Data reduction, calibration, and
stellar diameter results using VINCI

J. Meisner

These are (more or less) the original slides from my
presentation at Ringberg. | have added these little notes
for the benefit of the person reading this presentation
posted on the internet.

If you have feedback or questions, you may email me at:
meisner@strw.leidenuniv.nl




Note: The talk | am giving today is really two separate
talks. These are the themes addressed in the first part:

Coherent Integration Methods;
Measurement of visibility phase and effects of dispersion
Examples from VINCI and early results from MIDI.

|| And in the second part: ||
Cross-calibration of VINCI data and solving for diameters
Examples of results from VINCI

Jeff Meisner
Leiden Observatory



First | describe and briefly discuss interferometric data
reduction methods and their characteristics. This
includes:

Incoherent integration of fringe visibility
Coherent integration
Coherent integration with dispersion tracking

“Quasi-coherent” integration

In some cases | show implementations of these methods
both for delay-scanned interferometry and for spectrally-
dispersed interferometric detection.




Incoherent, coherent and
guasi-coherent integration

Incoherent integration
e No attempt to find the atmospheric OPD

* Treats signal as additional noise source
(perhaps with a particular spectral content)

* Result dependent on subtraction of assumed

noise level

_ Subtract noise
Raw Scan Fourier Transform  Sum PSD’s level & normalize
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Incoherent, coherent and guasi-coherent integration

Coherent integration
* Use the data (possibly from a different source)
itself to estimate the atmospheric OPD T

o Uses the estimate of T to correct the data
* |Integrate the corrected data to obtain an average

Raw
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Spectrally
dispersed
interferometric
frames

OPD

SCANNING  |erreecmsscereerennns

info

Derotat Integrate
—> erodate —» complex —» Result
raw data spectra
A
:  OPD
Estimate estimate Integrate
OPD Offset .................... derotation ........ >C0rl’ecti0n
(phase tracking) function factor
and its square

(Not required if OPD offset
is sufficiently random)

Note that coherent integration, as shown, is an unacceptable solution at most
wavelengths under normal conditions, because it does not account for the effects of
random dispersion fluctuations due to atmospheric water vapor inhomogeneities.

Coherent integration with a “dispersion tracker” as shown in the next slide solves
this problem.




Spectrally
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Similar to coherent integration, except:
« Uses the group delay estimator to shift the signal by a large amount

* Applies an additional phase shift as a proxy for the remaining required OPD
correction to ensure coherence

» Therefore applies a frequency-dependent time shift of Tg + @/v

instead of Tg + @/v,

e Very practical for data from medium-narrow bandwidth instruments.
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"Quasi-coherent” integration using spectrally dispersed detection.

Spectrally Phase shift
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The “quasi-coherent” method shown in these two slides is an
alternative solution to dispersion fluctuations. It is simpler (and
less model dependent) than a dispersion tracker which models
the index of refraction of water vapor in detail. Instead it treats
dispersion as being constant in phase across the entire band.
Each scan or frame is treated independently rather than using a
“tracking” algorithm which expects continuity in the dispersion
time series. However it is very adaquate in many situations,
such as with the medium-narrowband VINCI data | have

first order

Z > phase
estimator

(poor)




Disadvantage of quasi-coherent approach:

With wide bandwidth and substantial dispersion fluctuations, there
will be a reduction in the visibility spectrum toward the band edges

Dispersion |20 THz |24 THz 30 THz 36 THz 40 THz
RMS (15 um) | (12.5 pm) | (10 pm) (8.3 um) (7.5 pm)
1 radian |.95 .98 1.00 .98 95

2 radians | .80 .92 1.00 .92 .80

3 radians |.61 .83 1.00 .83 .61

This slide shows the reduction in visibility estimates at the edges of the N band
due to using the quasi-coherent method, as a function of different amounts of
random dispersion fluctuations. The next slide shows that in one particular case
where this was measured, the rms of atmospheric dispersion fluctuations (at 10
microns) was found to be 1.65 radians.
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2 Spectral power, dispersion fluctuations
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Calibrating out instrumental dispersion (including air
paths) for detection of true source phase

Method: Example:
Excess air path = D Observation of Sirius, JD2200.36409

UNCORRECTED PHASE:

AlIr dispersion = d@,/d|
: radians
Beamcombiner phase = (@ 005 \ P
Measured phase of visibility = @, ° e
Then the corrected phase for an 0.05
observation is found as: e
100 120 140 160 18
Pcorr = Praw - @ - (d@/d) D CORRECTED PHASE:
This is just showing 2" (and higher) order 0.05
dispersion, from a VINCI observation. The
guasi-coherent estimator has removed the ME B s

first order component of the phase function
(which will always be difficult/impossible to
detect on a source, due to water vapor 010

fluctuations). 120 Th 181

Optical frequency in Tera-Hertz



Measurement of 15t order dispersion (group-delay
offset phase) of astronomical sources (??)

