A Quick Review of Cosmology: The Geometry of Space, Dark Matter, and the Formation of Structure

Hans-Walter Rix Max-Planck-Institute for Astronomy

Cosmology:

- a) Try to understand the origin, the structure, mass-energy content and the evolution of the universe as a whole.
- b) To understand the emergence of structures and objects ranging from scales as small as stars (10¹⁰ m) to scales much larger than galaxies (~ 10²⁶ m) through gravitational self-organization.

Textbooks: Peacock, Padmanaban

1) Elements of standard world model

 a) Averaged over sufficiently large scales (≥ 1000 Mpc), the universe is approximately homogeneous and isotropic ("cosmological principle").

- b) The universe is expanding so that the distance (to defined precisely later) between any two widely separated points increases as: dI/dt = H(t) * I
- c) Expansion dynamics of the universe are determined by the mass and energy content (General Relativity).
- d) universe had early hot and dense state: big bang
- e) On small scales (≤ 100 Mpc), a great deal of structure has formed, mostly through "gravitational self-organization": stars, galaxy clusters.

2) Homogeneous Cosmology

Starting point:

What is the universe expanding into?

ηThe observable universe is a lower dimensional sub-space expanding within a higher dimensional space.

<u>OR</u>

ηWe can describe the expanding 3D universe without reference to higher dimensions (has proven more useful prescription).

<u>Note:</u> Here, we restrict ourselves to the macrosopic description of curved space; all issues of quantum gravity (string theory) will be left out.

2.1. The Robertson Walker Metric

$$\Rightarrow ds^{2} = dt^{2} - \frac{a^{2}(t)}{c^{2}} \left[dr^{2} + R^{2} \sin^{2}\left(\frac{r}{R}\right) \cdot \left(d\vartheta^{2} + \sin^{2}\vartheta\delta\varphi^{2}\right) \right]$$

R = present-day curvature r = comoving radial coordinates a(t) = expansion or scale factorNB: a(t) subsumes all time dependence that is compatible with the cosmological principle.

- So far, the evolution of *a*(*t*) is unspecified, i.e. no physics yet, just math.
- General relativity will determine a(t) as a function of the mass (energy) density and link it to R!
- The "distances" *r* are not observable, just coordinate distances.

2.2.) General Relativity + Robertson Walker Metric \rightarrow Friedman Equation

Demanding isotropy and homogeneity, the time dependent solution family to Einstein's field equation is quite simple:

$$\frac{\dot{a}(t)}{a(t)} = H_0 \cdot E(z) = H_0 \cdot \sqrt{\Omega (1+z)^3 + \Omega_R (1+z) + \Omega_\Lambda}$$
with $\Omega = \frac{8\pi G\rho_0}{3H_0}$, $\Omega_R = (H_0 a_0 R)^{-2}$, $H_0 = \text{const}$, and $a = (1+z)^{-1}$
 $\Omega_\Lambda = \frac{\Lambda}{3H_0^2}$ and $\Omega_{\text{mass_and_radiation}} + \Omega_R + \Omega_\Lambda = 1$.
a) $\rho_{\text{mass}} \sim a - 3$
b) $\rho_{\text{radiation}} \sim a - 4$
c) $\rho_{\text{vac}} = \text{const.} \Leftrightarrow \Omega_{\text{vac}} = \Lambda c^2 / 3H_0^2$

2.3.) Distance Measure(s) in Cosmology

• In curved and expanding space:

- Is there a unique measure of distance, anyway?
- Some observables do not depend on the expansion history, a(t), which we don't know (yet)!

Dresent epoch Hubble constant
$$H_0 = 100 h \text{ km s}^{-1} \text{ Mpc}^{-1}$$
Hubble time $t_{\rm H} \equiv \frac{1}{H_0} = 9.78 \times 10^9 h^{-1} \text{ yr} = 3.09 \times 10^{17} h^{-1} \text{ s}$ Hubble radius/distance $D_{\rm H} \equiv \frac{c}{H_0} = 3000 h^{-1} \text{ Mpc} = 9.26 \times 10^{25} h^{-1} \text{ m}$ "Omega Matter" $\Omega_{\rm M} \equiv \frac{8\pi G \rho_0}{3 H_0^2}$ "Omega Lambda" $\Omega_{\rm M} \equiv \frac{\Lambda c^2}{3 H_0^2}$ "equiv. Omega curvature" $\Omega_{\rm M} + \Omega_{\Lambda} + \Omega_k = 1$ redshift $z \equiv \frac{\nu_{\rm e}}{\nu_{\rm o}} - 1 = \frac{\lambda_{\rm o}}{\lambda_{\rm e}} - 1$

