINCI with a very definite proper calibration

Proper cal = .60

Normal cal = 1

We will assume that most 
stars do not have a 
proper cal other than 
unity. But in the cases 
that we do detect one, 
this will affect our 
determination of the 
star’s true diameter!

Note that MIDI will have to 
deal with this much more 
than instruments 
operating at shorter 
wavelengths!

So here are visibility points from 
one particular star AFTER dividing 
by the “normal” nightly calibration. 
They do not lie on a “normal” 
visibility curve, but rather one 
which is also multiplied by .60.



What is plotted on the next page, are the contours of the likelihood function 
for the joint solution of net calibration (vertical) and stellar UD diameter 
(horizontal). With only one visibilty point (or visibility points near a single 
spatial frequency) as in the upper left, we have a remaining degree of 
freedom given by the crescent, from a lower calibration with a small 
diameter, up to a calibration of 1.0 with a large diameter. The true solution 
must be somewhere in between. By including more measured visibilities at 
a range of spatial frequencies, (upper right) the solution is narrowed down 
somewhat, but still supplies no good estimate of the diameter. With further 
spatial frequency coverage (lower left) a better estimate of the diameter 
(and calibration) emerges. 

Finally with a superior data set (lower right), we can simultaneously solve 
for the diameter and net calibration with a reasonable error level. Even in 
this case, there is some remaining uncertainty in one direction (lower left to 
upper right). Thus an additional independent measure of the calibration for 
that night (i.e. from other stars also observed) which is also applicable to 
this star, can be used to constrain the vertical position of the solution on 
this locus, and force a finer determination of the stellar diameter.

The contours that are plotted are for the 1 and 2 sigma boundaries of the 
likelihood function.



We can solve for the likelihood of a joint diameter – calibration 
solution from a set of observations spanning some range of 
baselines. If we can be sure that the star does not have a proper 
cal outside of 1, this supplies the transfer function for that night…



Table of
Observations

Which star
Which night
Baseline etc.
Raw visibility

Table of stars :
Diameter

Proper calibration
Peculiarities etc.

Table of
Calibrations

for each night

Which
Observation

Don’t use for 
calibration?

Global calibration approach applied to VINCI visibilities 
obtained through quasi-coherent integration.

Model:



Table of stars :
Diameter

Proper calibration
Peculiarities etc.

Table of
Calibrations

for each night

Don’t use for 
calibration?

Diameter     Dstar

Proper cal   Cstar

Nightly cal     Cnite

Baseline        |B|

Measured vis   Vraw

Resolvability   R = D/(λ/B)
Residual = Vraw – (2J1(πR)/πR) Cnite Cstar

Model (continued)
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Global calibration and diameter solution: Method



In the previous slides we have seen the model which is applied and method 
for globally solving for nightly calibrations, stellar diameters for each target 
observed, and (in some cases) proper calibrations for those stars which 
are distinct from unity.

Presently I am in a very early stage of performing this computation. My 
current algorithm (which has lots of room for improvement!) however does 
approach a solution after 30-40 iterations. This is illustrated by the graphs 
on the next page, which show the algorithm converging toward the
diameter of several stars over the course of 40 iterations. The diameter 
estimate (assuming no proper calibration) are given by the magenta plots. 
The white plots and squares, where shown, are solutions for the diameter 
in conjunction with a non-unity proper calibration (not shown) which may 
or may not be real.

On the following page, is a plot of the transfer function (nightly calibration) 
determined also as part of this computation, as a function of time (Julian 
day - 2450000) for two periods in the operation of VINCI. This reflects 
hardware changes in the beam combiner (and other optics) plus noise. 
Wide horizontal sections are simply due to no data having been taken over 
that period and the adoption of the calibration for the nearest night on 
which a solution was obtained. Vertical blue lines delineate the positions of 
known hardware adjustments which are expected to alter the transfer 
function (obviously not all such hardware adjustments were known by this 
database!). 



Convergence of diameter solutions over many iterations



Results from VINCI using global cross-calibration algorithm 
(in its very early stages!)
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gameri        9.18 +/- .07  mas
119tau        9.68 +/- .06  mas
rpeg          9.79 +/- .19  mas
chiphe        9.84 +/- 2.06  mas
akhya         9.91 +/- .15  mas
lamaqr        9.95 +/- .45  mas
62sgr         10.14 +/- .13  mas
alfhya        10.15 +/- .14  mas
tcet          10.28 +/- .18  mas
v744cen       10.29 +/- .41  mas
X delvir        10.47 +/- .81  mas
19psc         10.51 +/- .20  mas
sori          11.05 +/- 0.  Mas
X deloph        11.06 +/- .11  mas
-- Proper cal = 1.144 with D = 14.4 mas

tlep          11.08 +/- .06  mas
wori          11.08 +/- .16  mas
siglib        11.40 +/- .14  mas
etagem        11.91 +/- .42  mas
etasgr        12.27 +/- .40  mas
rscl          12.62 +/- .14  mas
-- Proper cal = .947 with D = 11.1 mas

