
LINC-NIRVANA

–
Generic Infrared Software –

ROE Pattern Constructor

Doc. No. LN-MPIA-MAN-ICS-008

Short Title GEIRS Pattern Constructor

Issue 6.097

Date April 7, 2022

Richard J. Mathar April 7, 2022Prepared .
Name Date Signature

Peter BizenbergerApproved .
Name Date Signature

Martin KürsterReleased .
Name Date Signature

ii LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

Change Record

Issue Date Sect. Reason/Initiation/Documents/Remarks

0.041 2013-02-11 all created
0.119 2013-04-29 Version submitted to the ADP
6.097 April 7, 2022 all GEIRS SVN version trunk-r799M-65

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 iii

Contents

1 OVERVIEW 1
1.1 Design . 1
1.2 Interfaces . 1
1.3 Acronyms . 1
1.4 References . 2

2 FILE NAMES 3
2.1 Start of Computation . 4
2.2 Conventions . 5
2.3 Cycle Type Conventions . 5
2.4 Logging . 7

3 File Syntax 7
3.1 Command line expansion . 7

3.1.1 White Space and Old-fashioned Comments 7
3.1.2 Optional Repeat Count . 8
3.1.3 Optional Embedded Verbose Comment . 8
3.1.4 Optional Embedded Timing Evaluation . 8
3.1.5 Further Comment Removal . 8
3.1.6 Do Loop Expansion . 9

3.2 Expressions . 9
3.2.1 State Variables . 10
3.2.2 Automatic Variables . 14
3.2.3 Constants . 14
3.2.4 Operators . 14
3.2.5 Send Expressions . 16
3.2.6 Include Expression . 16

4 TIMING CALCULATIONS 18
4.1 Aim . 18
4.2 Timers . 19
4.3 Subcommands . 19

4.3.1 set . 19
4.3.2 define . 19
4.3.3 state . 19
4.3.4 add . 19
4.3.5 on . 20
4.3.6 off . 20
4.3.7 end . 20

4.4 Functions . 20
4.4.1 range . 20
4.4.2 timeof . 20

5 DETECTOR WINDOWS 20
5.1 Principles of Operation . 20
5.2 Example . 21

iv LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

6 PATTERN SCRIPTING 26
6.1 Auto-increment Layer-2 Loops . 26
6.2 Hawaii 2 (i.e., LN) . 26

6.2.1 RAM Layer Command Format . 26
6.2.2 Initial Pattern . 27
6.2.3 Disconnected Patterns . 37
6.2.4 ADC pattern . 41
6.2.5 Idle ReadWoConv . 43
6.2.6 Idle Rlr . 44

6.3 Hawaii-2RG, Hawaii-4RG . 45
6.3.1 RAM Layer . 45
6.3.2 Initial Pattern . 52
6.3.3 ADC pattern . 56
6.3.4 Idle ReadWoConv . 60

6.4 Pattern Examples . 61
6.4.1 LIR . 62
6.4.2 SRR . 62
6.4.3 O2DCR . 63
6.4.4 FECR . 65

7 TROUBLE-SHOOTING 68
7.1 Connectivity . 68

7.1.1 Linux Driver . 68
7.1.2 Workstation to ROE . 68
7.1.3 Data Generator (with GEIRS) . 70

List of Figures

1 File Inclusions . 17
2 Timing File Inclusions . 18
3 Subwindow example (full window) . 22
4 Subwindow example (detector windows) . 24
5 Subwindow example (detector windows) . 25
6 LIR mode (fine scale) . 62
7 LIR mode (coarse scale) . 63
8 SRR mode (fine scale) . 64
9 SRR mode (coarse scale) . 65
10 O2DCR mode (fine scale) . 65
11 FECR mode (fine scale) . 67
12 Image with open ADC inputs . 69
13 Test image by the ROE FPGA simulator . 70
14 Hawaii-2 Test image by the ROE data generator . 71
15 Hawaii-2RG Test image by the ROE data generator 72

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 1

1 OVERVIEW

1.1 Design

The Generic Infrared Software (GEIRS) is a software layer written in C++, ANSI-C and Java,
which

• assembles parameter lists and commands received from its own graphical interface or other
supervisor software,

• translates these into the firmware language (‘patterns’) of the readout electronics (ROE)

• initializes the readout cycles

• and accumulates the frames received from the ADC’s of the electronics as FITS files on the
local disks or X11 images displayed in the engineering GUI.

This document summarizes the functionality within GEIRS that scans a textual description of
readout patterns and emits the codes (lines) that are converted by the firmware to the sequence of
clocks. We coin the phrase pattern constructor to avoid a name clash with pattern generator, which
is the bottom level (the pattern RAM program) of the firmware actually running the detector pins.

A design choice of the pattern construction is to split functionality into the scanner and the textual
description, assuming that the scanner is a kind of virtual representation of the FPGA’s capabilities
and updated infrequently and co-jointly with that part of the firmware, whereas the patterns are
independently editable by the electronic engineers investigating the characteristics and performance
of the individual chips.

That lead to a simple type of programming (interpreter) language for patterns, the grammar of
which we describe in this manual. (The noun patterns is perhaps misleading here, as the framework
is the current interface to Version 3.1 of MPIA’s readout electronics for Hawaii-2, Hawaii-2RG and
Hawaii-4RG infrared detectors with two FPGA’s, not any generic driver for a state machinery of
arbitrary detector chips.)

1.2 Interfaces

The document complements the documents on the camera control software [1], ROE [2], readout
patterns [3], and RoCon [4]. To obtain a full list of the commands understood by the FPGA, please
contact the representative electronic engineer of the MPIA.

1.3 Acronyms

ADC analog-to-digit conversion

ADU analog-to-digital unit

AIP Leibniz-Institut für Astrophysik Potsdam https://www.aip.de

ANSI American National Standards Institute http://www.ansi.org

ASCII American Standard Code for Information Interchange https://en.wikipedia.org/

wiki/American_Standard_Code_for_Information_Interchange

https://www.aip.de
http://www.ansi.org
https://en.wikipedia.org/wiki/American_Standard_Code_for_Information_Interchange
https://en.wikipedia.org/wiki/American_Standard_Code_for_Information_Interchange

2 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

CARMENES Calar Alto High-Resolution Search for M Dwarfs with Exoearths with
Near-infrared and Optical Echelle Spectrographs carmenes.caha.es

DMA Direct Memory Access

FITS Flexible Image Transport System http://fits.gsfc.nasa.gov

FPGA Field programmable gate array

GEIRS Generic Infrared Software

GUI Graphical User Interface

IP Internet Protocol

LINC LBT Interferometric Camera http://www.mpia-hd.mpg.de/LINC/

LINC-NIRVANA LBT Interferometric Camera and Near-Infrared / Visible Adaptive
Interferometer for Astronomy

LN liquid nitrogen

LN LINC-NIRVANA

LUCI LBT NIR spectroscopic Utility with Camera and Integral-Field Unit for
Extragalactic Research http://www.mpe.mpg.de/ir/lucifer

MPIA Max-Planck Institut für Astronomie, Heidelberg https://www.mpia.de

MPIfR Max-Planck Institut für Radioastronomie, Bonn http://www.mpifr-bonn.mpg.de

NIRVANA Near-Infrared / Visible Adaptive Interferometer for Astronomy

NTE NOT Transit Explorer https://nte.nbi.ku.dk/

PANIC Panoramic Near-Infrared Camera https://panic.iaa.es

PCIe Peripheral Component Interconnect Express
https://en.wikipedia.org/wiki/PCI_Express

PLX PLX Technology,
http://www.broadcom.com/products/pcie-switches-bridges/software-dev-kit

RAM Random Access Memory

RoCon Readout Controller

ROE Readout Electronics

SVN Subversion http://subversion.apache.org

1.4 References

References

[1] C. Storz, LINC-NIRVANA - Infrared Camera Control Software, lN-MPIA-FDR-ICS-005
(6 Jun. 2005).

[2] B. Grimm, U. Mall, LINC-NIRVANA - Readout Electronics for the Science Detector, LN-
MPIA-FDR-ELEC-001 (21 Jan. 2005).

[3] V. Naranjo, LINC-NIRVANA - IR Detector Control Pattern, LN-MPIA-DES-ELEC-007
(5 Apr. 2008).

carmenes.caha.es
http://fits.gsfc.nasa.gov
http://www.mpia-hd.mpg.de/LINC/
http://www.mpe.mpg.de/ir/lucifer
https://www.mpia.de
http://www.mpifr-bonn.mpg.de
https://nte.nbi.ku.dk/
https://panic.iaa.es
https://en.wikipedia.org/wiki/PCI_Express
http://www.broadcom.com/products/pcie-switches-bridges/software-dev-kit
http://subversion.apache.org

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 3

[4] J. R. Ramos, ROCON REad-out Controller Board (Nov. 2009).
URL webdavs://sk1/geirs/roe3MPIA/Roconv3-Draft.pdf

[5] W. Gaessler, LINC-NIRVANA - Software Style Guide, LN-MPIA-MAN-ICS-001 (02 Aug.
2004).

[6] U. Mall, C. Storz, CARMENES - NIR channel – Readout electronics and software, FDR-
04C2A. E: in section 2.6.2 the factor 0.5 of the voltage divider is wrong. The actual value for
the CARMENES racks is 0.699. (30 Jan. 2013).

[7] C. Storz, V. Naranjo, U. Mall, J. R. Ramos, P. Bizenberger, J. Panduro, Standard modes
of MPIA’s current H2/H2RG-readout systems, in: 2012 Astronomial Telescopes and In-
strumentation, Vol. 8453 of Proc. SPIE, Int. Soc. Optical Engineering, 2012, p. 2E. doi:

10.1117/12.927170.

[8] R. J. Mathar, LINC-NIRVANA - Generic Infrared Software, Graphical User Manual, LN-
MPIA-MAN-ICS-007 (2 Oct. 2018).
URL https://www.mpia.de/~mathar/public/LN-MPIA-MAN-ICS-007.pdf

[9] U. Mall, LINC-NIRVANA - ROE Schematics, lN-MPIA-TN-ELEC-013 (30 Jan. 2013).
URL https://svn.mpia.de/trac/gulli/ln/archive/Archive/LN%20Documentation/

Technical%20Notes%20(TN)/Electronics%2C%20including%20detectors%20(ELEC)

/TN-ELEC-013-ROESchematics/LN-MPIA-TN-ELEC-013.pdf

[10] U. Mall, IR ReadOut Electronics Technical Manual, 1st Edition (Oct. 2014).

[11] Teledyne, Hawaii-2RG Technical Manual (25 Sep. 2007).

[12] J. R. Ramos, ROCON v3 Upgrade von ROCON v3.0 auf ROCON v3.1 (6 Nov. 2014).

2 FILE NAMES

The main body of the GEIRS, including the text file parser and communicator with the RoCon, is
in the SVN repository https://svn.mpia.de/gulli/geirs/src. The patterns are in the subdirec-
tory pttrns, one per instrument, for example https://svn.mpia.de/gulli/geirs/src/trunk/

pttrns/Luci for the two LUCI’s. In consequence,

• adding new features to the parser or any kind of extensions to the syntax described below,
and occasionally also modifications of constants requires changes in the C-source code of the
current branch plus recompilation;

• adding new patterns, modifications on the shuffling, insertion/changes of patterns and their
orders and so on can usually be done on the spot by editing the textual representation in
the pttrns subdirectory of the layout and restarting GEIRS. These files are interpreted, not
compiled.

Pattern file names usually do not have suffices, so they are for example init pat H2RG and not
init pat H2RG.luci1. The benefit is

• The output of the directory for example with ls is much easier to read

webdavs://sk1/geirs/roe3MPIA/Roconv3-Draft.pdf
webdavs://sk1/geirs/roe3MPIA/Roconv3-Draft.pdf
http://dx.doi.org/10.1117/12.927170
http://dx.doi.org/10.1117/12.927170
https://www.mpia.de/~mathar/public/LN-MPIA-MAN-ICS-007.pdf
https://www.mpia.de/~mathar/public/LN-MPIA-MAN-ICS-007.pdf
https://svn.mpia.de/trac/gulli/ln/archive/Archive/LN%20Documentation/Technical%20Notes%20(TN)/Electronics%2C%20including%20detectors%20(ELEC)/TN-ELEC-013-ROESchematics/LN-MPIA-TN-ELEC-013.pdf
https://svn.mpia.de/trac/gulli/ln/archive/Archive/LN%20Documentation/Technical%20Notes%20(TN)/Electronics%2C%20including%20detectors%20(ELEC)/TN-ELEC-013-ROESchematics/LN-MPIA-TN-ELEC-013.pdf
https://svn.mpia.de/trac/gulli/ln/archive/Archive/LN%20Documentation/Technical%20Notes%20(TN)/Electronics%2C%20including%20detectors%20(ELEC)/TN-ELEC-013-ROESchematics/LN-MPIA-TN-ELEC-013.pdf
https://svn.mpia.de/trac/gulli/ln/archive/Archive/LN%20Documentation/Technical%20Notes%20(TN)/Electronics%2C%20including%20detectors%20(ELEC)/TN-ELEC-013-ROESchematics/LN-MPIA-TN-ELEC-013.pdf
https://svn.mpia.de/gulli/geirs/src
https://svn.mpia.de/gulli/geirs/src/trunk/pttrns/Luci
https://svn.mpia.de/gulli/geirs/src/trunk/pttrns/Luci

4 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

• Cross-linking of patterns that are shared by instruments of the same detector type is easy.
One does note need separate files like init pat H2RG.luci1 and init pat H2RG.luci2 but
just one file init pat H2RG, for example.

To mechanism in the GEIRS parser to look for a file is: first search for a file with the instrument
suffix, and if that file does not exist search for the file without the instrument suffix. That means
for feature tests while testing patterns, the developper can edit/modify a pattern file that has the
suffix and which will be read with priority by the pattern constructor, while the pattern variant of
some stable (or common) version without the suffix remains in the same directory.

Permanent changes anyway require uploading the modifications to SVN. Beware of symbolic links,
which share patterns between instruments.

If the name of an instrument is changed—for example from Lucifer to Luci1 and from Luci to
Luci2—, one would

1. add an alias to the enumeration, the new name and the new extension in camtypes.h,

2. create a new subdirectory in pttrns reflecting the new name, copy all files of the old directory
to the new one, and switch suffixes in the new pttrns/instru with a script similar to

#!/bin/bash

Move all files with suffix .lucifer to files with suffix .luci1

for fil in *.lucifer ; do

targ=${fil%".lucifer"}.luci1 ;

mv $fil $targ

done

3. introduce the new CAMERA variable in the scripts/GENERIC and optionally add a new link.

Some overview of which exposure times have been calculated is kept in $CAMHOME/log/itime*.
Detailed accounts of how these intervals accumulate appear in $CAMTMP/timing*.log. Software
style and file layout are completely unaware of any LN-specific documented guidelines [5].

2.1 Start of Computation

The entry point in the file system where the construction of the pattern starts is roe init chch.extension,
where

• ch denotes the one or two digits of the number of ADC channels in use. For multi-chip cameras
like AIP or CARMENES, this is the number of channels dedicated to each individual chip,

• and where .extension is optional, .nirvana in our case.

The scanner steers the selection of parameters that build tables in the FPGA program by computing
file names from variables that are known to the main parser. The selection of read-out modes and
window modes, for example, triggers inclusion of a subset of files in the pttrns directory with the
mechanism detailed later and illustrated in Figure 1. Conceptionally, all supported readout modes
are implied by the files in one SVN revision.