Luminosity distance

The *luminosity distance* $D_{\rm L}$ is defined by the relationship between bolometric (ie, integrated over all frequencies) flux S and bolometric luminosity L:

$$D_{\rm L} \equiv \sqrt{\frac{L}{4\pi \, S}}$$

 $D_{\rm L} = (1+z) D_{\rm M} = (1+z)^2 D_{\rm A}$

$$S_{\nu} = (1+z) \, \frac{L_{(1+z)\nu}}{L_{\nu}} \, \frac{L_{\nu}}{4\pi \, D_{\rm L}^2} \quad S_{\lambda} = \frac{1}{(1+z)} \, \frac{L_{\lambda/(1+z)}}{L_{\lambda}} \, \frac{L_{\lambda}}{4\pi \, D_{\rm L}^2}$$

$$DM \equiv 5 \log \left(\frac{D_{\rm L}}{10 \, {\rm pc}}\right) \qquad m = M + DM + K \qquad K \text{ is the k-correction}$$
$$K = -2.5 \log \left[(1+z) \frac{L_{(1+z)\nu}}{L_{\nu}} \right] = -2.5 \log \left[\frac{1}{(1+z)} \frac{L_{\lambda/(1+z)}}{L_{\lambda}} \right]$$

5. The Cosmic Microwave Background : Direct Constraint on the Young Universe

A. Overview

- The universe started from a dense and hot initial state ("Big Bang"). As the universe expands, it cools $T(z) \sim \frac{1}{size(z)} \sim 1+z$
- In the "first three minutes" many interesting phenomena occur: e.g. inflation, the ,seeding' of density fluctuations and primordial nucleosynthesis.
- As long as (ordinary, baryonic) matter is ionized (mostly H⁺ and e⁻), it is tightly coupled to the radiation through Thompson scattering (needs free electrons!).
 - Radiation has blackbody spectrum

$$I_{\nu} = \frac{2h\nu^3}{c^2} \cdot \frac{1}{e^{\frac{h\nu}{kT}} - 1}$$

– Mean free path of the photon is small compared to the size of the universe. $$10\ensuremath{10}$$

• We know from present-day measurements that

- As long as $T_{radiation} \ge 4000$ K, there are enough photons with $hv \ge 13.6 \text{ eV}$ to re-ionize virtually every neutral H atom.
- At later epochs (lower $T_{radiation}$), the H⁺ and e⁻ (re)-combine
 - No more Thompson scattering.
 - Photons stream freely, portraying a map of the "last scattering surface", like the surface of a cloud.

B. (Some) Physics of the Microwave Background

When did recombination occur, or what is the redshift of the CMB radiation?

- At that time, the universe was ~ 550,000 years old.
- Only regions with $R < ct_{age}$ can be causally connected.
- Such regions appear under an angle $v \sim 1^{\circ}$.
- Therefore, we might expect that the temperature from patches separated by more than ~ 1° is uncorrelated?

Results of the WMAP Mission

"Standard Cosmological Model"