2cen          13.53 +/- .16  mas
rxlep         13.56 +/- .07  mas
X del2gru       13.59 +/- 2.16  mas
rcnc          13.86 +/- .09  mas
alfcet        14.24 +/- 1.24  mas
13gem         14.29 +/- .11  mas
nu.pav        14.58 +/- .17  mas

uori          16.70 +/- .29  mas
X raqr          18.62 +/- .11  mas
-- Proper cal = .964 with D = 17.9 mas

rlep          18.97 +/- .19  mas
-- Proper cal = .761 with D = 13.8 mas

vhya          19.05 +/- .07  mas
X lamvel        20.01 +/- 1.90  mas
alftau        20.33 +/- .05  mas
gamcrua       24.68 +/- .12  mas
rleo          25.77 +/- .24  mas
betgru        25.80 +/- .04  mas
-- Proper cal = .924 with D = 25.2 mas

X rhya          26.93 +/- .01  mas
X l2pup         27.47 +/- .22  mas
X alfcar        27.54 +/- .10  mas
X omicet        29.49 +/- .25  mas
-- Proper cal = .501 with D = 24.8 mas

alfsco        34.52 +/- 0.  Mas
X alfori        42.31 +/- 1.37  mas
-- Proper cal = .669 with D = 30.6 mas

Early (unofficial!) results from global calibration solution on 8, 16, 
and 24 meter baseline data. Only diameters > 9 mas shown.

Results marked with an ‘X’ in pink are known to be mistaken for 
various reasons which the current algorithm cannot handle. All of 
the rms error bars shown are overly optimistic due to a limitation in 
the code. Please wait for the official results to be released in the 
not-distant future after further progress in the algorithm and better 
identification of bad input data points. -



On the next page, we look at the likelihood contours (1, 2, and 3-sigma 
countours are drawn) for two stars with a definite non-unity proper 
calibration.

On the following page, is an example of a very stable and well observed 
star (used as a “calibrator) tet cen, with 575 observations on the 66 meter 
baseline. Almost all of those datapoints lie right on the theoretical visibility 
curve (purple) for a 5.16 mas UD object, with the positions of the outliers 
being conspicuous (and clearly non-gaussian distributed!). A plot of 
“apparent diameter” versus Julian date (used to identify pulsating 
diameters) shows a steady curve (except for a few days where bad
datapoints dominated the solution).

The 2 following pages likewise have plots for a star’s apparent diameter 
versus date which are NOT constant but shows a consistent change over 
time. The visibility points, taken together, do NOT lie on a single curve 
(different symbols correspond to observations on different nights).



Miscellaneous results found in global solutions

Detected proper cals from various stars…



Miscellaneous results found in global solutions

Good fit from a well-behaved star that was 
observed many times (considered a “calibrator”)

These are all 
from tet cen on 
the 66 meter 
baseline..



Miscellaneous results found in global solutions

This star’s diameter is doing something funny….

(It’s a cephied)



Miscellaneous results found in global solutions

Another funny diameter…    L2 pup



Miscellaneous results found in global solutions

A visibility fit that doesn’t ...  alf eri (Achernar)

Only plotting visibility 
against the 
MAGNITUDE of spatial 
frequency in the UV 
plane, may sometimes 
yield surprising (= 
unbelievable) results if 
position angle is not 
taken into account, as 
we see in this 
example….



Miscellaneous results found in global solutions

Alf eri ….. on closer examination:
On the 140 meter baseline:                    On the 66 meter baseline: 



As we can see, alf eri has a strong position angle dependence on diameter. 
My preliminary diameters versus position angle (0 to 180 degrees) are 
plotted on the previous page. In discussion during the conference, a 
mistake in interpretation found in a recently published paper was noted. 
The apparent UD diameter measured from interferometry of an ellipse at 
various position angles should be of the form:

D(φ) = D0 + a sin(2( φ - φ0))

Where the major and minor axes of the ellipse are D 0 + a and D0 - a. 
However when such radii are plotted in polar coordinates vs. position angle 
φ, you do NOT get the figure of an ellipse (as the published paper attempted 
to fit) but rather a reciprocal conjugate ellipse which only matches the 
ellipse at φ = φ0 and at φ = φ0 + 900. The difference between these two figures 
is shown on the following page.

One can imagine a sine wave of 1 complete cycle superimposed on the 
graph of the previous page to fit the measured data points. With refined 
diameters obtained from running an improved version of the global 
calibration algorithm, we hope/expect to obtain just such a determination 
of the elliptical shape of this rapidly rotating star. 