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 5

The effect of scanning the pattern files is immediate. In particular each send command (Section
3.2.5) visited in a file interacts with the real hardware of the ROE; if GEIRS had been started
with the ROE declared in an offline state, a form of software simulation within GEIRS takes over.
This software simulator is essentially the only method for a dry-run syntax check of the pattern
and timing files; it will detect problems with ill-defined variables, missing parentheses and other
typographic errors, but it also is absolutely optimistic assuming that all commands to the ROE
that are constructed would be returning no errors from the firmware.

The scanner interprets the pattern files line-by-line. So

• the contents of files that are not included (by the mechanism of chapter 3.2.6) does not matter.

• errors in commands sent to the ROE may leave the (partially initialized) ROE in some fuzzy
state.

For that reason, the communication with the firmware may use a relaxed set of timeouts (see
Section 3.2.5). With that concept of early setup, the read command will start an exposure with
minimum time overhead, because this sends a kind of break-interrupt code with a pointer to the
new pattern program to the (micro-processor of the) ROE, only a few tens of bytes via the internet.
The delay of this exposure still depends on which type of idle-(break)-mode is currently executed
by the firmware.

2.2 Conventions

The files named biases with commands in the 900 range contain voltage biases and register settings
for the infrared chip [4, 6].

Files starting roe* are top level commands issued by GEIRS at certain strategic times (power-up,
shutdown, re-init,. . .).

Files starting lay* and pat* emit lines for the up to five intermediate layers of the FPGA program
and the lowest (RAM) layer. The name pat indicates these are the definitions of the actual patterns
beyond the administrative other layers.

The table* files are tables that cross through one or more layers.

incl* are sequences in lower levels meant not to be started as a self-sustained program but to be
included by other files.

The timing* files contain basically sets of embedded timing commands, see Section 4.

There is no formal difference in the handling of these files. Any file can incorporate other files with
the include mechanism (Section 3.2.6); the variable syntax is the same. Lines within the timing*

files that use the timing calculator still need to start with the special comment #!timing= to trigger
some calculation. In that respect, it is a mere convention and is not syntactically required that the
construction of the patterns and the timing calculation are kept in separate files.

2.3 Cycle Type Conventions

After an underscore, the standard acronyms of readout modes are often a substring of the file names
[7]. The acronyms and the representation in the FITS headers are gathered in Table 1. This list in
Table 1 is basically fixed if the file name is computed by expanding the ctype variable (see Section

6 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

Table 1: Supported GEIRS readout modes. The checked combinations are admitted by the software.
short FITS LN,AIP,PANIC,NTE CARMENES,Luci

rrr reset.read.read X X
rr reset.read X X
scr single.corr.read X X
dcr double.corr.read X X
mcr multi.corr.read X X
mer multiple.endpoints X X
rr-mpia fast-reset.read X X
rrr-mpia fast-reset-read.read X X
srr sample.ramp.read X X
srre sample.ramp.read.embreset X
fcr fast-rst-double.corr.read X X
lir line.interlaced.read X X
o2scr o2.single.corr.read X X
o2dcr o2.double.corr.read X X
msr multiple.successive.read X X
spr single.pixel.read X X
rlr reset.level.read X X
sfr single.frame.read X X
fecr fast.end-corr-dcr.read X X
limer line.interlaced.multiple.endpoint.read X X
lisrr line.interlaced.sample.ramp.read X X
limsr line.interlaced.multiple.successive.read X X
licntsr line.interl.continuous.sampling.read X X
cntsr continuous.sampling.read X X

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 7

3.2). The cycle types listed above are a hard-coded list in the current source code, cameratypes.h,
and depend on which version of GEIRS is used. The suffix of the file names is instrument specific,
here .nirvana, and otherwise .panic, .luci1, .luci2, .carmenes, .nteimg, .ntespec, .sc. Lists
with aspects like these contain many entries which may be obsolete for a decade or more and may
certainly change in the future.

The read modi (cycle types) offered by the software for a specific instrument (camera) are hard-
coded in the function supported ctype in nutil.c as in Table 1.

Based on criteria which are not related to software, only the lir with electronic multi-sampling
set to 4 and rrr are considered the readout modes for standard LN scientific operations.

2.4 Logging

The stream of commands to and responses from the ROE are logged as described in the base
manual [8]. One may watch updates of this file with a GEIRS GUI, which opens a X-terminal
executing a filtered journalctl on these entries. [8].

One may change the log level individually for the object files camsend, camset and camtiming by
sending a log command to the interpreter shell—see the command list in the appendix of the GUI
manual [8].

To aid debugging, the contents of the entries in levels 6 down to level 1 and the ‘pattern’ level most
recently downloaded to the ROE may be summarized with the command geirs roeDump.pl in the
devel subdirectory. The command is called with a single argument which is the instrument to be
debugged, for example

geirs_roeDump.pl Luci1

or

geirs_roeDump.pl Panic

and prints the patterns send to the RO, eliminating duplicates.

3 File Syntax

3.1 Command line expansion

Interpretation of the command line is done with the following steps executed in the order docu-
mented.

3.1.1 White Space and Old-fashioned Comments

The lines in the pattern files may contain comments that are first stripped off the contents:

• Letters/numbers/strings starting at and including the semicolon (;) up to the end of the line
are discarded. This way of delimiting comments with the semicolon is obsolete and probably
no longer found in any of the pattern files.

• White space then remaining at the start and/or end of the line is also removed.

8 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

3.1.2 Optional Repeat Count

Lines that start with the asterisk (*) followed by an (optionally parenthetically nested) integer
expression followed by a second asterisk and more tokens have the expression between the asterisks
evaluated. This *...* expression signals a count for a loop over the rest of the line.

• If the expression evaluates to a negative value, an error is raised. The remainder of the file is
not parsed or executed.

• If the expression evaluates to zero, this line is effectively not executed, independent of what
remains in the line.

• if the expression evaluates to a number ≥ 1, a repeat count applies to the rest of the line.

If the line does not start with a *...* expression, the repeat count is implicitly set to 1.

If the expression in *...* evaluates to 1 or 0, i.e., a boolean value, the semantics is equivalent to
the singly branched if-statement of other programming languages.

3.1.3 Optional Embedded Verbose Comment

If the remaining line now starts either

#!verbose=on

or

#!verbose=off

logs are sent or not sent to the GEIRS shell that may have been opened by an operator.

3.1.4 Optional Embedded Timing Evaluation

If the remaining line contains an ‘embedded’ comment of the form

#!timing=

(without spaces), the followup timing expression is evaluated (see Section 4).

3.1.5 Further Comment Removal

Any characters/numbers/strings starting at a hash (sharp) mark (#) up to the end of the line are
discarded. (At that point the embedded comments of the two formats mentioned in Sections 3.1.3
and 3.1.4 are wiped.) Note that removal of the (old) comments started with the semicolon or with
the sharp cannot be masked by means known from other scripting or programming languages.
Multiline comments or the C++/Java style comments with // are not supported.

Another round of removing white space at the start and end of the line follows. If the residual line
is empty, the execution of this line is effectively done and the pattern parser moves on to the next
line in the file. This faith happens to most of the simple free-form comment lines which start just
with the hash.

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 9

3.1.6 Do Loop Expansion

If the command contains a substring of the form do (the white space after the do is mandatory),
it is verified whether a repeat count had been found before the do. The repeat count has either the
computed *...* format described above, including the implicitly defined 1, or is a variable name.
If that check fails, an error is raised.

The first part of the expression after the do is a blank-separated loop variable—a name without $
or &. The name is to be unique (as a syntax check of correctly nested loops) and reappears in the
list of known variables (see Section 3.2.1). So the name may be used in arithmetic expressions.1

The next expression after the name of the loop variable evaluates to an integer, the loop counter;
the remainder of the line is executed as often as requested by this counter. Concepts of individual
start and skip values of the loop variable are not implemented; this is more like a range in Python
than the flexibility of a for/while-loop in Fortran/C++/Java. (This is a loop executed within the
GEIRS scanner simplifying the task of sending similar blocks of FPGA program lines to the ROE.
It is not related to the loops in levels 2 and up of the Control-FPGA.)

Note that variables in the ‘body’ (after) the do accumulate any changes while looping. (They are
passed by name, not by value.) So their values in any of the loops is whatever has been substituted
(left over) by the previous loop.

Note also that the (optional) repeat count at the start of the line and the loop counter are two
independent multipliers. The total number of executions of the expression after the loop counter
is the product of both.

Do-loops may be nested, so the ‘body’ of the do-loop may contain another do-loop. The nesting
is currently limited to 10 levels (see MAXCMDLOOPINFO in camintf.h). This containment typically
occurs indirectly by an include command which calls another do-loop.

3.2 Expressions

An expression is evaluated by the following rules:

• Nested parentheses (....(....)..(..).) are evaluated right to left. Improperly nested
parentheses — where a left-to-right scan would find more closing than opening parenthesis
— and empty parentheses () result in errors.

• Assignments have the format

variable: value

or

variable=value

and are also evaluated right to left (if there is more than one).

The first format with the colon (:) is an assignment which assumes that the variable has not
been used before and is generally used to initialize auto-variables (see Section 3.2.2). The
scanner checks that the variable is not known up to that point of the parsing; this helps for

1This is equivalent to loop variables in all major programming languages.

10 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

example to detect cyclic inclusions of files. (This check can be switched off by undefining the
preprocessor variable DEBUG AUTOVAR REASSIGN in camintf.cxx). 2

The second format with the = sign replaces the value of the variable on the left hand side by
the value on the right hand side.

• State variables (indicated by a leading $) and auto-variables (indicated by a leading &) are
substituted in the order right-to-left. The range of the name may be explicitly bound by curly
parentheses of the format ${...} or &{....}. This allows ‘computed’ variable names or file
names of the format ${....&{...}...}, for example. This is similar to constructs known in
Tcl, Unice’s shells,. . .

The curly parentheses are not needed in general, because names are limited by the next white
space, the next operator symbol (Section 3.2.4) or the next question mark ?. So &huu*...

takes the variable huu and not a variable huu*, for example.

3.2.1 State Variables

Definitions (values) of state variables are first searched in files roe variables.<extension> in
pttrns, which is e.g. roe variables.nirvana for Linc-Nirvana, and if the file does not exist in
roe variables. The file contains zero or more lines with the following format:

• The embedded comment #!verbose=on or #!verbose=off at the start of a line switches
verbosity on or off.

• Leading white space is ignored. Everything starting with # or ; up to the end of a line is also
ignored (comments). Leftover white space at the start or end of the line is also stripped off.

• After this comment reduction step, a matching line has the format of the variable name
(starting with the $), one ore more blanks, and the substitutional value. (In between there
is neither the colon nor the equal sign.)

Variable names are case sensitive. The full name in the file must match, so if searching for
abeq1, neither the value in a line starting $abeq nor a line starting $abeq1o is taken.

The substitutional value may still contain embedded blanks. The main application of this
feature (expressions with interlaced blanks) is to assemble the command and argument lines
sent to the ROE by simply writing these side by side, separated by blanks, on the same line.

• If more than one line in the file matches the name, the first match sets the value—in a
principle of early return from the file.

If the variable has not been found in the file, the second search place is the list of loop variables
kept in scanner’s state, introduced with a do (Section 3.1.6).

If the variable is not a loop variable either, a third fixed list is built into the scanner of the source
code (and therefore weakly depending on which GEIRS version is run):

• $adc36 The number of ADC36 boards in the ROE. Default values: 4 for the AIP mosaic,
2 for CARMENES and PANIC, 1 for the others. It often is the same as $dma, but not for
example for the AIP setup where $adc36 is 4 and $dma is 2.

2C. Storz 2013-05-16: The first format results in an empty string, where the second assignment is delivering the
result to the interpreter

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 11

• $canSrre Boolean value (0 or 1). The 1 indicates that the current ROE and detector type
support the srre mode, which means that the FPGA on the current ROE supports the
commands related to the uploading of the associated serial registers of the chip and that the
current chip type is the Hawaii-2RG or Hawaii-4RG. The main use of this variable is to skip
inclus’ion of the pattern files multi* according to the recipe

*($canSrre)*include multi_win_res_init

• $chans Number of detector channels (per chip if there is an array/mosaic). These are powers
of 2 with a minimum of 1, a maximum of 32 for the Hawaii-2 and Hawaii-2RG and a maximum
of 64 for the Hawaii-4RG. Further constraints exist as layed out in the reference manuals of
these chips.

• $chlines Number of lines (slow direction) in each detector channel.

• $chpixels Number of pixels (fast direction) in each detector channel.3

• $crep Cycle repetition count. See the crep parameter of the roe command [8]. For the lir

and fullmpia cycle types, this is the ‘clean’ count, not counting the first frame that will be
discarded by the GEIRS process after being received.

• $ctype The code name of the current cycle type; one of the list in Section 2.3.

• $dif idle Boolean value which indicates whether the idle-type differs from the read-without-
conversion type.

• $dma The number of fiber/DMA channels of the data transfer from the ROE to the computer.
This is generally 1 if there is one detector chip, 2 if there is more than one detector chip, but
also 2 for the Hawaii-4RG PANIC default setup where the channels of the chip are distributed
over two ADC36 boards.

• $ems Electronic multi-sampling count. 1, 2 or 4. See the ems parameter of the roe command
[8].

• $ffprot Boolean value (0 or 1), indicating full-frame persistence protection with subwindows
should be activated. See the ffprot parameter of the roe command [8].

• $fpatall The summatory (total) number of fast windows in all pattern windows in the slow
direction.

• $fpatsi The number of fast pattern windows in the slow pattern window number number i.

• $gap Remaining time up to the integration time seconds or microseconds? See the gap

parameter of the roe command [8].

• $hinvdir A nonnegative integer represetning the bit pattern of HINVDIR[0..8] (Hawaii-2RG)
or HINVDIR[8..9] (Hawaii-4RG, shifted right) to be placed into the register of the left-right
direction of the scanner. For the Hawaii-4RG only bits 0 and 1 are relevant. for the Hawaii-
2RG the relevant bits depend on the number of channels (32 channels: bits 0-7; 1 channel:
bit 0; 4 channels: bits 0,3,4 and 7).

3For the purpose of this manual the fast direction is the horizontal direction of the detector, the slow direction the
vertical direction of the detector. The appearance in the displays and FITS files may be different due to additional
optional manipulations of flips and rotations selectable at GEIRS startup as detailed in the User’s Manual.

12 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

• $vinvdir This is either the integer 0 or 1, indicating the register setting of the top-bottom
direction of the vertical scanner.

• $idle The method to leave the idle mode, either the string break or the string wait.

• $irmult For the correlated reads, the number of frames. Since there are at least two frames
needed for the reduction, the range of the variable is from 2 upwards.

• $isH2RG Indicates with a value of 1 that this is a Hawaii-2RG, and with a value of 0 that this
is any other type (Hawaii-2, Hawaii-4RG, . . .).

• $isH4RG Indicates with a value of 1 that this is a Hawaii-4RG, and with a value of 0 that this
is any other type (Hawaii-2, Hawaii-2RG, . . .).

• $isHRG Indicates with a value of 1 that this is a Hawaii-2RG or a Hawaii-4RG, and with a
value of 0 that this is any other type (Hawaii-2, . . .). Note that the complementary $isH2
does not exist.

• $detT Expands to the string H2, H2RG or H4RG depending on the detector type.

• $itime cnti with i = 1, 2, 3 or 4.