• Spergel et al 2003 and 2007

BASIC AND DERIVED COSMOLOGICAL PARAMETERS: RUNNING SPECTRAL INDEX MODEL

Parameters	Mean and 68% Confidence Errors
Basic	
Amplitude of fluctuations, A	0.83 ^{+0.09}
Spectral index at $k = 0.05 \text{ Mpc}^{-1}$, n_s	0.93 ± 0.03
Derivative of spectral index, $dn_s/d \ln k$	$-0.031^{+0.016}_{-0.018}$
Hubble constant, h	$0.71^{+0.04}_{-0.02}$
Baryon density, $\Omega_b h^2$	0.0224 ± 0.0009
Matter density, $\Omega_m h^2$	$0.135_{-0.008}^{+0.008}$
Optical depth, $ au$	0.17 ± 0.06
Derived	
Matter power spectrum normalization, σ_8	0.84 ± 0.04
Characteristic amplitude of velocity fluctuations, $\sigma_8 \Omega_m^{0.6}$	$0.38^{+0.04}_{-0.05}$
Baryon density/critical density, Ω_b	0.044 ± 0.004
Matter density/critical density, Ω_m	0.27 ± 0.04
Age of the universe, t_0	$13.7 \pm 0.2 \mathrm{Gyr}$
Reionization redshift, ^a z_r	17 ± 4
Decoupling redshift, <i>z</i> _{dec}	1089 ± 1
Age of the universe at decoupling, t_{dec}	379^{+8}_{-7} kyr
Thickness of surface of last scatter, Δz_{dec}	195 ± 2
Thickness of surface of last scatter, Δt_{dec}	118 ⁺³ / ₋₂ kyr
Redshift of matter/radiation equality, z _{eq}	3233^{-194}_{-210}
Sound horizon at decoupling, r_s	$147 \pm 2 \mathrm{Mpc}$
Angular size distance to the decoupling surface, d_A	$14.0^{+0.2}_{-0.3}$ Gpc
Acoustic angular scale, ^b ℓ_A	301 ± 1
Current density of baryons, <i>n</i> _b	$(2.5 \pm 0.1) imes 10^{-7} { m cm^{-3}}$
Baryon/photon ratio, η	$(6.1^{+0.3}_{-0.2}) \times 10^{-10}$

NOTE.—Fit to the *WMAP*, CBI, ACBAR, 2dFGRS, and Ly α forest data. ^a Assumes ionization fraction, $x_e = 1$. ^b $l_A = \pi d_C/r_s$. See also Spergel et al 2007 (WMAP 3yr data)

6

3. The growth of structure: the evolution of density fluctuations

Goal:

Can we explain quantitatively the observed "structure" (galaxy clusters, superclusters, their abundance and spatial distribution, and the Lyman- α forest) as arising from small fluctuations in the nearly homogeneous early universe?

3.1. Linear Theory of Fluctuation Growth

- Growth from $\delta \rho / \rho \sim 10^{-5}$ to $\delta \rho / \rho \leq 1$ unity, worked out by Jeans (1910) and Lifshitz (1946).
 - But: We (humans) are overdense by a factor of 10^{28} !
 - Galaxies are overdense by a factor of 100 1000.
- We need to work out the rate of growth of $\delta \rho / \rho$ as a function of a(t) [\leftarrow only depends on a(t)!]
- To study the non-linear phase, we will look at
 - Simple analytic approximations (Press-Schechter)
 - Numerical simulations

We start with the continuity equation and neglect radiation and any pressure forces for now:

$$\left(\frac{\partial \rho}{\partial t}\right)_{p} + \vec{\nabla}_{p} \left(\rho \ \vec{\mathbf{v}}_{p}\right) = 0$$

and the equation of motion:

$$\left(\frac{\partial \vec{v}}{\partial t}\right)_{p} + \left(\vec{v}_{p} \cdot \vec{\nabla}_{p}\right) \vec{v}_{p} = -\frac{\vec{\nabla}_{p} p}{\rho} - \vec{\nabla}_{p} \Phi$$

 $abla_p$ is the derivative with respect to the proper (not co-moving) coordinate.

• In addition, we have Poisson's Equation:

$$\nabla_p^2 \Phi = 4\pi \ G\rho$$

• At this point, we have the choice of a co-ordinate system that simplifies the analysis.

20

 As the homogeneous, unperturbed universe is stationary in a coordinate frame that expands with the Hubble flow, we consider these equations in *co-moving coordinates*

in co-moving coordinate positions are constant and velocities are zero

 $\vec{x} = \vec{r}_p(t) / a(t)$

 \vec{x} = comoving position; r_p = proper position

$$\vec{v}_p = \dot{a}(t)\vec{x} + \vec{v}(\vec{x},t)$$

 \vec{v}_{p} = proper velocity \vec{v} = comoving (peculiar) velocity = $a(t)\dot{\vec{x}}$ • Now we separate the uniform part of the density from the perturbation:

$$\rho = \overline{\rho}(t) [1 + \delta(\overline{x}, t)]$$

with $\overline{\rho} = \rho_0 / (1 + z)^3$, accounting for the Hubble expansion

Note that :
$$\frac{\dot{\overline{\rho}}}{\overline{\rho}} = -3\frac{\dot{a}}{a}$$