Comparison of elliptical shape of star, and reciprocal 
elliptical shape of the diameter detected with a 
baseline at the corresponding position angle (dotted).



To get good estimates of stellar diameters, we need:
1) Good baseline coverage on the object (not just a long 

baseline) in order to ascertain its proper calibration. 
Also different physical baselines in order to rule out (/in) 
position angle dependencies.

2) High accuracy of visibility points (on both the object of 
interest and other “calibrator” observations). 
Note : All interferometers with good visibility accuracy 
(1% or better) have employed spatial filtering.



Baseline diversity 1

Many measurements taken at approximately the 
same projected baseline may be good for beating 
down the diameter errors due to measurement 
noise. But they are useless for estimating the 
proper calibration or verifying a model in general! 
The sensitivity of a set of observations to proper 
calibration is proportional to R2

max – R2
min where 

R is the resolvability defined as D/(λ/B) where D 
is the diameter of a star.

Therefore, unless we are able to rule out a proper 
calibration a priori, it is wise to observe a source 
at widely separated points on a single night, not 
just the “best time” when it is high in the sky.



Baseline diversity 2

Even many measurements taken with the aid of earth-
rotation synthesis on a single physical baseline, will 
have trouble differentiating between a true diameter-
calibration solution, and other source structure which 
may mimic a simple diameter-calibration solution.

For instance, this “solution” for eta 
car with a “detected” proper 
calibration of .52, matched the 
VINCI data on the 8 and 24 meter 
baselines. But it would predict a 
very low visibility on the 66 meter 
baseline where a visibility close to 
.2 was measured!



Illustration of importance of accuracy of visibility points.

Actual VINCI visibilities on Mira (omi ceti), JD2205 – 2206
(Degraded version)

On the following few pages, is 
an illustration regarding what 
can be obtained (or lost!) 
depending on the accuracy of 
visibilities measured with an 
interferometer. Here I have 
taken REAL data points from 
VINCI on the star omi ceti 
(Mira). But with the help of a 
random number generator, I 
have added noise to the data 
as if it had been obtained from 
an instrument whose accuracy 
was MUCH poorer. The 
visibility curve you see 
superimposed on the data, 
corresponding to a 29 mas UD, 
appears as a “reasonable” fit. 
But ….



Illustration of usefulness of accuracy of visibility points.

Actual VINCI visibilities on Mira (omi ceti), JD2205 – 2206
(Better version – less noise)

Proper calibration = .60

After removing most 
of the added noise, we 
can see that a much 
better fit to this more 
accurate data set, is 
obtained by fitting to a 
proper calibration of 
.60 and a diameter of 
25.5 mas. But …..



Illustration of usefulness of accuracy of visibility points.

Actual VINCI visibilities on Mira (omi ceti), JD2205 – 2206
(Best version: actual visibilities obtained! No noise added)

Now this is fit 
with a 25.4 
mas UD model 
with a proper 
calibration of 
.60. The fit is 
not bad. But….

Though this fit is not bad, 
now looking at the data 
points with NO added 
noise, we can detect a 
more subtle departure 
from the model. The 
residuals we now see are 
NOT white noise …



Illustration of usefulness of accuracy of visibility points.

Actual VINCI visibilities on Mira (omi ceti), JD2205 – 2206
(Best version: actual visibilities obtained! No noise added)

Now we have reduced the residuals by a factor of 2, by going 
from a 2-parameter model to a 3-parameter model (as shown)

… which permits us to invoke a 3-parameter solution, in which we add 
a uniform disk plus a gaussian disk. Such a solution could not have 
been solved for using data points of much poorer accuracy!



Using the 2-parameter model (proper 
calibration of .60 and a varying diameter) 
here are the solved-for diameters as a 
function of Julian date. This plot was thrown 
in at the last moment because a 
disagreement had emerged at the 
conference over the direction of diameter 
variations over the star’s pulsation cycle. At 
K band according to this data (and 
according to additional near-IR and visible 
interferometric measurements) the diameter 
of the star is increasing during phase .2 - .45 
at which time the luminosity of the star 
(especially in the visible!) is falling .

The anomolous result at 10 microns, a 
decrease in the star’s diameter during these 
phases, might be explained by the 10 micron 
diameter being the result of circumstellar 
emission. When the luminosity of the star 
decreases, the radii at which various 
temperatures are found shrinks, and an 
“image” at that wavelength shows a 
decreasing size. Note that the 10 micron 
“diameters” of this star are almost twice as 
large as what is measured at near IR!



The End

We wish to acknowledge that data included herein is based 
on observations made with the European Southern 
Observatory telescopes obtained from the ESO/ST-ECF 
Science Archive Facility.