• $lskiptime Line skip time in integer units of the base clock of this skip time. See the lskip

parameter of the roe command, the output of status roe and the lskp entry of the GUI
for the current base clock [8].

• $ndet Is the number of chips in the camera, 4 or 1 for the AIP test camera, 2 for CARMENES,
1 for all other instruments planned or in use.

• $oflwprot Boolean: 1 if the overflow protection against persistence effects should be acti-
vated, 0 if it should be off (deactivated). See the oflwprot parameter of the roe command
[8]. This variable and ffprot are just flags from the point of view of the main software
which can be set or reset. What they actually mean is entirely in the hands of the pattern
definitions.

• $padc36 The number of ADC36 boards plugged into the ROE. For a fully equipped instrument
this is the same value as $adc36. For test purposes, and if compiled in the domain of a MPIA
computer, a smaller value can be set by inserting a keyword with the name P ADC36 into the
subdirectory of the admin directory into a file of the name of the IP address of the ROE.
Currently an example is shown in admin/192.168.3.163. The only current use for this is to
configure the pattern roe init for the PANIC ROE, which requires two boards to be run,
such that it can also be run with only one board and all data of the other board/fiber are fed
with zeros and no concern of timeouts from that ‘virtual’ missing board.

• $preadtime Pixel read time in units of the base clock of this read time. See the pread

parameter of the roe command, the output of status roe and the value after the prd label
in the GUI [8].

• $pskiptime Pixel skip time in integer units of the base clock of this skip time. See the pskip

parameter of the roe command, the output of status roe and the value of pskp in the GUI
[8].

• $ptime Pixel time in integer units of the base clock of this time. See the ptime parameter of
the roe command [8].

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 13

• $pxllns Appears to be the number of lines in the pattern RAM table spent for one conversion
(including the time of the electronic or software multisampling). See the pxllns parameter
of the roe command [8].

• $readf This is an abbreviation to mean the same as readf1s1 (see below).

• $readfX sN with two integers X ≥ 1 and N ≥ 1 is the number of reads (pixels) to cover the
fast hardware window number X along the slow direction.4

• $reads This is an abbreviation to mean the same as reads1 (see below).

• $readsi with i ≥ 1 is the number of reads (clocks) to cover the hardware window number X
along the slow direction.

• $shortlines Is a power of two between 1 and the value of chlines (the latter is the default).
It indicates that the readout (and associated resets) is not performed sequentially along the
slow direction of the quadrant or detector, but that the number of pixels along that direction
is divided into blocks of length shortlines. The readout-reset cycle is first done on the first
block, then on the second and so on, such that the integration time on each pixel is ‘short’,
that is one half, a quarter, one eights and so on compared to the standard integration time.
To first order, this shuffling and subdivision leaves the cycle time unaffected.

• $skipf This is an abbreviation to mean the same as skipf1s1 (see below).

• $skipfX sN with two integers X ≥ 1 and N ≥ 1 is the number of reads (clocks) to skip to
reach the fast hardware window number X along the slow direction.5

• $skips This is an abbreviation to mean the same as skips1 (see below).

• $skipsi with integer i ≥ 1 is the count of skips to reach subwindow i in the fast direction.

• $spat Number of hardware window patterns defined in the slow clocking direction.

• $subwin The string subwin or the empty string. Useful to dispatch inclusion of files that
use or do not use subwindows.

• $tbl idle Integer representation of the idle type according to the enumeration in cameratypes.h:

0 ReadWoConv

1 Reset

2 Rlr

3 Lir

• $time

• $useSHI Boolean flag: if 1 (representing true), the variable shortlines is used, otherwise (if
0) the variable is not meaningful.

New variables are added (others hardly ever removed by the principle designer’s programming
conventions) as new detector modes are implemented.

4C. Storz 2013-05-16: pixels of slow window N
5C. Storz: 2013-05-16: of slow window N

14 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

3.2.2 Automatic Variables

Automatic variables have no value beyond the computation of the (timing) pattern. The meaning
of automatic is that the variable’s value does not extend beyond the pattern evaluation and that
it is created and initialized with the colon : assignment, see Section 3.2.

There are two subtypes of automatic variables. The variables with a name starting with capital-A
are volatile and the others are resident.

• The volatile variables start to be known after their first assignment and are lost (forgotten)
when the UNIX/Linux process that creates them terminates.

• The resident variables are held in the shared memory data base and keep/update their values
as long as the shared memory manager (of that user for that instrument) is alive, which
means, between startup and shutdown of GEIRS. Sending data to the RoCon is optimized to
compare new requests by the command interface—originating from the GUI’s or the command
interpreter/shell or external command calls through the cmdServer—with the most recent
values maintained in the data base; if the requested parameter values are the same as those
memorized, they are not forwarded to the ROE.

A maximum of 100 volatile automatic variables may be in use (variable MAXAUTOVARINFO in
camintf.cxx) and a maximum of 2000 resident automatic variables (variable MAXGLOBALVARINFO

in camera.h).

3.2.3 Constants

• String constants are delimited by tic marks ’.....’.

• Integers are written in the usual ASCII representation. If the representation is in base 16,
the expression must start with 0x in front of the digits. (There is no equivalent typography
for base-8 that one might expect from other languages.)

• Floating point constants are symbolized by having a dot . in their value. The precision of
the expression is defined by the highest precision of the individual values, that is, the largest
numbers of digits after the dots of any of the values that are combined with the operators
(Section 3.2.4). The precision (number of digits in the sense of the f-format of C) of the
substituted (resulting) value is set to that precision of the expression.

3.2.4 Operators

Operators look like single-letter abbreviated operators of C/C++/csh and pattern matching oper-
ations in perl, awk etc:

1. The plus + initializes addition.

2. The dash - is the minus sign or operator. Caution: In cases without leading white space like
abc-de, the dash is part of the name. To obtain the minus-operator, insert a blank in front
of the minus.

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 15

3. The star * is the multiplication operator. The strict difference to the star in the loop count,
Section 3.1.2, is that there is no variable/value to the left of the loop count. Therefore the
notation is unambiguous with respect to the meaning of the *-symbol.

4. The slash / is the division operator.

5. The percent % is the remainder (modulo) operator.

6. The less-than < is the comparison operator.

7. The greater-than > is another comparison operator.

8. The bang ! is the comparison on not equal. (Think of the C/C++/Java style binary
operator.) This is a binary operator with two operands, one to the left and one to the right.

9. The tilde ~ is the comparison on equal, opposite to the !.

The four comparison operators are also applicable to strings with the standard strncmp(3) li-
brary definition (where shorter strings are less than longer strings, and strings of equal length are
compared left-to-right based on position of the letters in the ASCII table).

There are no >= or <= comparison operators.

The 9 operators are evaluated left-to-right; there is no standard priority like multiplication and
division ranking above addition and subtractions. If order matters, an additional inclusion of the
higher order operation in (...) ensures that the calculations are performed in the desired order.

The value of a comparison operator becomes either 1 (representing the boolean value true) or 0
(false).

The following expressions, for example, should all evaluate to 0, where pattern is defined to be
711 in roe init:

(’${ctype}’~’(&pattern)’)(&Alay5Ind: &Alay5Ind+1)

(’(&pattern)’~’${ctype}’)(&Alay5Ind: &Alay5Ind+1)

(’711’~’${ctype}’)(&Alay5Ind: &Alay5Ind+1)

(’${ctype}’~’711’)(&Alay5Ind: &Alay5Ind+1)

(${ctype}~’711’)(&Alay5Ind: &Alay5Ind+1)

(’${ctype}’!’${ctype}’)(&Alay5Ind: &Alay5Ind+1)

(’(&pattern)’!’(&pattern)’)(&Alay5Ind: &Alay5Ind+1)

(’(&pattern)’<’(&pattern)’)(&Alay5Ind: &Alay5Ind+1)

(’(&pattern)’>’(&pattern)’)(&Alay5Ind: &Alay5Ind+1)

(’${ctype}’!${ctype})(&Alay5Ind: &Alay5Ind+1)

(${ctype}!’${ctype}’)(&Alay5Ind: &Alay5Ind+1)

(${ctype}!${ctype})(&Alay5Ind: &Alay5Ind+1)

The standard way building an integer-based de-Morgan Algebra starts from the 4 comparison
operators:

• To construct an expression which is true if a and b are true, the values of a and b are
multiplied to form a new expression.

• To build an expression which is true if a or b or both are true, the values of a and b can be
added and compared to zero to form a new expression.

16 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

• To build an expression which is true if exactly one of a or b is true, the values of a and b can
be compared with the not-equal operator to form the combined expression.

If either the left or right operand of one of these operators is a hex-based integer, the result will
also be written in that base with a 0x in front.

The arithmetics is generally done in double precision mode, but if neither the left nor the right
operand are floating point values, the result is converted back to integer after the calculation. This
implies that the / is the round-to-minus-infinity integer division if the two operands are integers.

There are no trigonometric, exponential, logarithmic, number-theoretic or other functions or op-
erations dealing with lists, vector or similar set-constructions recognized by this calculator. There
are no compute-update operators like += or *= or ++ known to other programming languages.

3.2.5 Send Expressions

A command is forwarded to the ROE if an optional expression with zero, one or two exclamation
marks ! is followed by an expression with one or two question marks. Each line of that type
must—after substitution of any parentheses—represent a valid command to the microprocessor
interface as specified in the RoCon drafted manual [4].

• ? Send the following expression and wait for an answer.

• !? Send the following expression, wait for an answer, and do not check the answer.

• !n!? Send the following expression, wait for an answer, re-try this up to n times, and do not
check the answer.

• !-n!? Send the following expression, wait for an answer, retry this up to n times, and check
the answer.

The timeout in these 4 formats may be changed by using two—not one—question marks with a
timeout (an integer, in units of seconds) in between: ?seconds?. That specification of a timeout
becomes global and permanent (until revoced by the next explicit modification) because it is stored
in the variable CAMCURTOUT of the shared memory data base.

3.2.6 Include Expression

The expression of the form include followed by white space and a filename—without the instrument
suffix—starts to scan that file from the top and returns to the file of the include that started this
discursion. The log files (Section 2.4) write Start and End marks when entering and exiting the
files.

The dependencies in the current pttrns/Nirvana directory are shown in Figures 1 and 2. The arrow
point from the files that include others (noted without the suffix) to the files that are included.
Some files appear in disconnected clusters from others. Some of these are orphaned and remain in
the SVN for unspecified reasons, but others only appear to be orphaned and are actually connected
to the full graph by the variable extension mechanism described on page 10.

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 17

append_dcr_lnR_subwin

incl_slow_rd_subwin

incl_slow_rr_subwin
incl_fast_rd_subwin

incl_combi table_$(&curCtype)${subwin}

incl_slow_RdRd_subwin

incl_slow_RnoConv_subwin
incl_fast_PIXnoConv_subwin

incl_slow_RnoPIX_subwin
incl_fast_RnoPIX_subwin

incl_slow_lir_subwin

incl_slow_noConvER_subwin

incl_slow_rNoRd_subwin

incl_slow_rdER_subwin

incl_slow_rdnoER_subwin

init_lay1 itime_pat

init_lay2_aui

lay2_aui_short_dcr_1st_rrlnR

lay2_aui_short_dcr_fstfrmRrr

lay2_aui_short_dcr_lnRrr

lay2_aui_short_dcr_rrlnR

lay2_aui_short_dcr_slwfrmRrr

init_lay3

lay3_cntsr

lay3_dcr_1st_rrlnR

lay3_dcr_fstfrmRrr

lay3_dcr_lnRrr

lay3_dcr_rrlnR

lay3_dcr_short_fstfrmRrr

lay3_dcr_short_slwfrmRrr

lay3_dcr_slwfrmRrr

lay3_ff_lnRes

lay3_irmult_liramp

lay3_licntsr

lay3_limer

lay3_lir

lay3_mer

lay3_rlr_lnR

lay3_scr_lnR

lay3_sfr_ItimefflnNoR

lay3_short_dcr_1st_rrlnR

lay3_short_dcr_lnRrr

lay3_short_dcr_rrlnR

lay3_srr

lay3_irmult_mcramp

init_pat

init_pat_H2

init_pat_H2RG

pat_ems_ConvOnly_H2

pat_ems_NoPIXnoConv_H2

pat_ems_PIXnoConv_H2

pat_ems_PIXwConv_H2

pat_ems_ConvOnly_H2RG

pat_ems_NoPIXnoConv_H2RG

pat_ems_PIXnoConv_H2RG

pat_ems_PIXwConv_H2RG

rdmode

proc_crep

table_${ctype}$subwin

timing_${ctype}$subwin

roe_crep

roe_idletype

roe_init

biases

biases_and_registers

init_H2

init_H2RG

init_adc_ch$chans

init_lay4

init_lay5

init_lay6

init_simram$simram

roe_rdmode_$ctype

roe_init_ch32

roe_init_ch4

roe_itime

roe_itime_subwin

table_${ctype}_subwin

roe_ptime

roe_qlayer_size

size_qlay1

size_qlay2

size_qlay3

size_qlay4

size_qlay5

size_qpat

roe_rdmode_cntsr

roe_rdmode_debug

roe_rdmode_fecr

roe_rdmode_licntsr

roe_rdmode_limer

roe_rdmode_limsr

roe_rdmode_lir

roe_rdmode_lisrr

roe_rdmode_mer

roe_rdmode_msr

roe_rdmode_msr_embed_lir

table_mcramp_embed_lir

incl_nondestr_embedstreams_part

incl_nondestr_embedstreams_part_noAI

incl_nondestr_ff_skip_rdpart

incl_nondestr_ff_skip_rdpart_noAI

incl_rlr_embedstreams_part

incl_rlr_embedstreams_part_noAI

incl_rlr_ff_skip_rdpart

incl_rlr_ff_skip_rdpart_noAI

itime_embed

roe_rdmode_msr_embed_msr

table_mcramp_embed

incl_mcramp_embed_part

incl_mcramp_ff_skip_rdpart

roe_rdmode_o2dcr

roe_rdmode_o2scr

roe_rdmode_rlr

roe_rdmode_rr-mpia

roe_rdmode_rrr

roe_rdmode_rrr-mpia

roe_rdmode_sfr

roe_rdmode_spr

roe_rdmode_srr

roe_rdmode_test_rr-mpia

table_cntsr

table_cntsr_subwin

table_mcramp_subwin lay3_irmult_mcramp_subwin

table_combi_ctype table_combi

table_dcr_frmRrr_subwin

table_dcr_fstfrmRrr_subwin incl_slow_Res_subwin

table_dcr_lnR_subwin

table_dcr_rrlnR_subwin

table_dcr_slwfrmRrr_subwin

table_debug

table_embedtable_embed_ctype

table_fecr

table_fecr_subwin

table_licntsr

table_licntsr_subwin

table_limer

table_limer_subwin

table_limsr

table_limsr_subwin

table_lir_subwin

table_lisrr

table_lisrr_subwin

table_mcramp irmult_mcramp

table_mcramp_embed_noAI

incl_slow_${s2ctype}_subwin

incl_slow_${s3ctype}_subwin

table_mcramp_embed_s3s2ratio

incl_nondestr_mainstream_part

incl_rlr_mainstream_part

itime_stream3

table_mer

table_mer_subwin

table_msr

table_msr_embed

table_msr_subwin

table_o2dcr

table_o2dcr_subwin

table_o2scr_subwin table_scr_frmR_subwin

table_pxl_sampling

table_rlr_lnR_subwin

table_rlr_subwin table_rlr_lnR$subwin

table_rr-mpia_subwin
table_scr_lnR_subwin

table_rrr

table_rrr-mpia

table_rrr-mpia_subwin

table_rrr_subwin

table_sfr_subwin

table_ucr_ItimeRd_subwin

table_spr_subwin

table_srr

table_srr_subwin

table_test_rr-mpia

test_extensions
file(&Autovar

roe_run

test_subwin incl_subwin

Figure 1: Mutual inclusion of files by other (non-timing) files.

