MIDI performance enhancement with FINITO and PRIMA

Ringberg meeting - September 01-05, 2003

F. Delplancke, S. Menardi
L. Andolfato, F. Derie, Ph. Duhoux, A. Glindemann, R. Karban, S. Lévéque, F. Paresce,
A. Wallander, R. Wilhelm, K. Wirenstrand
MIDI needs

- Exposure time limited by the background (~800ms)
- If no fringe tracking: need to find the 10\(\mu\)m fringes in each frame =>
 - Limiting magnitude \(N = 5\) (8) with the ATs (UTs)
- If external fringe detector: coherent frame addition in post-processing =>
 - Limiting magnitude \(N = 8\) (11) with the ATs (UTs)
- If dual-feed and phase-referencing:
 - Aperture reconstructed imaging
 - Differential phase measurements
 - Access to objects with no near-IR counter-part
- On-axis fringe tracker
- H-band
- 3-way beam combiner
- LAD and TAD compensation
- No recording of delay
- Installed in Paranal
- Under commissioning
- OPD time scanning
FINITO (2)

- Phase Delay = OPD mod δ
 - High frequency (up to 2kHz)
 - Low noise
 - Small range (Δ)
- Group Delay or Coherence = “white” fringe position (LAD)
 - Low frequency (up to 50Hz)
 - Higher noise
 - Large range (10 Δ) for fringe jump detection & correction
- Limiting magnitude: H=9 to 11 (UT)
PRIMA (1)

- VLTI *Dual-Feed* facility => off-axis fringe tracking
- 3 aims:
 - faint object observation (by stabilising the fringes)
 - dual-feed / dual-field : 2’ total FoV (2” FoV for each field)
 - K=13 (guide star) - K=20 (object), N=11 on UTs
 - K=10 (guide star) - K=16 (object), N=8 on ATs
 - phase-referenced imaging
 - accurate (better than 1%) measurement of the visibility modulus and phase
 - observation on many baselines
 - synthetic aperture reconstruction at 10 mas resolution (10 μm)
 - micro-arcsecond differential astrometry
 - very accurate extraction of the astrometric phase:
 - 1st phase ~ 2006 : 100 μas
 - 2nd phase ~ 2008 : 10 μas
 - 2 perpendicular baselines
 - 2 phase-reference stars (2D-movement of photocenter)
4 sub-systems:
- Star Separators (2 on ATs during phase A)
- Differential Delay Lines (4) (not in phase A unless…)
- Fringe Sensor Unit(s) (2)
- PRIMA Metrology (1)

For phase B & C:
- 2 Star Separators on UTs
- 4 Differential Delay Lines
- upgrade Metrology

\[\text{OPD} = \text{S.B} + f + \text{OPD}_{\text{turb}} + \text{OPD}_{\text{int}} \]
PRICS: Control S/W

14 control loops working in parallel
PRIMA performance

- **Fringe tracking in K-band:**
 - **Phase delay:**
 - Measurement frequency up to 8 kHz (closed loop residuals 70nm rms)
 - OPD measurement noise on the ATs =
 - 70 nm rms at K=7 (0.25 ms)
 - 140 nm rms at K=11 (2 ms)
 - Maximum allowable closed loop residuals ~ 370 nm rms (fringe jumps)
 - **Group delay:**
 - Measurement frequency up to 200 Hz
 - GD measurement noise on the ATs =
 - 900 nm rms at K=7 (5 ms)
 - 1900 nm rms at K=13 (200 ms)
 - 2300 nm rms at K=16 (2 s)

- **Incremental Metrology at 1.3 µm:**
 - Resolution = 1nm
 - Accuracy on 30 min = 5nm <=> 0.05% on phase in N-band
 - Measurement frequency = 200 kHz

- OPD, GD, metrology are stored at max 8 kHz
PRIMA Performances

FSU B – Limiting Magnitude

AT case

Limit OPD where probability of fringe loss is too high

OPD residuals on axis for the optimum integration time [microns rms]

Star K magnitude

6 7 8 9 10 11 12 13 14 15

10^0 10^1 10^2 10^3
PRIMA Performances (2)

Instrument integration time - anisoplanatic differential OPD

AT case

AT case, B=210m, 3 different off-axis angles

Anisoplanatic differential OPD jitter during the exposure [um rms]

Integration time on the off-axis object [seconds]
Sky coverage (1)
Sky coverage (2)

Limiting magnitude = 13 - K-band - radius = 60 arcsec

galactic inverse latitude (radius, in degrees)
MIDI Performances with Fringe Tracking

- **With FINITO**
 - Available in 2004
 - H-band
 - Fringe stabilisation at 100nm (370) rms on-axis (closed loop)
 - Needs star brighter than H=6 (8) on ATs
 - Blind adding of stabilised frames in post-processing
 - Fringe visibility loss =
 - 0.2% (0.5%) on-axis
 - Increase of MIDI limiting magnitude by 3 magnitudes

- **With the FSU**
 - Available mid-2005
 - K-band
 - Fringe stabilisation at 70nm (370) rms on-axis or off-axis
 - Needs star brighter than K=8 (12.5) on ATs
 - Coherent adding of frames in post-processing (slight improvement)
 - Fringe visibility loss =
 - 0.1% on-axis
 - + 3% at 10"
 - + 80% at 60"
 - Increase of MIDI limiting magnitude by 3 magnitudes + of near-IR counter-part
Imaging dynamic range D is given by:

$$D \sim \sqrt{M \cdot \sqrt{N_{\text{baselines}}}} / (\sqrt{I} + \sqrt{N})$$

- Where
 - $M =$ number of observations
 - $N_{\text{baselines}} =$ nb of independent baselines
 - $\sqrt{I} =$ error on phase
 - $\sqrt{V} =$ error on visibility modulus

Very important:
- Increase the number of independent baselines
- Well distribute the baselines (not especially uniform)
- Keep a very good accuracy on the phase (1% error on visibility modulus ≤ 0.01 rad error on phase)
Potential risks & limitations

FINITO
- Use not possible on siderostats (photometric variations too high)
- Current absence of an IR tip-tilt tracker in the lab (IRIS)
- Larger detector noise than expected (=> limiting magnitude)
- To be commissioned soon => then the performances will be known

PRIMA & FSU
- Currently only for the ATs in PRIMA mode (on-axis with the UTs is allowed)
- IRIS should be installed and running by 2005
- Detector noise at longer T_{int}
- Group Delay bias long term stability is critical for phase-referencing (large number of baselines = long observation programme) => FSU calibration is essential
- Still to be built and installed but thorough modeling

The accurate knowledge of the atmospheric dispersion (LAD-TAD) will probably be essential to reach the ultimate accuracy.