First Order Dispersion:
* Inherently difficult to measure with a medium/narrow-band interferometer

« Automatically cancelled using quasi-coherent integration (but can be
estimated by averaging the phase residuals)

e Even with the brightest sources, only measurable with about .2 radian rms
using VINCI (25% bandwidth). Water vapor dispersion is major noise source

e Must first subtract air dispersion as a function of delay-line position:

S
Therefore we consider it unfeasible “ 1"+ Unwrapped group-delay offset phase.
to detect planets (from the ground) (2t ‘1, vS- unbalanced air path, JD 2195
by measuring a 15 order dispersion ! l 7= o

phase offset of ~.001 radian. | N

Aenever lenge e siiseis e B e S )

still be detected (after subtracting one night of VINCI observations, due to the

dispersion of dry air at 2.2 microns. The one h
way-off point is from Belelgeuse, because it |
was measured beyond the first null where its :

What happened in this observation true visibility phase is therefore (approx.) 180
. . degrees.
of a very bright M giant?

air and instrumental dispersion).




Measurement of stellar diameters by observing the
null in the coherently integrated visibility spectrum

The spatial frequency observed at optical frequency V is given by:

SF = VB/c

Therefore, if the visibility null at 1.22/D occurs within the passband
of the instrument, the coherently integrated visibility will go
through zero at that point!
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Comparison of alf sco diameters obtained from visibility
nulls in spectra, with broadband visibility points

Raw visibilities (uncalibrated), alf sco, from VINCI B=16m

diam= 34.45
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Measurement of stellar diameters by observing the
null in the coherently integrated visibility spectrum

More exampIeS' Observations past 15t null, visibility inverted:
Calibrated spectrum, alf her Calibrated spectrum, alf Ori JD2195.3415
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End of part |

Now we begin part 2 of my
presentation. That is on the
approach to calibration | am working
on to obtain stellar diameters from
the totallity of some 13,000 VINCI
observations (visibility points)
measured over the last 2 years.




First | mention some of the problems with the “standard approach” to calibrating
interferometric observations. The “standard approach” says that you find a
suitable “calibrator star” which is similar to your target star, but whose
diameter you (think you) know for sure. From a measurement of the raw
visibility of the calibrator star just before or after the target observation, you
deduce the intrumental calibration or “transfer function.”

1) You generally can't find a “perfect” calibrator which matches the target star in
position, color/type, magnitude, etc.

2) You CERTAINLY will not also find one which is the same color but is less
resolved (smaller angular diameter), unless it is much dimmer!

3) Ifthe calibrator is not smaller (less resolved) than the target, then the
sensitivity to errors on the assumed diameter of the calibrator is >= 1.

4) And that is a fatal flaw, because you don’'t have an independent means of
verifying the size of the calibrator. If you did, then you could have used that for
the target as well! That would only not be true if your target had different
characteristics than the calibrator, in which case 1) is violated. In other words,
the chain of calibration is circular at best.

My approach therefore is to destroy the distinction between “calibrators” and
targets, and treat all stars equally with no a priori diameters known. Every star
will be used to calibrate every other star observed on the same night. Of course
some stars have more stable diameters than others (pulsating stars etc.) but
we make no assumptions about the diameter of any one star.




Global calibration approach applied to VINCI visibilities

Allowing for stellar diameter solutions which include a
UD diameter, plus a proper calibration, which may
not =1.

Why allow for a proper calibration?

1) Many stars (not most) especially the further you go
Into the infrared, contain correlated flux from a
compact disk, but some uncorrelated flux from
circumstellar emission.

2) A specific instrument like VINCI may have a transfer
function which is not flat, but somewhat wavelength
dependent. Thus stars with different spectra, may
show slightly different transfer functions (at the level
of a few percent).



Model for instrument calibration (transfer function) and
proper calibration.

Measured visibility = True visibility of star alone * net calibration
Veaw = Vstar*Cner

Net calibration = Nightly calibration * proper calibration
Cuer=C() *Cop

Proper calibration = “type calibration” * individual calibration
Cp = Crvpe * Corar

Type calibration is specific to a type of star due to its spectrum
Interacting with the instrument.