18 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

timing_cntsr_subwin

itime_pat

timing_debug

timing_dummy

timing_fecr table_fecr

timing_fecr_subwin

timing_licntsr_subwin

timing_limer

timing_limer_subwin

timing_limsr

timing_limsr_subwin

timing_lir

timing_lir_subwin

timing_lisrr

timing_lisrr_subwin

timing_mer

timing_mer_subwin

timing_msr

timing_msr_subwin

timing_o2dcr table_o2dcr

timing_o2dcr_subwin

timing_o2scr

timing_o2scr_subwin

timing_rr-mpia

timing_rr-mpia_subwin

timing_rrr table_rrr

timing_rrr-mpia table_rrr-mpia

timing_rrr-mpia_subwin

timing_rrr_subwin

timing_sfr

timing_sfr_subwin

timing_spr

timing_srr

timing_srr_subwin

timing_test_rr-mpia

Figure 2: Mutual inclusion of files by timing files.

4 TIMING CALCULATIONS

4.1 Aim

The timing calculations accumulate the clock cycles of the stages of (virtually) running a pattern.
In that sense they are informative and do not generate ROE command lists, but serve to predict the
total time spent in readout cycles depending on chip capabilities, windowing, readout modes, ROE
base clock frequencies etc., and to calculate how many idle-clocks must be inserted in the patterns
to fill up the (operator’s specific) integration time. If there is demand of fixing the duration of
the readout cycles, such calculation also allows to defer an integration time by calculation of the
overhead times as a function of all these parameters.

In summary, this part of the GEIRS software predicts how much time will be spent on which
stages/levels of the ROE’s pattern generator, but the actual timing is independent of these calcu-
lations. The result of summing up all the loops and steps down to the lowest (RAM) level of the
pattern program in the associated FPGA of the ROE over one frame of the exposure appears as
the cycle time of the control GUI [8].

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 19

4.2 Timers

The implementation defines a set of named timers which are individually started, incremented and
stopped as a function of tracing the actions of the pixel reads and skips. The names of the timers
are used without the $ or & of the other variables (those of Sections 3.2.1 and 3.2.2). The unit of
values of timers is microseconds.

Access to the timer list with its variables is exclusively achieved by using the subcommands of
the embedded timing comment. So the timers are entities separated from, but have access to the
variables of the pattern constructor (Sections 3.2.1, 3.2.2). There is a close handshake with the
variables of the main pattern construction. The position of the timing commands in the pattern
files of (Section 3.1.4) defines the values of the variables that are the basis of the timing evaluations.

The evaluation of a line with a timing= command is done by dropping everything starting with
any optional second # character (comments) that may follow the initial # at the start of the line
(Section 3.1.3), and then looking for one of the following subcommands (Sections 4.3.1–4.3.7) after
the =-character.

4.3 Subcommands

4.3.1 set

The subcommand set in the timing calculation sets the timer value named after the set to the
value of the expression of the rest of the line. If the named timer does not exist yet, it is created,
obtains the value, and is marked as deactivated.

4.3.2 define

Define followed by a timer’s name uploads the value of the timer to the shared memory data base, so
it basically lets know the other parts of the software (command interpreter and data read-interface)
what the value is. If no name follows the define, all timer’s values are published that way.

The following list of timers is actually known in the shared memory data base, i.e., fixed in the
scanner: ctime, creptime, roitime, gapitime, skiptime, shortflag, irmult, Nreads, patitime,
itime. Any other names after the define will not be recognized.

Note that the command interpreter’s pipe command (Appendix in [8]) may send bare formatted
commands to the ROE which potentially change the state of the ROE without leaving any traces
in the data base or the pattern generator’s variable tables.

4.3.3 state

Logs the values of the current set of timers.

4.3.4 add

The subcommand add in the timing calculation increases the timer value with the name after the
set by the value of the expression in the rest of the line. Warning: If the name of the timer is
empty, all timers are incremented by the value — which is probably not what you want.

20 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

4.3.5 on

Activates the timer with the name after the on so it will be modified/effected by subsequent
commands. If used without the name of a timer, all timers are activated.

4.3.6 off

Deactivates the timer with the name after the off so its value is frozen until re-enabled. If used
without the name of a timer, all timers are deactivated.

4.3.7 end

Forgets (removes) all timers, as if they never had been created with the set.

4.4 Functions

Two functions with one respectively two arguments may appear in the expression of the subcom-
mands set or add. The functions are range(...,...) and timeof(...); each of them returns a
floating point value.

• There is no evaluation of expressions within the pair of parentheses that encompasses the one
or two arguments!

• No white space between the function name and the left, opening parenthesis!

4.4.1 range

The two arguments of range must be two auto-variables in the sense of Section 3.2.2, which each
contain one common substring which is either pat, or one of the 6 possible layi with 1 ≤ i ≤ 6,
or proc. The values of these variables are supposed to be two non-negative integers, a start and
a stop (line) address of a ‘program’ (command) in the detector FPGA, which refer as usual to a
sequence of commands in the next lower layer.

The value of the function is the duration of executing this part of the detector program, recursively
including the times of the sub-loops and auto-increment loops in the lower layers.

4.4.2 timeof

Reads the current value of the timer with the name which appears as the argument in the function.

5 DETECTOR WINDOWS

5.1 Principles of Operation

GEIRS spans a 2D coordinate system across the detector area, which defines the user’s coordinates
of windows (rectangular subareas). For cameras with single chips (like LINC-NIRVANA), the origin

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 21

of coordinates is in the lower left edge of the chip, for mosaics (AIP, CARMENES) the origin is
in the lower left edge of the lower left chip and stretches seemlessly—without noticing the detector
gaps—to the upper right corner of the upper right chip.

Windows defined in this coordinate system are transformed by GEIRS to a symmetry-adapted
set of pattern windows by (i) copying the windows to each chip for multi-chip cameras and (ii)
replicating the windows in each quadrant for detectors with quadrants (Hawaii-2), and (iii) clamping
the windows into a single channel (Detector channels and ADC channels match for all current
implementations which aims at maximum parallelization of readout and ADC operation or shortest
possible integration times, respectively.) This implements a sychronous timing of read-out and data
transfer, defines the interface relevant to the pattern construction, and settles the speed (exposure
time, frame rate).

Finally there is a set of detector windows which is obtained by (i) replicating the pattern windows
across all channels and (ii) merging/glueing (where possible) windows that are direct neighbours.
This happens within GEIRS upon receipt of the data and does not effect the patterns. Mapping
the union of the pixels of these detector windows data back onto the user’s coordinate system may
yield a very rugged, complicated and fragmented tiling with holes and/or non-connected patches.

The most efficient way of saving these data would be an option to deliver a FITS file with a single
frame defined by a bounding box around all of these, filling holes with the BLANK value. (Most
efficient means that all available ADC values are saved; disk space consumption is not optimized
because holes are also covered.) The actual methodology implemented in GEIRS removes all pixels
data that are not in any of the user’s windows and stores only the user’s windows into the FITS
files.

5.2 Example

An example of the subwindow parameters is given next to illustrate the parameters readfXsN
and skipfXsN of Section 3.2.1. We assume that the user has requested a single software window
with a lower left pixel at [700,900] and an upper right pixel at [1209,989] with

> subwin clear

> subwin SW 1 700 900 510 90

> subwin auto on

which is the solid rectangle crossing from quadrant II to quadrant III in Figure 3. For Hawaii-2
detectors (including LINC-NIRVANA), GEIRS adds symmetric copies to the other quadrants by
three times 90 degree rotation around the center of the detector such that each quadrant is covered
by the same number and shape of windows. The principle of symmetry is: if a pixel must be read
in one channel, the equivalent pixels in all the other 31 channels must also be read. This adds
the dashed windows in Figure 3, which may overlap. (This step is absent for detectors without
quadrants like the Hawaii-2RG.)

The output of the status subwin then shows

subwin SWwin: id=1 xs=700 ys=900 xw=510 yw=90

subwin DETwin: id=0 fs=36 ss=990 fw=90 sw=35

subwin DETwin: id=1 fs=36 ss=700 fw=90 sw=200

subwin DETwin: id=2 fs=1 ss=900 fw=128 sw=90

which is illustrated for the pattern windows numbered 0 to 2 in Figure 4. This represents a 128-

22 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

 0

 256

 512

 768

 1024

 1280

 1536

 1792

 2048

 0 256 512 768 1024 1280 1536 1792 2048

y
 [
p
x
]

x [px]

I

II III

IV

Figure 3: Example of a software window requested (horizontal quadrangle) and three symmetry-
adapted, rotated copies (dashed quadrangles) added.

wide slice through one (any one) quadrant along any of the 8 channels after the pixels in use are
copied 8-fold to all channels: second application of the principle of symmetry.

In the first quadrant, the fast direction is along the x axis, the slow direction along the y axis.
The geometries of the three non-overlapping windows are characterized by a starting pixel index
in the slow direction (ss), a starting pixel index in the fast direction (fs), a width along the slow
direction (sw), and a width along the fast direction (fw). The clocking of the detector pushes the
charges to the detector edge, so the pixels of y = 2048 of quadrant I are received first and the pixels
of y = 1025 are received last in time. The values of the skip variables refer to that order in time,
so in quadrant I ss is counted from the top edge, and fs from the right border of each channel.
(Note that this relation between timing and geometry is not necessarly fixed for the Hawaii-2RG
chips, where the order along both directions, the fast and the slow, may be reverted/flipped by
appropriate setting of registers.)

Slicing this intermediate result into channel boundaries (each channel of width 128 in the fast
direction) and 8-fold replication along the fast direction fuses the windows with id=2 into a single
long horizontal bar across the entire first quadrant, and creates 8 copies of id=0 and id=1. These
17 windows are effectively ‘executed’ in parallel in the other quadrants, which gives Figure 5. This
pattern of an overlay of rectangular windows that are sent from the ROE to the GEIRS software
on the workstation can also be investigated by selection of the show all RO information in the

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 23

fourth menu at the top of the display GUI [8]. An example of this feature of the GEIRS engineering
GUI has been shown in a SPIE article [7, fig. 5].

24 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

 1024

 1280

 1536

 1792

 2048

 0 256 512 768 1024

y
 [

p
x
]

x [px]

I

0: ss=990

0: fw=90

0: sw=35

0: fs=36
 1024

 1280

 1536

 1792

 2048

 0 256 512 768 1024

y
 [

p
x
]

x [px]

I

1: ss=700

1: fw=901: sw=200

1: fs=36

 1024

 1280

 1536

 1792

 2048

 0 256 512 768 1024

y
 [

p
x
]

x [px]

I

2: ss=900

2: fw=1282: sw=90

Figure 4: Geometry of the 3 pattern windows labeled id=0, id=1 and id=2 within the first quadrant
of Figure 3. Each window is characterized by a s(tart) and a w(idth) coordinate in the f(ast) and
s(low) direction. The window with index 2 is actually wider than 128, but in these cases where the
window is wider than the channel width of 128 pixels, the width is reduced to 128 in preparation
for the next step.

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 25

 0

 256

 512

 768

 1024

 1280

 1536

 1792

 2048

 0 256 512 768 1024 1280 1536 1792 2048

y
 [

p
x
]

x [px]

I

II III

IV

Figure 5: 4 × 17 = 68 detector windows reported by status subwin for the software window of
Figure 3. 8 copies of the windows of Figure 4 are created along the fast direction, where 8 is the
number of detector and ADC channels in each quadrant.

26 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

6 PATTERN SCRIPTING

6.1 Auto-increment Layer-2 Loops

Since early 2010 the functionality of the layer-2 commands (command number 713) of the Detector-
FPGA has been enhanced by two further parameters after the loop count. These are called in-
crement and limit. If the value of increment is zero, executing the layer-2 program (by a layer-3
program) executes the layer-1 program as many times as specified by the loop parameter. Other-
wise the increment is a signed integer that works like an arithmetic increment/decrement of the
loop variable by that amount after each execution of the layer-2 program. The first call of the
layer-2 program by the layer-3 program executes the layer-1 program loop times, the second call
excutes the layer-1 program loop+increment times, the third call loop+2× increment times and
so on, up to and including the case where loop+l×increment≤limit for increment> 0 and up to
and including the case where loop-l×|increment| ≥limit for increment< 0. Once the loop count
has surpassed the limit, it is reset to the loop parameter—with the same type of crescendo of loop
counts following in further executions of the layer-2 program.

We see that the case where the increment parameter is zero is not special with respect to changing
the loop counter.

• If the increment is non-zero and loop equals limit, the loop counter is effectively always the
loop parameter—because at the first executation of the layer-2 program always is that value,
and because already the next excuation resets the ‘hidden’ counter to loop.

• If the sign of the increment differs from the sign of the arithmetic difference limit-loop, the
reset condition is fulfilled after each execution of the layer-2 program, and the loop counter
is always the same for execution of the layer-1 program.

The effective offset l× increment is reset to l = 0 if

1. the entry in layer-2 is overwritten in conjunction with a new 713 command—this implies
stopping the process and resetting it and is just a further instance of the reset cause further
down,

2. or as the 730 command resets the entire layer,

3. or as the command 740 starts the pattern process

4. or as the command 741 stops the pattern process

The EXIT-loop command 742 does not alter the loop arithmetics of the loop, increment and limits.
One may think of the auto-increment functionality as some hidden but global ‘static’ variable which
remembers its history without taking notice of the EXIT-loop command.

6.2 Hawaii 2 (i.e., LN)

6.2.1 RAM Layer Command Format

In the pattern-layer of the detector-FPGA, the 711 command to define one word (out of up to
1024) has the format [4]

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 27

711 0 address 0x0to15 0x16to31 0x32to47 0x48to63

where the first parameter (the zero) is not used, and 4 groups of 16 bits each carry a load of 64
bits, starting with the least significant bit in the leftmost group.

6.2.2 Initial Pattern

The functionality to the load of 64 bits of the 711-command parameters to detector pins:

signal hclk lrst reseten reset read (hclk) /lsync vclk /fsync stcon1 stcon0

bit 48 23 22 21 20 19 18 17 16 1 0

The signals in parentheses, hclk, is a leftover from older ROEs (?) and can effectively be ignored
for the LN case.

After booting (starting GEIRS), the ROE registers contain the following bits in the detector-FPGA
RAM layer. Words are enumerated from 0 to 1023, the maximum capacity of the FPGA, but less
than 200 are actually defined at that point in time. The (stcon1) and (hclk) signals at bit 1 and
19 are not plotted and should effectively considered always to have bit-value zero.