 To re-write the above equations, we need to explore how these derivatives differ between proper and co-moving coordinate systems:

a) temporal derivatives $\left(\frac{\partial f}{\partial t}\right)_{\text{proper}} = \left(\frac{\partial f}{\partial t}\right)_{\text{comov}} - \left(\frac{\dot{a}}{a}\right)\vec{x}\cdot\vec{\nabla}f$ $\vec{\nabla}f$ taken in the co-moving coordinates

b) spatial derivative $\vec{\nabla} = a(t)\vec{\nabla}_p$

 Apply this to the continuity equation (mass conservation):

$$\left(\frac{\partial}{\partial t} - \frac{\dot{a}}{a}\,\bar{x}\cdot\bar{\nabla}\right)\left\{\overline{\rho}(t)(1+\delta)\right\} + \frac{\overline{\rho}(t)}{a}\bar{\nabla}\left[(1+\delta)(\dot{a}\bar{x}+\bar{v})\right] = 0$$

• If we now use
$$\dot{\rho} = -3\overline{\rho}\dot{a}/a$$
 and $\overline{\nabla}\overline{\rho}(t) = 0$

 $\frac{\partial \delta}{\partial t} + \frac{1}{\alpha} \vec{\nabla} \left[(1 + \delta) \vec{v} \right] = 0$ and assuming δ and \vec{v} are small

$$\frac{\partial \delta}{\partial t} + \frac{1}{a} \left(\bar{\nabla} \cdot \bar{\nu} \right) = 0$$

this is a continuity equation for perturbations!

where $\delta(x) = \frac{\rho(x)}{\rho} - 1$ and \vec{v} is the peculiar velocity

24

Define the *potential perturbation*, $\phi(x,t)$, through

$$\Phi(\bar{x},t) = \frac{4\pi}{3} G\overline{\rho}(t) a^2(t) \cdot x^2 + \varphi(\bar{x},t)$$

$$\Rightarrow \nabla^2 \varphi = 4 \pi G \overline{\rho}(t) a^2(t) \delta$$

differs by a²

perturbative Poisson's Equation in **co-moving** coordinates

Similar operations for the equation of motion in co-moving coordinates!

$$\frac{\partial \vec{v}}{\partial t} + \frac{\dot{a}}{a}\vec{v} = -\frac{1}{a}\vec{\nabla}\varphi$$

<u>Note</u>: because velocities are assumed to be small, the term $\frac{1}{a} \left(\vec{v} \cdot \vec{\nabla} \right) \vec{v}$ has been dropped on the left.

As for the acoustic waves, these equations can be combined to:

$$\frac{\partial^2 \delta}{\partial t^2} + 2 \frac{\dot{a}}{a} \frac{\partial \delta}{\partial t} = 4\pi \ G\rho \ \delta$$

This equation describes the evolution of the fractional density contrast $\delta \equiv \delta \rho / \rho$ in an expanding universe!

Note:

- for da/dt=0 it is a wave/exponential growth equation (= "Jeans Instability")
- the expansion of the universe, $\dot{a}(t)$, acts as a damping term
- Note: this holds (in this simplified form) for any $\delta(x,t)$

 \rightarrow Mapping from early to late fluctuations = f(a(t))!

Simplest solutions:

(1) flat, matter dominated $\Omega_m \sim 1$ universe $\implies \alpha(t) \sim t^{2/3}$

The Ansatz
$$\delta(\bar{x},t) = A(\bar{x})t^a + B(\bar{x})t^{-b}$$

a,b > 0 yields:
 $\delta(t) = At^{2/3} + Bt^{-1}$

or

$$\delta = \frac{\delta\rho}{\rho} \sim a(t) \sim \frac{1}{1+z}$$

A = growing mode; B = decaying mode (uninteresting)

⇒ no exponential growth, but fractional fluctuations grow linearly with the overall expansion!

(2) low-density universe $\Omega_0 \to 0 \Longrightarrow \overline{\rho} \to 0 \implies \delta(\overline{x}, t) = \delta(\overline{x})$

constant with time, i.e. all perturbations are "frozen in"

- (3) accelerating expansion (Cosmological constant) Fractional density contrast decreases (in linear approximation)
- ⇒ all density perturbations grow, but at most proportional to $\frac{1}{1+z}$ for $\Omega_{Mass} \le 1$.

In the pressureless limit the growth rate is independent of the spatial structure.

Linear growth in an expanding universe: Simplest Version

- Growth rate independent of spatial scale, solely a function of a(t).
 1) δ(z)=δ(z=0)/D_{lin}(z) linear growth factor D_{lin}
 2) δ~a(t)~1/(1+z), or slower
- Complications:
 - Gas/radiation pressure
 - Causality, horizons
 - Non-linearity, baryons, ...