Individual calibration is due to uncorrelated flux detected photometrically
but not contributing to the visibility at any baseline within a
reasonable range (highly overresolved).

Measured visibility:
Vieaw = C(t) * Crype * Vsrar * (Correlatable flux) / (Total flux)

Individual calibration C <,s = (Correlatable flux) / (Total flux)
= extrapolated visibility at zero baseline



Detection of proper calibration.

Here is an example (which we will come back to!) of a star
observed by VINCI with a very definite proper calibration
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We will assume that most
stars do not have a
proper cal other than
unity. But in the cases
that we do detect one,
this will affect our
determination of the
star’s true diameter!

Note that MIDI will have to
deal with this much more
than instruments
operating at shorter
wavelengths!

So here are visibility points from

by the “normal” nightly calibration.
b They do not lie on a “normal”
visibility curve, but rather one
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What is plotted on the next page, are the contours of the likelihood function
for the joint solution of net calibration (vertical) and stellar UD diameter
(horizontal). With only one visibilty point (or visibility points near a single
spatial frequency) as in the upper left, we have a remaining degree of
freedom given by the crescent, from a lower calibration with a small
diameter, up to a calibration of 1.0 with a large diameter. The true solution
must be somewhere in between. By including more measured visibilities at
a range of spatial frequencies, (upper right) the solution is narrowed down
somewhat, but still supplies no good estimate of the diameter. With further
spatial frequency coverage (lower left) a better estimate of the diameter
(and calibration) emerges.

Finally with a superior data set (lower right), we can simultaneously solve
for the diameter and net calibration with a reasonable error level. Even in
this case, there is some remaining uncertainty in one direction (lower left to
upper right). Thus an additional independent measure of the calibration for
that night (i.e. from other stars also observed) which is also applicable to
this star, can be used to constrain the vertical position of the solution on
this locus, and force a finer determination of the stellar diameter.

The contours that are plotted are for the 1 and 2 sigma boundaries of the
likelihood function.




We can solve for the likelihood of a joint diameter — calibration
solution from a set of observations spanning some range of
baselines. If we can be sure that the star does not have a proper
cal outside of 1, this supplies the transfer function for that night...




Global calibration approach applied to VINCI visiblilities
obtained through quasi-coherent integration.

Model: Table of stars :
Diameter >
Proper calibration >
Table of Peculiarities etc. <
Observations ;‘ ,

. / on’t use for
Which star calibration?
Which night — T

able of
Baseline ete.n | . . .
Raw visibility Calibrations
for each night
1 .
Which >

Observation




Model (continued)

Table of stars :

» Diameter D,

Diameter
Proper calibration » Propercal Cg.
Peculiarities etc.
N
Don’t use for
calibration?
Table of
Calibrations > Nightly cal  Cp
for each night

» Baseline |B]

» Measured vis V,_,

Resolvability R = D/(\B)
ReSIduaI = Vraw_ (2‘J1(-’-[R)/T[R) Cnite Cstar



Run for each
Observation

!

Table of
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Which star
Which night
Baseline etc.
Raw visibility
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» Proper calibration
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Table of stars :
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Table of
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2 (r/e)?

Compute
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Minimize
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Me
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Global calibration and diameter solution: Method



In the previous slides we have seen the model which is applied and method
for globally solving for nightly calibrations, stellar diameters for each target
observed, and (in some cases) proper calibrations for those stars which
are distinct from unity.

Presently | am in a very early stage of performing this computation. My
current algorithm (which has lots of room for improvement!) however does
approach a solution after 30-40 iterations. This is illustrated by the graphs
on the next page, which show the algorithm converging toward the
diameter of several stars over the course of 40 iterations. The diameter
estimate (assuming no proper calibration) are given by the magenta plots.
The white plots and squares, where shown, are solutions for the diameter
in conjunction with a non-unity proper calibration (not shown) which may
or may not be real.

On the following page, is a plot of the transfer function (nightly calibration)
determined also as part of this computation, as a function of time (Julian
day - 2450000) for two periods in the operation of VINCI. This reflects
hardware changes in the beam combiner (and other optics) plus noise.
Wide horizontal sections are simply due to no data having been taken over
that period and the adoption of the calibration for the nearest night on
which a solution was obtained. Vertical blue lines delineate the positions of
known hardware adjustments which are  expected to alter the transfer
function (obviously not all such hardware adjustments were known by this
database!).