28 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

Defined in init pat H2 with the name patSetup2:

stcon0

pattern bits 0-15 (hex) 1 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 55 55

hclk

pattern bits 48-63 (hex) 0 0

word 187 188

Defined in init pat H2 with the name patNone:

stcon0

pattern bits 0-15 (hex) 1 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 55 55

hclk

pattern bits 48-63 (hex) 0 0

word 185 186

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 29

Defined in init pat H2 with the name patFSync:

stcon0

pattern bits 0-15 (hex) 1 1 1 1 1 1 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 55 54 55 55 55 55 55

hclk

pattern bits 48-63 (hex) 0 0 0 0 0 0 0

word 7 8 9 10 11 12 13

Defined in init pat H2 with the name patVLS:

stcon0

pattern bits 0-15 (hex) 1 1 1 1 1 1 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 55 55 55 51 55 57 55

hclk

pattern bits 48-63 (hex) 0 0 0 0 0 0 0

word 21 22 23 24 25 26 27

30 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

Defined in init pat H2 with the name patNoRes:

stcon0

pattern bits 0-15 (hex) 1 1 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 55 55 55

hclk

pattern bits 48-63 (hex) 0 0 0

word 38 39 40

Defined in init pat H2 with the name patPIXnoConv, where the value of pxllns is effectively 7
for ems=1 as discussed in camintf.cxx, and including pat ems PIXnoConv H2:

stcon0

pattern bits 0-15 (hex) 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 55

hclk

pattern bits 48-63 (hex) 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

word 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 77 77 78 79 80

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 31

Defined in init pat H2 with the name patNoPIXnoConv, where the value of pxllns is effectively
7 for ems=1 as discussed in camintf.cxx, and including pat ems NoPIXnoConv H2:

stcon0

pattern bits 0-15 (hex) 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 55

hclk

pattern bits 48-63 (hex) 0

word 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

Defined in init pat H2 with the name patLSyncNoRes:

stcon0

pattern bits 0-15 (hex) 1 1 1 1 1 1 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 55 55 55 51 55 55 55

hclk

pattern bits 48-63 (hex) 0 0 0 0 0 0 0

word 41 42 43 44 45 46 47

32 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

Defined in init pat H2 with the name patRes:

stcon0

pattern bits 0-15 (hex) 1 1 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 75 55 55

hclk

pattern bits 48-63 (hex) 0 0 0

word 28 29 30

Defined in init pat H2 with the name patPIXwConv, where the value of pxllns is effectively 7 for
ems=1 as discussed in camintf.cxx, and including pat ems PIXwConv H2. The falling edges of the
hclk increase the pixel address, so the placement of the rising edge in the middle of the pattern is
almost arbitrary:

stcon0

pattern bits 0-15 (hex) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 55

hclk

pattern bits 48-63 (hex) 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

word 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 33

Defined in init pat H2 with the name patConvOnly, where the value of pxllns is effectively 7 for
ems=1 as discussed in camintf.cxx, and including pat ems ConvOnly H2:

stcon0

pattern bits 0-15 (hex) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 55

hclk

pattern bits 48-63 (hex) 0

word 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

Defined in init pat H2 with the name patItime:

stcon0

pattern bits 0-15 (hex) 1 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 45 45

hclk

pattern bits 48-63 (hex) 0 0

word 177 178

34 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

Defined in init pat H2 with the name patItimeRDen:

stcon0

pattern bits 0-15 (hex) 1 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 55 55

hclk

pattern bits 48-63 (hex) 0 0

word 179 180

Note that there are holes in the words explained above, where other patterns are defined/uploaded
but not yet relevant after boot time. They exist in preparation for subwindows, electronic multi-
sampling or other parameters that may be relevant when the operator starts to use the detector.
Note also that there are some redundant pieces here.6

1. Number 0 keeps all signals frozen (at 616 nsec clock) and enabled as in patSetup2, but may
toggle from an infinite loop to a single execution in layer 3:

718 0 0 0 1 1

717 0 0 0 3 1

715 0 0 0 1 65535

714 0 0 0 1 1

713 0 0 0 1 1 0 0

712 0 0 187 188 1 60 1 4088

patSetup2

715 0 1 1 2 1

714 0 1 1 2 1

713 0 1 1 2 1 0 0

712 0 1 187 188 1 60 1 4088

patSetup2

715 0 2 0 1 65535

2. Number 1 is a single action that disables the stcons by masking a byte (selected with a
specific bit in the last parameter, 4080) (51 kHz clock):

718 0 1 4 5 1

717 0 4 3 4 1

715 0 3 7 8 1

714 0 7 3 4 1

713 0 3 3 4 1 0 0

712 0 3 185 186 1 4 1 4080

patNone

3. Number 2 is an infinite loop, containing two sequential subroutines in layer 4. The first
subroutine is essentially a frame sync followed by 1024 advances along the slow direction

6e.g. because patNone and patSetup2 are the same, lay1ConvOn and lay1Setup2 are actually the same pattern.

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 35

(where 1024 is the number of pixels along each of the 32 channels of the Hawaii 2), and the
second subroutine sets the bit for the break point ID 1 (represented by the final 8 in the 712
command). Each advance along the slow direction contains 1 + 127 = 128 horizontal clocks
without triggering ADC’s—where 128 is the width of a channel for the Hawaii 2—a line sync
and reset, and again 128 horizontal clocks, altogether a LIR pattern without conversion:

718 0 2 3 4 4294967295

717 0 3 9 11 1

715 0 9 5 6 1

714 0 5 28 30 1

713 0 28 16 17 1 0 0

712 0 16 7 13 1 60 1 0

patFSync

713 0 29 56 66 1024 0 0

712 0 56 21 27 1 60 1 0

patVLS

712 0 57 38 40 1 60 1 0

patNoRes

712 0 58 61 80 1 51 1 0

patPIXnoConv

712 0 59 61 80 127 51 1 0

patPIXnoConv

712 0 60 148 167 1 51 1 0

patNoPIXnoConv

712 0 61 41 47 1 60 1 0

patLSyncNoRes

712 0 62 28 30 1 60 1 0

patRes

712 0 63 61 80 1 51 1 0

patPIXnoConv

712 0 64 61 80 127 51 1 0

patPIXnoConv

712 0 65 148 167 1 51 1 0

patNoPIXnoConv

715 0 10 6 7 1

714 0 6 2 3 1

713 0 2 2 3 1 0 0

712 0 2 185 186 1 4 1 8

patNone

This implements the initial default of the idle loop (wait in Lir mode).

4. Number 3 enables all outputs with a 4088 value of the last parameter, so it would revert the
status left by Number 1:

718 0 3 5 6 1

717 0 5 4 5 1

715 0 4 8 9 1

714 0 8 4 5 1

713 0 4 4 5 1 0 0

712 0 4 185 186 1 4 1 4088

patNone

A subsequent read will use the 764 command with the break point in the Program 2 to
execute the fourth to last pattern in an endless loop (764 0 3 7 65535 1).

5. Number 4 is like Number 2, but the conversion (ADC’s triggers) are enabled in the subroutine
that walks through the 1024 pixels along the slow direction, and there is a second walk
through the 1024 pixels along the slow direction. Before the step that disables the byte with
the conversion bit are three actions in layer-1 with zero loop count, and one action at divisor
899 and pre-scaler 2 (9.09 msec), effectively zero additional integration time:

36 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

718 0 4 12 14 1

717 0 12 21 23 1

715 0 21 27 29 1

714 0 27 30 32 1

713 0 30 16 17 1 0 0

patFSync

713 0 31 36 46 1024 0 0

712 0 36 21 27 1 60 1 0

patVLS

712 0 37 38 40 1 60 1 0

patNoRes

712 0 38 61 80 1 51 1 0

patPIXnoConv

712 0 39 90 109 127 51 1 0

patPIXwConv

712 0 40 119 138 1 51 1 0

patConvOnly

712 0 41 41 47 1 60 1 0

patLSyncNoRes

712 0 42 28 30 1 60 1 0

patRes

712 0 43 61 80 1 51 1 0

patPIXnoConv

712 0 44 90 109 127 51 1 0

patPIXwConv

712 0 45 119 138 1 51 1 0

patConvOnly

714 0 28 34 35 1

713 0 34 12 16 1 0 0

712 0 12 177 178 0 999 3 0

patItime

712 0 13 177 178 0 99 2 0

patItime

712 0 14 177 178 0 4 1 0

patItime

712 0 15 179 180 1 899 2 0

patItimeRDen

715 0 22 6 7 1

714 0 6 2 3 1

713 0 2 2 3 1 0 0

712 0 2 185 186 1 4 1 8

patNone

717 0 13 23 24 1

715 0 23 47 48 1

714 0 47 30 32 1

The readout of the 128 pixels in the horizontal direction of a channel is split into 1×
patPIXnoConv, 127× patPIXwConv and 1×patConvOnly, so the pixel ‘address’ stands at
the ‘end’ of the line at the start of the (optional, residual) integration time.

After splitting the residual integration time into three different intervals (at 10.1 sec, 1.01
msec, 50.5 nsec with three different prescaler choices) the main program will later on overload
the layer-1 commands (words 12, 13 and 14) at the three actions to realize any integration
time that is longer than the minimum integration time.

6. Number 5 is the same as Number 1:

718 0 5 4 5 1

This means after exit of the read-loop of the Number 4 the idle loop is started.

7. Number 6 is the same infinite loop as Number 2:

718 0 6 3 4 4294967295

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 37

6.2.3 Disconnected Patterns

The patterns not linked to any higher layer but fillers uploaded after initialization are: Defined in
init pat H2 with the name patFSwVLS:

stcon0

pattern bits 0-15 (hex) 1 1 1 1 1 1 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 55 54 55 51 55 57 55

hclk

pattern bits 48-63 (hex) 0 0 0 0 0 0 0

word 0 1 2 3 4 5 6

Defined in init pat H2 with the name patVSync:

stcon0

pattern bits 0-15 (hex) 1 1 1 1 1 1 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 55 55 55 55 55 57 55

hclk

pattern bits 48-63 (hex) 0 0 0 0 0 0 0

word 14 15 16 17 18 19 20

38 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

Defined in init pat H2 with the name patVLSnoRes:

stcon0

pattern bits 0-15 (hex) 1 1 1 1 1 1 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 55 55 55 51 55 57 55

hclk

pattern bits 48-63 (hex) 0 0 0 0 0 0 0

word 31 32 33 34 35 36 37

Defined in init pat H2 after patENDLSync:

stcon0

pattern bits 0-15 (hex) 1 1 1 1 1 1 1 1 1 1 1 1 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 75 55 55 55 55 55 51 55 55 55 55 55 55

hclk

pattern bits 48-63 (hex) 0 0 0 0 0 0 0 0 0 0 0 0 0

word 48 49 50 51 52 53 54 55 56 57 58 59 60

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 39

Defined in init pat H2:

stcon0

pattern bits 0-15 (hex) 1 1 1 1 1 1 1 1 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 55 55 55 55 55 55 55 55 55

hclk

pattern bits 48-63 (hex) 1 1 1 1 1 1 1 1 1

word 81 82 83 84 85 86 87 88 89

Defined in init pat H2 (same as in words 81–89):

stcon0

pattern bits 0-15 (hex) 1 1 1 1 1 1 1 1 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 55 55 55 55 55 55 55 55 55

hclk

pattern bits 48-63 (hex) 1 1 1 1 1 1 1 1 1

word 110 111 112 113 114 115 116 117 118

40 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

Defined in init pat H2:

stcon0

pattern bits 0-15 (hex) 1 1 1 1 1 1 1 1 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 55 55 55 55 55 55 55 55 55

hclk

pattern bits 48-63 (hex) 0 0 0 0 0 0 0 0 0

word 139 140 141 142 143 144 145 146 147

Defined in init pat H2 (same as in words 139–147):

stcon0

pattern bits 0-15 (hex) 1 1 1 1 1 1 1 1 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 55 55 55 55 55 55 55 55 55

hclk

pattern bits 48-63 (hex) 0 0 0 0 0 0 0 0 0

word 168 169 170 171 172 173 174 175 176

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 41

Defined in init pat H2 as patItimeLED and patItimeRDenLED:

stcon0

pattern bits 0-15 (hex) a81 a81 a81 a81

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 45 45 55 55

hclk

pattern bits 48-63 (hex) 0 0 0 0

word 181 182 183 184

Defined in init pat H2 as patSkipLine:

stcon0

pattern bits 0-15 (hex) 1 1 1 1 1 1

lrst

reseten

reset

read

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 57 55 55 55 55 55

hclk

pattern bits 48-63 (hex) 0 0 1 0 0 0

word 189 190 191 192 193 194

6.2.4 ADC pattern

The pattern-RAM of the ADC pattern generator is loaded with the following pattern in init adc ch32,
executed in layer 4 in an endless loop. This has an intrinsic periodicity of 7 clocks and extends from
words 0 to 112, reaching a channel-select value of 32 at the end.7 The following diagram shows the
transmission of the first 8 pixels (out of 128, the channel width of the Hawaii-2) via 4 send triggers

7The 4 reference ADCs of the board [2] are not used. The channel-select value of 32 has no associated followup
OutCP edges and no side effect.

42 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

send

send 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

OutCP bit 0

OutCP bit 1

OutCP bit 2

OutCP bit 3

OutCP 0 0 0 2 2 2 3 3 0 0 2 2 2 3 3 0 0 2 2 2 3 3 0 0 2 2 2 3 3

Chan Sel bit 0

Chan Sel bit 1

Chan Sel bit 2

Chan Sel bit 3

Chan Sel bit 4

Chan Sel bit 5

Chan Sel bit 6

Chan Sel bit 7

Chan Select 0 0 0 1 1 1 1 2 2 2 3 3 3 3 4 4 4 5 5 5 5 6 6 6 7 7 7 7 8

word 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

515 0 0 0 1 65535

514 0 0 0 1 1

513 0 0 0 1 1

512 0 0 0 112 1 0

511 0 0 0 0 0 1 0

511 0 1 0 0 0 1 0

511 0 2 0 0 0 1 0

511 0 3 0 2 0 1 1

511 0 4 0 2 0 1 1

511 0 5 0 2 0 1 1

511 0 6 0 3 0 1 1

511 0 7 1 3 0 1 2

511 0 8 0 0 0 1 2

511 0 9 0 0 0 1 2

...

511 0 107 0 0 0 1 30

511 0 108 0 2 0 1 31

511 0 109 0 2 0 1 31

511 0 110 0 2 0 1 31

511 0 111 0 3 0 1 31

511 0 112 1 3 0 1 32

Not shown in the pattern are the 2 bits of the In CP (always 0) and the 5 bits of the Board-select

that have only the least-sigficant set (always 1). The two high-significant bits of the OutCP are
always 0, which means that fiber does not transmit any relevant data; data of all 32 channels are
fed into the other fiber.

Two consecutive ADC channels are packed into a 32-bit over the fiber such that we have only 16
send-triggers for the 32 channels.

The divisors value of the 512 command is 0, which means the period is close to 7.5 nsec, and the
entire process of pushing the 32 data into the transmitter needs of the order of 112 × 7.575 ns
= 0.85 µsec (equivalent to 1.2 MHz, and therefore faster than the 800 kHz of the ADC’s AD7677
(normal mode, 250 ns acquisition time plus 1 µs converstion time) [9, p 52])

The file init adc chan4 serves to read the Hawaii-2 in a 4-channel mode (1 channel per quadrant,

https://www.analog.com/media/en/technical-documentation/data-sheets/AD7677.pdf

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 43

channels are 1024 pixels wide) and transports only the outputs 0, 8, 16, . . . 24:

send

send 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

OutCP bit 0

OutCP bit 1

OutCP bit 2

OutCP bit 3

OutCP 0 0 0 2 2 2 3 3 0 0 2 2 2 3 3

Chn Sel bit 0

Chn Sel bit 1

Chn Sel bit 2

Chn Sel bit 3

Chn Sel bit 4

Chn Sel bit 5

Chn Sel bit 6

Chn Sel bit 7

Chn Select 0 0 0 0 8 8 8 8 16 16 16 24 24 24 24

word 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

The modes with less-than-maximum number of channels of the detectors are initiated by setting
the appropriate bits in the processors registers in the files pttrns/*/registers *. The triggers
in the patterns cause conversions in all ADCs; the data of the ignored channels are discarded by
not feeding their outputs into the fibers, so they don’t arrive at the computer. This means there
is effectively no power-savings by using a lower number of channels here because all ADCs are still
working in parallel at the usual rate (althoug some maybe in vain).