3.2. Structure growth beyond linear perturbations: The 'top-hat model' (spherical collapse)

 consider a uniform, spherical perturbation

 $\delta_i = \rho(t_i) / \rho_b(t_i) - 1$ $M = \rho_b (4\pi r_i^3 / 3)(1 + \delta_i)$

$$\frac{d^2r}{dt^2} = -\frac{GM}{r^2} + \frac{\Lambda}{3}r$$

$$\dot{r} = H_0 \begin{bmatrix} \frac{\Omega_0}{r} (1+\delta_i) \frac{r_i^3}{a_i^3} + \Omega_{\Lambda} r^2 - K \end{bmatrix} = 0 \text{ at}$$

turnaround

$$t_{\rm COII} = 2 \int_0^{r_{\rm ta}} \frac{dr}{\dot{r}}$$

Solution for collapsing top-hat ($\Omega_m = 1$)

- turnaround (r=r_{max}, dr/dt=0) occurs at δ_{lin} ~1.06
- collapse (r=0): δ_{lin} ~ 1.69
- virialization: occurs at $2t_{max}$, and $r_{vir} = r_{max}/2$
- where δ_{lin} is the 'linearly extrapolated overdensity'
- → we can use the simple linear theory to predict how many objects of mass M will have `collapsed and virialized' at any given epoch
- How does mass enter? $\delta(init) = f(M)$

e.g. Padmanabhan p³ 282

The halo mass function

• the halo mass function is the number density of collapsed, bound, virialized structures per unit mass, as a function of mass and redshift

 \longrightarrow dn/dM (M, z)

The Press-Schechter Model

- a generic prediction of inflation (supported by observations of the CMB) is that the primordial density field d is a Gaussian random field
- the variance is given by $S = \sigma^2(M)$, which evolves in the linear regime according to the function $D_{lin}(z)$
- at any given redshift, we can compute the probability of living in a place with $\delta > \delta_c$ $p(\delta > \delta_c \mid R) = \frac{1}{2} [1 - erf(\delta_c/(2^{1/2} \sigma(R)))]$

number density of halos (halo mass function):

$$\frac{dn}{dM}(M,z) \, dM = \frac{\bar{\rho_0}}{M} f(S,\omega) \frac{d\sigma}{dM} dM$$

$$\frac{dn}{dM}(M,z) \, dM = \sqrt{\frac{2}{\pi}} \frac{\bar{\rho_0}}{M} \frac{\delta_c(t)}{\sigma^2(M)} \frac{d\sigma}{dM} \exp\left[-\frac{\delta_c^2(t)}{2\sigma^2(M)}\right] dM$$

36

Resulting: cumulative halo mass function

37

Numerical Calculations of Structure growth

(see also Numerical Cosmology Web-Pages at <u>www.aip.de</u> and www.mpa-garching.mpg.de

- Simulate (periodically extended) sub-cube of the universe.
- Gravity only (or include hydrodynamics)
 - Grid-based Poisson-solvers
 - Tree-Codes (N logN gravity solver)
- Up to 10⁹ particles (typically 10⁷)
- Need to specify
 - Background cosmology i.e. a(t), r
 - Initial fluctuation (inhomogeneity) spectrum
 - Assumption of "Gaussian" fluctuations

Expansion History (=Mass Energy Density) Determines the Growth of Structure

The Mass Profiles of Dark Matter Halos in Simulations (Navarro, Frenk and White 1996/7)

$$\rho(r) = \frac{\delta_s}{(r/r_s)(1+r/r_s)^2}$$

$$\delta_c = \frac{200}{3} \frac{c^3}{[\ln(1+c) - c/(1+c)]}$$

With c ~ r_{Vir}/r_s

The halo profiles for different masses and cosmologies have the same "universal" functional form:

 $\rho \sim r^{-1}$ and $\rho \sim r^{-3}$ at small/large radii

Concentration is $f(mass) \rightarrow nearly$ 1 parameter sequence of DM halo mass profiles!

Summary

- The growth of (large scale) structure can be well predicted by
 - Linear theory
 - Press-Schechter (statistics of top-hat)
 - Numerical Simulations
- Density contrast does not grow faster than a(t) under gravity only.
- Several mechanisms can suppress growth
 - Pressure and accelerating expansion