Convergence of diameter solutions over many iteration
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Early (unofficial!) results from global calibration solution on 8, 16,

gameri  9.18 +/- .07 mas  gnd 24 meter baseline data. Only diameters > 9 mas shown.
119tau 9.68 +/- .06 mas
rpeg 9.79 +/- .19 mas Results marked with an <" in pink are known to be mistaken for
chiphe  9.84 +/-2.06 mas various reasons which the current algorithm cannot handle. All of
akhya 9.91 +/- .15 mas the rms error bars shown are overly optimistic due to a limitation in
lamagr 9.95+/- .45 mas e code. Please wait for the official results to be released in the
62sgr 10.14 +/- .13 mas , . i
alfhya 1015 +/- 14 mas _not-d_|§tan_t future aftgr further progress in the algorithm and better
tcet 10.28 +/- 18 mas identification of bad input data points. ©
v744cen  10.29 +/- .41 mas

uori 16.70 +/- .29 mas
19psc 10.51 +/- .20 mas
sori 11.05 +/- 0. Mas

rlep 18.97 +/- .19 mas

-- Proper cal = .761 with D = 13.8 mas
tlep 11.08 +/- .06 mas vhya 19.05 +/- .07 mas
wori 11.08 +/- .16 mas
siglib 11.40 +/- .14 mas alftau 20.33 +/- .05 mas
etagem 11.91 +/- .42 mas gamcrua 24.68 +/- .12 mas
etasgr 12.27 +/- .40 mas rleo 25.77 +/- .24 mas
rscl 12.62 +/- .14 mas betgru 25.80 +/- .04 mas
-- Proper cal = .947 with D = 11.1 mas -- Proper cal = .924 with D = 25.2 mas

2cen 13.53 +/- .16 mas
rxlep 13.56 +/- .07 mas
rcnc 13.86 +/- .09 mas
alfcet 14.24 +/- 1.24 mas
13gem 14.29 +/- .11 mas alfsco 34.52 +/- 0. Mas

nu.pav

14.58 +/- .17 mas



On the next page, we look at the likelihood contours (1, 2, and 3-sigma
countours are drawn) for two stars with a definite non-unity proper
calibration.

On the following page, is an example of a very stable and well observed
star (used as a “calibrator) tet cen, with 575 observations on the 66 meter
baseline. Almost all of those datapoints lie right on the theoretical visibility
curve (purple) for a 5.16 mas UD object, with the positions of the outliers
being conspicuous (and clearly non-gaussian distributed!). A plot of
“apparent diameter” versus Julian date (used to identify pulsating
diameters) shows a steady curve (except for a few days where bad
datapoints dominated the solution).

The 2 following pages likewise have plots for a star’s apparent diameter
versus date which are NOT constant but shows a consistent change over
time. The visibility points, taken together, do NOT lie on a single curve
(different symbols correspond to observations on different nights).




Miscellaneous results found in global solutions
Detected proper cals from various stars...

sslep diam= 1.8B33

- 200 220 2440 2EQ

rscl diam= 10.94




Miscellaneous results found in global solutions

Good fit from a well-behaved star that was
observed many times (con3|dered a “callbrator”

momek E.—-.— Foaane

3 These are all
: "from tet cen on
1 the 66 meter
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100 L20) 140 160 18Lbase e"




This star’'s diameter is doing something funny....
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Fit found using diameter diam= 2.735
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+IDLG

Another funny diameter...
M|

+IDL5
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A visibility fit that doesn'’t ...

alf eri (Achernar)

SIDL5 _ O] x|
Fit found using diameter diam= 3.091
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Only plotting visibility
-1 against the
MAGNITUDE of spatial
frequency in the UV
| plane, may sometimes
| vield surprising (=
unbelievable) results if
position angle is not
-{ taken into account, as
we see in this
example....

1 | 1 L | 1 1 | 1
240 260 280

L | 1
220

200

L | 1 L
300 320




Alf erl ..... on closer examination:
On the 66 meter baseline:

On the 140 meter baseline:
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As we can see, alf eri has a strong position angle dependence on diameter.
My preliminary diameters versus position angle (0O to 180 degrees) are
plotted on the previous page. In discussion during the conference, a
mistake in interpretation found in a recently published paper was noted.
The apparent UD diameter measured from interferometry of an ellipse at
various position angles should be of the form:

D(@) = Dy + a sin(2(@- @y))

Where the major and minor axes of the ellipse are D ,+aand D, - a.
However when such radii are plotted in polar coordinates vs. position angle

@, you do NOT get the figure of an ellipse (as the published paper attempted
to fit) but rather a reciprocal conjugate ellipse  which only matches the
ellipse at @=@,and at @ =@, + 90°. The difference between these two figures
is shown on the following page.