6.2.5 Idle ReadWoConv

If one sends the command to GEIRS to switch to the idle mode ReadWoConv word 2 of the layer-6
is overwritten to execute lines 12 to 14 of layer-5 (triggered in roe variables, so the idle loop
pattern now is a copy of the readout pattern with ‘active’ scon0 edges:

718 0 2 12 14 4294967295

717 0 12 21 23 1

715 0 21 27 29 1

714 0 27 30 32 1

713 0 30 16 17 1 0 0

712 0 16 7 13 1 60 1 0

patFSync

713 0 31 36 46 1024 0 0

712 0 36 21 27 1 60 1 0

patVLS

712 0 37 38 40 1 60 1 0

patNoRes

712 0 38 61 80 1 51 1 0

patPIXnoConv

712 0 39 90 109 127 51 1 0

patPIXwConv

712 0 40 119 138 1 51 1 0

patConvOnly

712 0 41 41 47 1 60 1 0

44 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

patLSyncNoRes

712 0 42 28 30 1 60 1 0

patRes

712 0 43 61 80 1 51 1 0

patPIXnoConv

712 0 44 90 109 127 51 1 0

patPIXwConv

712 0 45 119 138 1 51 1 0

patConvOnly

714 0 28 34 35 1

713 0 34 12 16 1 0 0

712 0 12 177 178 0 999 3 0

patItime

712 0 13 177 178 0 99 2 0

patItime

712 0 14 177 178 0 4 1 0

patItime

712 0 15 179 180 1 899 2 0

patItimeRDen

715 0 22 6 7 1

714 0 6 2 3 1

713 0 2 2 3 1 0 0

712 0 2 185 186 1 4 1 8

717 0 13 23 24 1

715 0 23 47 48 1

714 0 47 30 32 1

There is no change in the patterns of the control-FPGA, so currents from the detector/preamplifier
to the ROE run with the same timing as in the readout cycle. The process on the ADC pattern
generator (Section 6.2.4) remains active.8

The obvious disadvantage of that implementation is that also the time spent as a filler for the
integration time in words 12, 13 and 14 of layer-1 remains the same. This means that in the usual
wait choice for leaving the idle loop, reaching the associated break-point may need as long as a
full readout-cycle.9

6.2.6 Idle Rlr

Switching the idle mode to reset-level-read (Rlr) changes the Program Number 2 to

718 0 2 2 3 4294967295

717 0 2 7 9 1

715 0 7 3 5 1

714 0 3 25 26 1

713 0 25 16 17 1 0 0

712 0 16 7 13 1 60 1 0

patFSync

714 0 4 9 11 1024

713 0 9 31 33 1 0 0

712 0 31 21 27 1 60 1 0

patVLS

712 0 32 28 30 1 60 1 0

patRes

713 0 10 9 12 1 0 0

712 0 9 61 80 1 51 1 0

patPIXnoConv

712 0 10 61 80 127 51 1 0

patPIXnoConv

712 0 11 148 167 1 51 1 0

patNoPIXnoConv

8GEIRS does not stop and restart it for each readout cycle, but only once within roe init at startup time.
9Operators tend to get angry then because they realize that telescope time is wasted here.

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 45

715 0 8 6 7 1

714 0 6 2 3 1

713 0 2 2 3 1 0 0

712 0 2 185 186 1 4 1 8

This is for each line of the detector a reset followed by 128 advances along the horizontal direction,
with no conversions nor any wait to recognize the integration time.

6.3 Hawaii-2RG, Hawaii-4RG

6.3.1 RAM Layer

In the pattern-layer of the detector-FPGA, the 711 command to upload one word (out of up to
1024) has the format [4]

711 0 address 0x0to15 0x16to31 0x32to47 0x48to63

where the first parameter (the zero) is not used, and 4 groups of 16 bits each carry a load of 64
bits, starting with the least significant bit in the leftmost group. Assignment of functionality to
the 64 bits of the 711 parameters:

signal bufdis hvw reseten readen hclk /lsync vclk /fsync stcon1 stcon1

bit 23 22 21 20 19 18 17 16 1 0

The signal in parentheses, stcon1, is a leftover from older ROEs (?) and can effectively be ignored
for all cases. So instead of patterns 0x3 and 0x1 listed below one will effectively only meet 0x1 and
0x0 in bits 0–15.

The bits 16 to 23 are usually duplicated for each of the chips in the mosaic into bits 24–31, 32–39
and 40–47, and this can be done without harm for few-chip instruments because the superfluous
outputs will end nowhere.10 So instead of

711 0 address 0x1 0x95 0x0 0x0

for example one will typically write

711 0 address 0x1 0x9595 0x9595 0x0

in the pattern files to allow code sharing between the AIP 4-chip setup, the CARMENES 2-chip
setup and the other 1-chip setups.

After booting (starting GEIRS), the ROE registers contain the following bits in the detector-FPGA
RAM layer. Words are enumerated from 0 to 1023, the maximum capacity of the FPGA, but less
than 200 are actually defined at that point in time.

10. . . assuming appropriate bus terminations. This allows to share pattern code among instruments with 1, 2 or
4 detector chips. This does not occur for LN patterns because MPIA has build only that one instrument with the
Hawaii 2 detector and that is equipped only with one of these.

46 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

Defined in init pat H2RG with the name patSetup1:

stcon1

stcon0

pattern bits 0-15 (hex) 1 1

bufdis

hvw

reseten

readen

hclk

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 95 95

word 185 186

Defined in init pat H2RG with the name patSetup2, assuming that the CSB has been used to
switch to the serial interface. Only VCLK and FSYNCB are relevant then. 16 edges VCLK are
used to trigger the transmission of 16 bits:

vclk

/fsync

pattern bits 16-31 (hex) 1 3 1 3 0 2 1 3 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 1 3 1 3 0 2 0 2 0 1 1 1 1 1 1 1

word 144 145 ... 182 183

PDCK = PDCKWM = 0) This effectively sets IFCTRL = DOEN = 1, PDCK = PDCKWM =
0 (data bits 0000 0000 1100) in the OptionsReg (address 1101) by including init pat H2RG ser.
The init pat H4RG ser does the same for the Hawaii-4RG OptionsReg (address 1111).

Defined in init pat H2RG with the name patNone:

stcon1

stcon0

pattern bits 0-15 (hex) 1 1

bufdis

hvw

reseten

readen

hclk

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 95 95

word 141 142

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 47

Defined in init pat H2RG with the name patFSync:

stcon1

stcon0

pattern bits 0-15 (hex) 1 1 1 1 1 1 1

bufdis

hvw

reseten

readen

hclk

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 95 94 95 95 95 95 95

word 7 8 9 10 11 12 13

Defined in init pat H2RG with the name patVLS:

stcon1

stcon0

pattern bits 0-15 (hex) 1 1 1 1 1 1 1

bufdis

hvw

reseten

readen

hclk

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 95 95 95 91 95 97 95

word 21 22 23 24 25 26 27

48 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

Defined in init pat H2RG with the name patNoRes:

stcon1

stcon0

pattern bits 0-15 (hex) 1 1 1

bufdis

hvw

reseten

readen

hclk

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 95 95 95

word 38 39 40

Defined in init pat H2RG with the name patPIXnoConv, including pat ems PIXnoConv H2RG:

stcon1

stcon0

pattern bits 0-15 (hex) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

bufdis

hvw

reseten

readen

hclk

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 95 95 95 9d 9d 9d 9d 9d 9d 9d 9d 9d 9d 9d 9d 9d 95 95

word 61 62 78

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 49

Defined in init pat H2RG with the name patNoPIXnoConv, including pat ems NoPIXnoConv H2RG:

stcon1

stcon0

pattern bits 0-15 (hex) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

bufdis

hvw

reseten

readen

hclk

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95

word 113 114 127 128

Defined in init pat H2RG with the name patLSyncNoRes:

stcon1

stcon0

pattern bits 0-15 (hex) 1 1 1 1 1 1 1

bufdis

hvw

reseten

readen

hclk

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 95 95 95 91 95 95 95

word 41 42 43 44 45 46 47

50 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

Defined in init pat H2RG with the name patRes:

stcon1

stcon0

pattern bits 0-15 (hex) 1 1 1

bufdis

hvw

reseten

readen

hclk

/lsync

vclk

/fsync

pattern bits 16-31 (hex) b5 95 95

word 28 29 30

Defined in init pat H2RG with the name patPIXwConv, and including pat ems PIXwConv H2RG

where ems=4 [10, Fig. 7]:

stcon1

stcon0

pattern bits 0-15 (hex) 1 1 1 3 2 3 3 2 3 3 2 3 3 2 3 3 1 1

bufdis

hvw

reseten

readen

hclk

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 95 95 95 9d 9d 9d 9d 9d 9d 9d 9d 9d 9d 9d 9d 9d 95 95

word 77 78 93 94

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 51

Defined in init pat H2RG with the name patConvOnly, and including pat ems ConvOnly H2RG

where ems=4:

stcon1

stcon0

pattern bits 0-15 (hex) 1 1 1 3 2 3 3 2 3 3 2 3 3 2 3 3 1 1

bufdis

hvw

reseten

readen

hclk

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95

word 95 96 111 112

Defined in init pat H2RG with the name patItime:

stcon1

stcon0

pattern bits 0-15 (hex) 1 1

bufdis

hvw

reseten

readen

hclk

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 85 85

word 129 130

52 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

Defined in init pat H2RG with the name patItimeRDen:

stcon1

stcon0

pattern bits 0-15 (hex) 1 1

bufdis

hvw

reseten

readen

hclk

/lsync

vclk

/fsync

pattern bits 16-31 (hex) 95 95

word 136 137

6.3.2 Initial Pattern

Note that there are holes in the words explained above, where other patterns are defined/uploaded
but not yet relevant after boot time. They exist in preparation for subwindows, electronic multi-
sampling or other parameters that may be relevant when the operator starts to use the detector.
Note also that there are some redundant pieces here.11

There are 7 layer-6 control-FPGA programs defined at that time.

1. Number 0 keeps all signals frozen (at 616 nsec clock) and enabled as in patSetup2, but may
toggle from an infinite loop to a single execution in layer 3:

718 0 0 0 1 1

717 0 0 0 3 1

715 0 0 0 1 65535

714 0 0 0 1 1

713 0 0 0 1 1 0 0

712 0 0 185 186 1 60 1 4088

patSetup1

715 0 1 1 2 1

714 0 1 1 2 1

713 0 1 1 2 1 0 0

712 0 1 144 183 1 60 1 4088

patSetup2

715 0 2 0 1 65535

2. Number 1 is a single action that disables the stcon by masking a byte (selected with a specific
bit in the last parameter, 4080) (51 nsec clock):

718 0 1 4 5 1

717 0 4 3 4 1

715 0 3 7 8 1

714 0 7 3 4 1

713 0 3 3 4 1 0 0

712 0 3 141 142 1 4 1 4080

patNone

11e.g. because patNone and patSetup2 are the same, lay1ConvOn and lay1Setup2 are actually the same pattern.

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 53

3. Number 2 is an infinite loop, containing two sequential subroutines in layer 4. The first
subroutine is essentially a frame sync followed by 2048 advances along the slow direction
(where 2048 is the number of pixels along each of the 32 channels of the Hawaii-2RG and is
replaced by 4096 if a Hawaii-4RG is present), and the second subroutine sets the bit for the
break point ID 1 (represented by the final 8 in the 712 command). Each advance along the
slow direction contains 2 + 63 = 65 horizontal clocks without triggering ADC’s—where 64 is
the width of a channel for the Hawaii-2RG and also the envisioned Hawaii-4RG—a line sync
and reset, and again 128 horizontal clocks, altogether a LIR pattern without conversion:

718 0 2 3 4 4294967295

717 0 3 9 11 1

715 0 9 5 6 1

714 0 5 28 30 1

713 0 28 15 16 1 0 0

712 0 15 7 13 1 60 1 0

patFSync

713 0 29 55 65 2048 0 0

712 0 55 21 27 1 60 1 0

patVLS

712 0 56 38 40 1 60 1 0

patNoRes

712 0 57 61 76 2 52 1 0

patPIXnoConv

712 0 58 61 76 63 52 1 0

patPIXnoConv

712 0 59 113 128 1 52 1 0

patNoPIXnoConv

712 0 60 41 47 1 60 1 0

patLSyncNoRes

712 0 61 28 30 1 60 1 0

patRes

712 0 62 61 76 2 52 1 0

patPIXnoConv

712 0 63 61 76 63 52 1 0

patPIXnoConv

712 0 64 113 128 1 52 1 0

patNoPIXnoConv

715 0 10 6 7 1

714 0 6 2 3 1

713 0 2 2 3 1 0 0

712 0 2 141 142 1 4 1 8

patNone

This implements the initial default of the idle loop (wait in Lir mode).

4. Number 3 enables all outputs with a 4088 value of the last parameter, so it would revert the
status left by Number 1:

718 0 3 5 6 1

717 0 5 4 5 1

715 0 4 8 9 1

714 0 8 4 5 1

713 0 4 4 5 1 0 0

712 0 4 141 142 1 4 1 4088

patNone

A subsequent read will use the 764 command with the break point in Program 2 to execute
Programs 3 to last pattern in an endless loop (764 0 3 7 65535 1).

5. Number 4 is like Number 2, but (i) the conversion (ADC’s triggers) are enabled in the
subroutine that walks through the pixels along the slow direction, and (ii) there is a filler

54 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

with patItime patterns with by three actions in layer-1 with zero loop counts, effectively
zero additional integration time: (iii) there is a second walk through the pixels along the slow
direction.12

718 0 4 12 14 1

717 0 12 21 23 1

715 0 21 27 29 1

714 0 27 30 32 1

713 0 30 15 16 1 0 0

712 0 15 7 13 1 60 1 0

patFSync

713 0 31 35 45 2048 0 0

712 0 35 21 27 1 60 1 0

patVLS

712 0 36 38 40 1 60 1 0

patNoRes

712 0 37 61 76 2 52 1 0

patPIXnoConv

712 0 38 77 94 63 52 1 0

patPIXwConv

712 0 39 95 112 1 52 1 0

patConvOnly

712 0 40 41 47 1 60 1 0

patLSyncNoRes

712 0 41 28 30 1 60 1 0

patRes

712 0 42 61 76 2 52 1 0

patPIXnoConv

712 0 43 77 94 63 52 1 0

patPIXwConv

712 0 44 95 112 1 52 1 0

patConvOnly

714 0 28 34 35 1

713 0 34 12 15 1 0 0

712 0 12 129 130 0 999 3 0

patItime

712 0 13 129 130 0 99 2 0

patItime

712 0 14 129 130 0 4 1 0

patItime

715 0 22 6 7 1

714 0 6 2 3 1

713 0 2 2 3 1 0 0

712 0 2 141 142 1 4 1 8

patNone

717 0 13 23 24 1

715 0 23 47 48 1

714 0 47 30 32 1

The readout of the 64 pixels in the horizontal direction of a channel is split into 2× patPIXnoConv,
63× patPIXwConv and 1×patConvOnly, so the pixel ‘address’ stands at the ‘end’ of the line
at the start of the (optional, residual) integration time. (The readout of the 64 pixels requires
66 falling HCLK edges [11, Fig. 5-4]. Isn’t one missing, or is the last, overclocking one only
needed to generate the optional LINECHK signal?).