One can imagine a sine wave of 1 complete cycle superimposed on the
graph of the previous page to fit the measured data points. With refined
diameters obtained from running an improved version of the global
calibration algorithm, we hope/expect to obtain just such a determination
of the elliptical shape of this rapidly rotating star.




Comparison of elliptical shape of star, and reciprocal
elliptical shape of the diameter detected with a
baseline at the corresponding position angle (dotted).

VDL 1







Baseline diversity 1

Many measurements taken at approximately the
same projected baseline may be good for beating
down the diameter errors due to measurement
noise. But they are useless for estimating the
proper calibration or verifying a model in general!
The sensitivity of a set of observations to proper
calibration is proportional to R?_ ., — R?.., where
R Is the resolvability defined as D/(A/B) where D
IS the diameter of a star.

Therefore, unless we are able to rule out a proper
calibration a priori, it is wise to observe a source
at widely separated points on a single night, not
just the “best time” when it is high in the sky.



Baseline diversity 2

Even many measurements taken with the aid of earth-
rotation synthesis on a single physical baseline, will
have trouble differentiating between a true diameter-
calibration solution, and other source structure which
may mimic a simple diameter-calibration solution.

For instance, this “solution” for eta
car with a “detected” proper
calibration of .52, matched the
VINCI data on the 8 and 24 meter
baselines. But it would predict a
very low visibility on the 66 meter
baseline where a visiblility close to
.2 was measured!
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lllustration of importance of accuracy of visibility points.

Actual VINCI visibilities on Mira (omi ceti), JD2205 — 2206
(Degraded version)
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On the following few pages, is
an illustration regarding what
can be obtained (or lost!)
depending on the accuracy of
visibilities measured with an
interferometer. Here | have
taken REAL data points from
VINCI on the star omi ceti
(Mira). But with the help of a
random number generator, |
have added noise to the data
as if it had been obtained from
an instrument whose accuracy

~0.2| was MUCH poorer. The

visibility curve you see
superimposed on the data,
corresponding to a 29 mas UD,
appears as a “reasonable” fit.
But ....




Actual VINCI visibilities on Mira (omi ceti), JD2205 — 2206
(Better version — less noise)
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proper calibration of Radial position (mas)
60 and a diameter of Proper calibration = .60
25.5 mas. But .....




Actual VINCI visibilities on Mira (omi ceti), JD2205 — 2206
(Best version: actual visibilities obtained! No noise added)
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Now this is fit
with a 25.4
mas UD model
with a proper
calibration of
.60. The fitis
not bad. But....

Though this fit is not bad,
now looking at the data
points with NO added
noise, we can detect a
more subtle departure
from the model. The
residuals we now see are
NOT white noise ...




Visibility

Actual VINCI visibilities on Mira (omi ceti), JD2205 — 2206
(Best version: actual visibilities obtained! No noise added)

0.35 | ... which permits us to invoke a 3-parameter solution, in which we add
- a uniform disk plus a gaussian disk. Such a solution could not have
- been solved for using data points of much poorer accuracy!
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Now we have reduced the residuals by a factor of 2, by going
from a 2-parameter model to a 3-parameter model (as shown)



UD Diameter (mas)

36 |

34

32

30 |

28

26

_Diameter of o Ceti vs. phase
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Using the 2-parameter model (proper
calibration of .60 and a varying diameter)
here are the solved-for diameters as a
function of Julian date. This plot was thrown
in at the last moment because a
disagreement had emerged at the
conference over the direction of diameter
variations over the star’s pulsation cycle. At
K band according to this data (and
according to additional near-IR and visible
interferometric measurements) the diameter
of the star is increasing during phase .2 - .45
at which time the luminosity of the star
(especially in the visible!) is  falling .

The anomolous result at 10 microns, a
decrease in the star's diameter during these
phases, might be explained by the 10 micron
diameter being the result of circumstellar
emission. When the luminosity of the star
decreases, the radii at which various
temperatures are found shrinks, and an
“image” at that wavelength shows a
decreasing size. Note that the 10 micron
“diameters” of this star are almost twice as
large as what is measured at near IR!




The End
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