After splitting the residual integration time into three different intervals (at 10.1 sec, 1.01
msec, 50.5 nsec with three different prescaler choices) the main program will later on overload
the layer-1 commands (words 12, 13 and 14) at the three actions to realize any integration
time that is longer than the minimum integration time.

12The second ramp of the LIR pattern is basically enforced here, and manipulation of the loop count in the first
ramp may increase the cycle repetition to larger values. . .

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 55

6. Number 5 is the same as Number 1:

718 0 5 4 5 1

This means after exit of the read-loop of Number 4 the idle loop is started.

7. Number 6 is the same infinite loop as Number 2:

718 0 6 3 4 4294967295

The commands in init H2RG reset some registers to default values, start to run Program 0, switch
the CSB, end the inherent infinite loop at layer 4 such effectively patSetup2 is executed, switch
again the CSB and end the loop at layer 6, such that Program 1 is executed and then Program 2
(the idle loop).

56 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

6.3.3 ADC pattern

For a single Hawaii-2RG the ADC pattern is exactly the same as in section 6.2.4.

For the CARMENES case each of the two chips is served by its dedicated ADC36 board, and the
serialization of the two data streams runs in parallel on these two boards. The board-select bit
pattern is 10012 = 9 to mark two boards. The following diagram shows the transmission of the
first 8 pixels of each chip via 4 send triggers:

send

send 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

OutCP bit 0

OutCP bit 1

OutCP bit 2

OutCP bit 3

OutCP 0 0 0 10 10 10 15 15 0 0 10 10 10 15 15 0 0 10 10 10 15 15 0 0 10 10 10 15 15

Brd Sel bit 0

Brd Sel bit 1

Brd Sel bit 2

Brd Sel bit 3

Brd Select 9

Chn Sel bit 0

Chn Sel bit 1

Chn Sel bit 2

Chn Sel bit 3

Chn Sel bit 4

Chn Sel bit 5

Chn Sel bit 6

Chn Sel bit 7

Chn Select 0 0 0 1 1 1 1 2 2 2 3 3 3 3 4 4 4 5 5 5 5 6 6 6 7 7 7 7 8

word 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

515 0 0 0 1 65535

514 0 0 0 1 1

513 0 0 0 1 1

511 0 0 0 0 0 9 0

511 0 1 0 0 0 9 0

511 0 2 0 0 0 9 0

511 0 3 0 10 0 9 1

511 0 4 0 10 0 9 1

511 0 5 0 10 0 9 1

511 0 6 0 15 0 9 1

511 0 7 1 15 0 9 2

511 0 8 0 0 0 9 2

511 0 9 0 0 0 9 2

511 0 10 0 10 0 9 3

511 0 11 0 10 0 9 3

511 0 12 0 10 0 9 3

511 0 13 0 15 0 9 3

511 0 14 1 15 0 9 4

511 0 15 0 0 0 9 4

511 0 16 0 0 0 9 4

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 57

511 0 17 0 10 0 9 5

511 0 18 0 10 0 9 5

511 0 19 0 10 0 9 5

..

511 0 107 0 0 0 9 30

511 0 108 0 10 0 9 31

511 0 109 0 10 0 9 31

511 0 110 0 10 0 9 31

511 0 111 0 15 0 9 31

511 0 112 1 15 0 9 32

The envisioned scheme for the PANIC Hawaii-4RG is again the same, because 32 channels are
served by one board, the other 32 by the other board. The ROE wiring selects that outputs 0–31
are moved to one board, outputs 32–63 into the other.

For the AIP configuration, two chips share the same fiber channel, so there is a pattern where the
first and the last board are selected (Board-select 10012 = 9), followed by a second pattern where
the two middle boards are selected (Board-select 01102 = 6):

515 0 0 0 1 65535

514 0 0 0 1 1

513 0 0 0 1 1

511 0 0 0 0 0 9 0

511 0 1 0 0 0 9 0

511 0 2 0 0 0 9 0

511 0 3 0 10 0 9 1

511 0 4 0 10 0 9 1

511 0 5 0 10 0 9 1

511 0 6 0 15 0 9 1

511 0 7 1 15 0 9 2

511 0 8 0 0 0 9 2

511 0 9 0 0 0 9 2

511 0 10 0 10 0 9 3

511 0 11 0 10 0 9 3

511 0 12 0 10 0 9 3

511 0 13 0 15 0 9 3

511 0 14 1 15 0 9 4

511 0 15 0 0 0 9 4

511 0 16 0 0 0 9 4

511 0 17 0 10 0 9 5

511 0 18 0 10 0 9 5

511 0 19 0 10 0 9 5

..

511 0 107 0 0 0 9 30

511 0 108 0 10 0 9 31

511 0 109 0 10 0 9 31

511 0 110 0 10 0 9 31

511 0 111 0 15 0 9 31

511 0 112 1 15 0 9 32

511 0 113 0 0 0 6 0

511 0 114 0 0 0 6 0

511 0 115 0 0 0 6 0

511 0 116 0 10 0 6 1

511 0 117 0 10 0 6 1

511 0 118 0 10 0 6 1

511 0 119 0 15 0 6 1

511 0 120 1 15 0 6 2

511 0 121 0 0 0 6 2

511 0 122 0 0 0 6 2

511 0 123 0 10 0 6 3

511 0 124 0 10 0 6 3

..

511 0 219 0 0 0 6 30

511 0 220 0 0 0 6 30

511 0 221 0 10 0 6 31

511 0 222 0 10 0 6 31

511 0 223 0 10 0 6 31

58 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

511 0 224 0 15 0 6 31

511 0 225 1 15 0 6 32

Since this serialization needs roughly twice as long as the one of Section 6.2.4, the transfer of the
4 × 32 pixels is equivalent to a pixel clock limited to 590 kHz such that the speed limit is set by
the serialization, not by the 800-kHz ADC conversion.

For the Hawaii-4RG in a 32-channel mode we still need both boards to read the entire detector,
because in 32-output mode the chip pushes data through the odd-numbered outputs 1, 3, 5,. . . 63
and the MPIA wiring connects 0–31 with one board, 32–63 with the other. Only 16 of the ADC’s
of each board are streamed into the fibers. The associated ADC timing in the file init adc chan16

starts like this:

send

send 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

OutCP bit 0

OutCP bit 1

OutCP bit 2

OutCP bit 3

OutCP 0 0 0 10 10 10 15 15 0 0 10 10 10 15 15 0 0 10 10 10 15 15 0 0 10 10 10 15 15

Brd Sel bit 0

Brd Sel bit 1

Brd Sel bit 2

Brd Sel bit 3

Brd Select 9

Chn Sel bit 0

Chn Sel bit 1

Chn Sel bit 2

Chn Sel bit 3

Chn Sel bit 4

Chn Sel bit 5

Chn Sel bit 6

Chn Sel bit 7

Chn Select 0 1 1 1 3 3 3 3 5 5 5 7 7 7 7 9 9 9 11 11 11 11 13 13 13 15 15 15 15

word 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

The file init adc chan8 serves to read the Hawaii-4RG in a 16-channel mode and transporting
only the outputs 3, 7, 11, . . . 63:

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 59

send

send 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

OutCP bit 0

OutCP bit 1

OutCP bit 2

OutCP bit 3

OutCP 0 0 0 10 10 10 15 15 0 0 10 10 10 15 15 0 0 10 10 10 15 15 0 0 10 10 10 15 15

Brd Sel bit 0

Brd Sel bit 1

Brd Sel bit 2

Brd Sel bit 3

Brd Select 9

Chn Sel bit 0

Chn Sel bit 1

Chn Sel bit 2

Chn Sel bit 3

Chn Sel bit 4

Chn Sel bit 5

Chn Sel bit 6

Chn Sel bit 7

Chn Select 0 3 3 3 7 7 7 7 11 11 11 15 15 15 15 19 19 19 23 23 23 23 27 27 27 31 31 31 31

word 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

init adc chan4 can be used to read the Hawaii-2RG in a 4-channel mode handling only the outputs
7, 15, 23 and 31:

60 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

send

send 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

OutCP bit 0

OutCP bit 1

OutCP bit 2

OutCP bit 3

OutCP 0 0 0 10 10 10 15 15 0 0 10 10 10 15 15 0 0 10 10 10 15 15 0 0 10 10 10 15 15

Brd Sel bit 0

Brd Sel bit 1

Brd Sel bit 2

Brd Sel bit 3

Brd Select 9

Chn Sel bit 0

Chn Sel bit 1

Chn Sel bit 2

Chn Sel bit 3

Chn Sel bit 4

Chn Sel bit 5

Chn Sel bit 6

Chn Sel bit 7

Chn Select 0 7 7 7 15 15 15 15 23 23 23 31 31 31 31 7 7 7 15 15 15 15 23 23 23 31 31 31 31

word 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Here a cycle is 2 triggers sending 4 pixel values.

Then there is init adc chan4.panic which is used to read the Hawaii-4RG in a 4-channel mode
handling only the outputs 15, 31, 47 and 63, which from the two individual ADC-boards of view
means the outputs 15 and 31 are send with a single trigger through the fibers. (Timing not shown
here.)

The base clock for the ADC process is slowed down from the 7.5 ns by factors of 2 and 4 for these
slowlier cases, and their channel select bits moved away from the OutCP bit triggers by one clock.

6.3.4 Idle ReadWoConv

If one sends the command to GEIRS to switch to the idle mode ReadWoConv the patterns that
clock through detector chip are replaced by patterns in Program 2 that clock through the detector
and trigger ADC conversions, just as for the Hawaii-2 case. Assuming the LIR main read mode,
the pattern layers then become

718 0 1 4 5 1

717 0 4 3 4 1

715 0 3 7 8 1

714 0 7 3 4 1

713 0 3 3 4 1 0 0

712 0 3 145 146 1 4 1 4080

patNone

718 0 2 12 14 4294967295

717 0 12 21 23 1

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 61

715 0 21 27 29 1

714 0 27 30 32 1

713 0 30 15 16 1 0 0

712 0 15 7 13 1 60 1 0

patFSync

713 0 31 35 45 2048 0 0

712 0 35 21 27 1 60 1 0

patVLS

712 0 36 38 40 1 60 1 0

patNoRes

712 0 37 61 78 2 52 1 0

patPIXnoConv

712 0 38 79 96 63 52 1 0

patPIXwConv

712 0 39 97 114 1 52 1 0

patConvOnly

712 0 40 41 47 1 60 1 0

patLSyncNoRes

712 0 41 28 30 1 60 1 0

patRes

712 0 42 61 78 2 52 1 0

patPIXnoConv

712 0 43 79 96 63 52 1 0

patPIXwConv

712 0 44 97 114 1 52 1 0

patConvOnly

714 0 28 34 35 1

713 0 34 12 15 1 0 0

712 0 12 133 134 0 999 3 0

patItime

712 0 13 133 134 0 99 2 0

patItime

712 0 14 133 134 0 4 1 0

patItime

715 0 22 6 7 1

714 0 6 2 3 1

713 0 2 2 3 1 0 0

712 0 2 145 146 1 4 1 8

patNone

717 0 13 23 24 1

715 0 23 47 48 1

714 0 47 30 32 1

718 0 3 5 6 1

717 0 5 4 5 1

715 0 4 8 9 1

714 0 8 4 5 1

713 0 4 4 5 1 0 0

712 0 4 145 146 1 4 1 4088

718 0 4 12 14 1

718 0 5 4 5 1

718 0 6 12 14 4294967295

Note that Program 0, 5 and 6 are still present in the layers, but GEIRS sends a 716 0 1 5 65535

to the ROE such that only Programs 1 to 4 are executed. Program 1 still disables the output of
the stcon signals.

6.4 Pattern Examples

The basic coordinate system on each detector is a horizontal direction ranging in each channel from
1 to 64 (Hawaii-2RG, Hawaii-4RG) or 1 to 128 (Hawaii-2), and an orthogonal vertical direction
ranging from 1 to 2048 (Hawaii-2RG), 1 to 4096 (Hawaii-4RG), or 1 to 1024 (Hawaii-2); we assume
readout patterns with 32 channels for Hawaii-2 and Hawaii-2RG, and readout patterns with 64

62 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

channels for Hawaii-4RG .13. The horizontal direction is also called the fast (f) direction, because
the pixel pointer of reading the detector is along that direction changes fastest. The vertical
direction is also called the slow (s) direction because that coordinate changes slowlier in time.

6.4.1 LIR

Figure 6 shows the scanning of director with the LIR pattern over the time coordinate [7]. Green is
a pixel read, red is a line reset. We address the first row (s = 1) and read each channel along its fast
direction (f = 1 . . . 74). This happens for all 32 channels at the same time, and only one of these
channels is pictures. After (s = 1, f = 64) has been read, the first row is completed; a reset over the
entire line follows, and once again the first row (s = 1) is read over all pixles (f = 1 . . . 64). This
triple of read-reset-read is repeated for all coordinates, incrementing the slow coordinate until we
have reached the last row and last pixel, which is s = 2048 for the Hawaii-2RG case. The duration
of one green block is the pixel clock, 10 µs for the standard 100 kHz readout speed. Ignoring the
small overhead of resets and sync operations, the pattern needs 64× 2× 2048× 10µ s = 2.53 s for
this standard scan of the Hawaii-2RG.

s1 f1

s1 f3

s1 f2

s1 f64

Time

s2 f1

s2 f2

s2 f64

s2048 f1

s2048 f64

Figure 6: The LIR (line integrated read) pattern. Only the first read-reset-read scan is shown.
Line sync, frame syncs and other administrative details are not shown.

The scans of Figure 6 are repeated one more times than the number of images requested, twice
for 1 image, thrize for 2 images and so on, as illustrated in Figure 7. The gap time between the
two vertical lines is filled with the patItime pattern tuned such that the distance between two
correlated reads of a pixels becomes the integration time.

6.4.2 SRR

Figure 8 illustrates the first three ramps in the sample-up the ramp (SRR) mode. The first ramp
uses a single line reset which is followed by a single read of each pixel in the line. Again we assume

13These are the two directions from the pattern perspective; The FITS or display directions may differ because
GEIRS has two parameters that allow to flip and/or rotate these coordinate systems.

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 63

s1 f1
Time

s2048 f1

s2048 f64

itime itime itime

gap

Figure 7: The LIR (line integrated read) pattern on a coarse time scale, assuming 4 ramps that
yield 3 correlated double reads. Each of the green-red-green patterns summarizes one of the scans
of Figure 6.

32 readout channels run in parallel, such that we need 64 reads in each channel for a Hawaii-2RG.
The following ramps have no line resets.

Ignoring the small times for resets and sync overheads, a ramp needs 64 × 2048 × 10µ s = 1.3 s
assuming 64 pixels in each channel, the 2048 pixels along the slow direction of the Hawaii-2RG,
and the 10 µs (100 kHz) standard pixel clock. The integration time divided by one less than the
number of ramps (both parameters set by the operator) defines a subintegration time, and what is
left over from one ramp time is filled with the patItime.

Looking at Figure 8 on coarser time scales yields Figure 9.

6.4.3 O2DCR

The Omega-2000 douple-correlated read pattern is [7]

718 0 4 11 12 1

717 0 11 19 21 1

715 0 19 14 20 1

714 0 14 15 17 1

713 0 15 15 16 1 0 0

712 0 15 7 13 1 60 1 0

patFSync

713 0 16 30 32 2048 0 0

712 0 30 21 27 1 60 1 0

patVLS

712 0 31 28 30 1 60 1 0

patRes

714 0 15 25 26 1

713 0 25 15 16 1 0 0

712 0 15 7 13 1 60 1 0

patFSync

714 0 16 18 19 2048

713 0 18 35 40 1 0 0

712 0 35 21 27 1 60 1 0

patVLS

64 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

s1 f64

Time

s2 f1
s2 f2

s2048 f1

s1 f1
s1 f2

s1 f3

s2 f64

Sub−integr. time

integration time

s2048 f64

gap gap

Figure 8: The SRR (sample-up the ramp) pattern. Only the first 3 ramps are indicated. Line sync,
frame syncs and other administrative details are not shown.

712 0 36 38 40 1 60 1 0

patNoRes

712 0 37 61 80 2 51 1 0

patPIXnoConv

712 0 38 81 100 63 51 1 0

patPIXwConv

712 0 39 101 120 1 51 1 0

patConvOnly

714 0 17 34 35 1

713 0 34 12 15 1 0 0

712 0 12 141 142 0 999 3 0

patItime

712 0 13 141 142 0 99 2 0

patItime

712 0 14 141 142 0 4 1 0

patItime

714 0 18 25 26 1

713 0 25 15 16 1 0 0

712 0 15 7 13 1 60 1 0

patFSync

714 0 19 18 19 2048

713 0 18 35 40 1 0 0

712 0 35 21 27 1 60 1 0

patVLS

712 0 36 38 40 1 60 1 0

patNoRes

712 0 37 61 80 2 51 1 0

patPIXnoConv

712 0 38 81 100 63 51 1 0

patPIXwConv

712 0 39 101 120 1 51 1 0

patConvOnly

715 0 20 6 7 1

714 0 6 2 3 1

713 0 2 2 3 1 0 0

712 0 2 153 154 1 4 1 8

patNone

where the main difference to the LIR mode is that the line resets are bundled first, executed as fast
as possible, such that the first read (the refrence frame) has an integrated flux linearly depending

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 65

s1 f1
Time

s2048 f1

s2048 f64

Integration time (1st read)
Integration time (2nd read)

Figure 9: The SRR (sample-up the ramp) pattern with 5 ramps for each read. The figure sketches
the first read plus (assuming there is more than one read) the first 4 ramps of the next read.

on the position of the pixel along the slow direction: Figure 10.

s1 f1

s1 f3
s1 f2

s1 f64

Time

s2 f1
s2 f2

s2 f64

s2048 f64

s2048 f1

Integration time

gap

Figure 10: The O2DCR (Omega-2000 douple correlated read) pattern. Only one read is indicated.
Line sync, frame syncs and other administrative details are not shown.

6.4.4 FECR

The FECR (fast end-of-line correlated read) pattern is [7]

718 0 4 27 29 1

717 0 27 24 25 1

715 0 24 63 65 1

714 0 63 25 26 1

713 0 25 15 16 1 0 0

712 0 15 7 13 1 60 1 0

66 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

patFSync

714 0 64 12 15 2048

713 0 12 35 37 1 0 0

712 0 35 21 27 1 60 1 0

patVLS

712 0 36 38 40 1 60 1 0

patNoRes

713 0 13 9 12 1 0 0

712 0 9 61 80 2 51 1 0

patPIXnoConv

712 0 10 61 80 63 51 1 0

patPIXnoConv

712 0 11 121 140 1 51 1 0

patNoPIXnoConv

713 0 14 40 42 1 0 0

712 0 40 41 47 1 60 1 0

patLSyncNoRes

712 0 41 28 30 1 60 1 0

patRes

717 0 28 43 45 1

715 0 43 58 63 1

714 0 58 25 26 1

713 0 25 15 16 1 0 0

712 0 15 7 13 1 60 1 0

patFSync

714 0 59 20 21 2048

713 0 20 45 52 1 0 0

712 0 45 21 27 1 60 1 0

patVLS

712 0 46 38 40 1 60 1 0

patNoRes

712 0 47 61 80 2 51 1 0

patPIXnoConv

712 0 48 81 100 63 51 1 0

patPIXwConv

712 0 49 101 120 1 51 1 0

patConvOnly

712 0 50 41 47 1 60 1 0

patLSyncNoRes

712 0 51 38 40 1 60 1 0

patNoRes

714 0 60 34 35 1

713 0 34 12 15 1 0 0

712 0 12 141 142 0 999 3 0

patItime

712 0 13 141 142 0 99 2 0

patItime

712 0 14 141 142 0 4 1 0

patItime

714 0 61 25 26 1

713 0 25 15 16 1 0 0

712 0 15 7 13 1 60 1 0

patFSync

714 0 62 19 20 2048

713 0 19 35 42 1 0 0

712 0 37 61 80 2 51 1 0

patPIXnoConv

712 0 38 81 100 63 51 1 0

patPIXwConv

712 0 39 101 120 1 51 1 0

patConvOnly

715 0 44 6 7 1

714 0 6 2 3 1

713 0 2 2 3 1 0 0

712 0 2 153 154 1 4 1 8

patSetup1

So the line resets occur first and are slowed down (by pixel clocks) such that their average slope is

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 67

the same as for a single read. The resets for the first read of the second image are integrated into
the reads of the second frame of the first image (Figure 11).

s1 f64

Time

s2 f1
s2 f2

s2048 f1

s1 f1
s1 f2

s1 f3

s2 f64

s2048 f64

Integration Time

gap

Figure 11: The FECR douple correlated read pattern. Only one read is indicated. The white
rectangles are dummy pixel advances without ADC conversion, which do not generate data. Line
sync, frame syncs and other administrative details are not shown.

68 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

7 TROUBLE-SHOOTING

7.1 Connectivity

7.1.1 Linux Driver

1. If the two parts of the software, shared memory manager and command manager have been
shut down inapproprietly (by using kill(1)), shared memory blocks are still allocated and
sockets left open. This will let another attempt to start GEIRS fail. The general advice is to
call

geirs_cleanup -t

geirs_cleanup -v

and then try again to start the server; geirs cleanup is in the PATH as set up in [8].

2. Error messages of the form

libplxmpia.c:233: [plx_find_device] ERROR) Error in Plx device found

(u=2/chan=0): ffff ffff [bus ff slot ff fn ff]

or

ERROR Error: plx_find_device: ’PLX ApiError 516 - ApiNoActiveDriver’

mean that the driver for the board that interfaces with the RoCon fiber optics has died or not
been installed. This is usually cured by either fixing this at boot time (see [8]) or executing

cd $CAMHOME/scripts

sudo plxstartup

It may also mean that the currently installed driver is not the one (not the version) with
which the GEIRS source code has been compiled. A typical scenario for this error is that
after an upgrade of the PLX driver start instrument old fails because the binary residing
in the old bin* directory is linked to a library in /usr/src which has been changed.

7.1.2 Workstation to ROE

Some generic attempts to open a port to the ROE are the commands

telnet server port

and

nc -z server port

detailed in the manuals telnet(1) and nc(1).

The first sign of then being connected to the ROE are two lines of the kind

INFO Seen ROE3 rocon ’DETFPGA’ version ’3 1 7 5’

INFO Seen ROE3 rocon ’ADCFPGA’ version ’3 0 2 2’

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 69

printed by GEIRS to stdout at startup (unless the offline mode had been selected). The Seen
actually indicates that the firmware identifications of the two FPGA had been read. This may
later on be repeated from the GEIRS shell with the 550 command in the style of [4]

Nirvanamathar> pipe 33 550 0

INFO Seen ROE3 rocon ’ADCFPGA’ version ’3 0 2 2’

33 550 0 2 3 0 2 2

33 550 0 1

or using a neutral (harmless) query for the status of the LED’s (510) like

Nirvanamathar> pipe 33 510 0

33 510 0 2 0

33 510 0 1

In addition one may watch the effect of the associated enable/disable commands for the lights, 508
and 509. (Their meaning is erroneous and swapped in the current documentation [12]).

If the readout electronics does not receive any data from the detector, the ADCs are reading only
their internal noise. The detector images then do not show any of their characteristic bad pixels
and look very smooth, with a very shallow impression of the horizontal and vertical stripes of the
channels, similar to Figure 12, and almost all ADU values in the range ±1.

Figure 12: Noisy image of the ROE running ADC’s without detector.

Another test picture can be taken by switching the ROE to data simulator mode

ctype sfr

roe simadc 1

70 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

and comparing the frame with Figure 13. This shows actually 32 different values (which appear as

Figure 13: Image from the ROE FPGA data simulator with a single-frame-read for the Hawaii-2.

only 4 different values caused by the contrast) with the following values [6]:

• Quadrant I, channels 1 to 8 (right to left): 256, 273, 290, 307, 324, 341, 358, 375.

• Quadrant II, channels 9 to 16 (top to bottom): 4744, 4761, 4778, 4795, 4812, 4829, 4846,
4863.

• Quadrant III, channels 17 to 24 (left to right): 9216, 9233, 9250, 9276, 9284, 9301, 9318, 9335

• Quadrant IV, channels 25 to 32 (bottom to top): 14472, 14489, 14506, 14523, 14540, 14557,
14574, 14591.

If fiber channels were swapped, only zeros appear.

7.1.3 Data Generator (with GEIRS)

Another basic test of the connectivity between the PCIe board and the workstation is to generate
a single full-frame image with the data generator [6],

> rotype dgen 30

> ctype sfr

which ought to look like Figure 14 in FITS readers or the GEIRS engineering GUI. For other ctype
settings one should switch the GEIRS GUI to the single frames style to observe how the ramp
of integers of the data generators is distributed in the GEIRS or FITS coordinates via the index
tables (depending on the current rotation and flip parameters).14. Also the BAD button should

14To disable the sometimes confusing rotation and flip matrix, it may make sense to set the two environment
variables CAM DETROT90 and CAM DETXYFLIP to 0 in the shell before starting GEIRS

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 71

be de-selected and the button next above be switched to AllPix. For instruments with a single
Hawaii-2 RG chip, the pattern of stripes appears as in Figure 15. This tests that the PCIe board

Figure 14: Image with 8 stripes per Hawaii-2 quadrant from the ROE data generator.

plugged into the workstation can be addressed by the driver software. This is more fundamental
than the check in Section 7.1.2, because it does not reach further than the ‘local’ workstation. It
does not involve any interface between the workstation and the ROE and should even work if fibers
and/or Ethernet connection to the ROE are missing/unplugged.

If this (possibly with a repeat factor larger than 1) is saved with the ‘dump’ option, save -d, a
binary file is created in the standard save-directory with a file suffix .dump. It contains either 16
bit per pixel or 32 bit per pixel (the latter if coadding was involved) in the native byte order of
the GEIRS workstation, in the ‘raw’ order defined by the read-order of the individual ADC’s and
sequentialization with the data transfer to the workstation. (This is 2 × 2048 × 2048 =8,388,608
bytes in the file for each full Nirvana frame in the sfr mode, and a multiple of this for repeats
larger than one.)

The data generator creates a ramp with a 32-bit counter, so the output of

od -i *.dump

should be the list of integers starting at 1:

0000000 1 2 3 4

0000020 5 6 7 8

0000040 9 10 11 12

72 LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097

Figure 15: Image with 32 stripes on a Hawaii-2RG from the ROE data generator. This is the view for
LUCI if one has set export CAM ROTFLIPXY=0 ; export CAM DETROT90=90 before starting GEIRS

0000060 13 14 15 16

0000100 17 18 19 20

0000120 21 22 23 24

0000140 25 26 27 28

..

Each 32 datum (double word) of the data generator is intepreted as two successive 16-bit words
when received by GEIRS, because this matches the ADC bit size. The stream of 1, 2, 3, . . .
65535, 65536, . . . 4194303, 4194304, . . . issued by the data generator for the first 4k pixels is in-
terpreted in low-word-first order as 1, 0, 2, 0, 3, . . . 0, 65535, 0, 0, 1, 1, 1, . . . 65535, 63, 0, 64, The
pattern in the display and FITS files then depends on the type, number and orientation of the
chips in the instrument, plus the sequentialization of the one or more 32 channels by the ROE and
re-shuffling (demultiplixing) within GEIRS.

Another aspect is that in the lir modes GEIRS effectively removes the associated lines of the first
frame. The 32-bit counter counts from 1 to 1024 (in the GEIRS sense) while generating one line
of 2048 pixels. Because the first line is discarded, the lowest integer actually encountered then is
1025 (in single frame viewing mode. . .).

The ‘dump’ option of the save command also creates a raw ASCII dump of the primary FITS
header in a file named *.info. It contains the standard 80 bytes per line without any line feeds or
carriage returns. One way to read this strange format for a file named, say, genDump4.info is

fold genDump4.info | less

An endurance test with the data generator is available. The test is prepared by compiling a data
parser dgenDump and installing the macro dgenDump.mac and the ‘hook’ dgenDumpQf as described

LN-MPIA-MAN-ICS-008 – GEIRS Pattern Constructor – Issue 6.097 73

in the file test/INSTALL. Each time the macro genDump then is called it puts a statistics of the
*.dump files into $CAMHOME/log/dgenDump.log.

	1 OVERVIEW
	1.1 Design
	1.2 Interfaces
	1.3 Acronyms
	1.4 References

	2 FILE NAMES
	2.1 Start of Computation
	2.2 Conventions
	2.3 Cycle Type Conventions
	2.4 Logging

	3 File Syntax
	3.1 Command line expansion
	3.1.1 White Space and Old-fashioned Comments
	3.1.2 Optional Repeat Count
	3.1.3 Optional Embedded Verbose Comment
	3.1.4 Optional Embedded Timing Evaluation
	3.1.5 Further Comment Removal
	3.1.6 Do Loop Expansion

	3.2 Expressions
	3.2.1 State Variables
	3.2.2 Automatic Variables
	3.2.3 Constants
	3.2.4 Operators
	3.2.5 Send Expressions
	3.2.6 Include Expression

	4 TIMING CALCULATIONS
	4.1 Aim
	4.2 Timers
	4.3 Subcommands
	4.3.1 set
	4.3.2 define
	4.3.3 state
	4.3.4 add
	4.3.5 on
	4.3.6 off
	4.3.7 end

	4.4 Functions
	4.4.1 range
	4.4.2 timeof

	5 DETECTOR WINDOWS
	5.1 Principles of Operation
	5.2 Example

	6 PATTERN SCRIPTING
	6.1 Auto-increment Layer-2 Loops
	6.2 Hawaii 2 (i.e., LN)
	6.2.1 RAM Layer Command Format
	6.2.2 Initial Pattern
	6.2.3 Disconnected Patterns
	6.2.4 ADC pattern
	6.2.5 Idle ReadWoConv
	6.2.6 Idle Rlr

	6.3 Hawaii-2RG, Hawaii-4RG
	6.3.1 RAM Layer
	6.3.2 Initial Pattern
	6.3.3 ADC pattern
	6.3.4 Idle ReadWoConv

	6.4 Pattern Examples
	6.4.1 LIR
	6.4.2 SRR
	6.4.3 O2DCR
	6.4.4 FECR

	7 TROUBLE-SHOOTING
	7.1 Connectivity
	7.1.1 Linux Driver
	7.1.2 Workstation to ROE
	7.1.3 Data Generator (with GEIRS)

