background

Quite recently different classes of AGN host galaxies were found to commonly have globally young stellar population. In the local universe this is valid both for type 2 AGN (Kaufmann et al. 2003, MNRAS, 346, 1055) and more luminous type 1 AGN (Jahnke et al. 2003, 2004a). We now extended this investigation of the stellar composition of quasar host galaxies to redshifts of $z=3$.

databasis

We combine results from our GEMS imaging survey (Rix et al. 2004, ApJS, $152,163)$ with the HST ACS, and ground-based Adaptive Optics with the ESO 3.6 m telescope. The COMBO-17 survey (Wolf et al. 2003, A\&A, 408, 499) yielded about 80 optically selected AGN in the E-CDFS that was subsequently imaged by HST in two filters. So far we studied each ~20 QSO host galaxies in the redshift range $0.5<z<1.1$ (Sánchez et al. 2004) and $1.8<z<2.75$ (Jahnke et al. 2004b) for their morphology and colors.
With AO we observed 3 luminous QSOs at z~2.2 from the Hamburg/ESO Survey (Wisotzki et al. 2000, A\&A 358, 77) in the near infrared H band, and characterized their luminosities and scale lengths (Kuhlbrodt et al. 2005).

GEMS, $0.5<z<1.1$

 Most of the $0.5<z<1.1$ AGN hosts are early type galaxies. About 40\% show distorted morphologies, pointing to recent or ongoing major merger events. A large fraction shows much bluer global optical colours than inactive early type galaxies from GEMS, but not in the range of strong starbursts. The best explanation is a stellar population mix of an old and a few percent in mass of a young (e.g. 100 Myrs) population. Only about $1 / 5$ of the hosts shows a dominating old population.GEMS, $1.8<$ z<2.8
While determination of host morphologies was not possible at this redshift, we can determine individual UV-optical colors for 50% of the hosts and and red limits for the coadded rest. Colors are again inconsistent with pure old stellar populations. Either star formation is ongoing, then the SFR would be similar to that of Lyman Break Galaxies at $z=2.5$. Alternatively a passively fading population of e.g. 100 Myr plus (maybe) an underlying old population is possible.

Top: Observed V-z colors for the $z<1.1$ hosts as a function of redshift (large symbols), compared to simple population models. The solid lines show the expected colors of single stellar populations with different ages, the dashed red lines colors of a dominant old stellar population and varying contribuand varying contribu-
tions from a young steltions from a you
lar population. lar population.
Bottom: Rest-frame col-or-magnitude distribution of the $z<1.1$ hosts compared to inactive galaxies from GEMS at the same redshift. The red sequence of early types (red points) is clearly identified in the field galaxy distribution (at $\mathrm{U}-\mathrm{V}>0.8$). The hosts are mainly early-type galaxies and on average bluer than the red-sequence.

Top: Observed colors (Vz) of the $z>1.8$ hosts (large symbols). Overplot large symbols. Overplot
ted are two single burst ted are two single burst
models from Bruzual \& models from Bruzual \&
Charlot (solid lines). UpCharlot (solid lines). U
per curve: passively per curve: passively
evolving burst from evolving burst from $\mathrm{z}=5$, lower: burst of 100 Myr age, relative to each redshift. The dot-dashed lines are mixtures between the two, with a (from top) $0.1 \%, 1 \%$ and 10% fraction of mass of the 100 Myr population on top of the $z=5$ population.
Bottom: Rest frame 200 nm luminosities, and potenial star formatio rates as derived from from the V-band, both uncorrected for dust. The horizontal dashed line is
the value obtained by Erb the value obtained by
et al. (2003, ApJ 591, 101) for Lyman break galaxies at $\mathrm{z}=2.5$.
results $\mathrm{AO}, \mathrm{Z}=2.2$
The three host galaxies are intriguingly luminous, especially given their moderate sizes. If they are roughly ellipticals, then they show a much lower mass-tolight ratio than inactive elliptical galaxies at low z, suggestive of a substantial young stellar population. If we assume that these galaxies will fade passively to reach the luminositysize relations at low z, they would need to fade by $\sim 3 \mathrm{mag}$ to $z=0.7$ (4.2 Gyrs), or $\sim 3.5 \mathrm{mag}$ to $z=0$ (10.5 Gyrs). A single stellar population of 200-250 Myr would have this property, fading by $\sim 2.8 \mathrm{mag}$ and ~ 3.6 mag in these intervals, respectively. Although this involves a lot of assumptions, we conclude that we have detected the signature of a significant young stellar populations.

Top: Nuclear vs. host luminosities. Dots: our data; circles: hosts from the $z=2$ sample of Kukula et al. 2001, MNRAS, 326, 1533. Thin lines: constant Eddington ratios derived from lines: constant Eddington ratios derived from
host luminosities, extrapolated from low z host luminosities, extrapolated from low z
(only passive evolution); short thick lines: Ed (only passive evolution); short thick lines: Ed-
dington ratios derived from the spectroscopdington ratios derived from the spec
ic black hole masses of our objects. ic black hole masses of our objects.
Bottom: Luminosity-size relation of three AO observed host galaxies (symbols) at $z=2.2$ in the NIR, compared to literature relations. The solid line is the relation for early type galaxies at $\mathrm{z} \sim 0$ (Shen et al. 2003, MNRAS, 343, 978), the dashed line is the same relation at z~0.7 from GEMS (McIntosh et al. 2005, ApJ (in press), astro-ph/0411772). The dotdashed line is the $\mathrm{z}=0$ relation shifted by -3.5 mag .

summary

Luminous QSOs at $z>3$ are also expected to have massive black holes and be mostly hosted by early type galaxies. Such galaxies should consist of - comparibly - old stars and have not much ongoing star formation. Despite this expectation we find that the stellar composition of QSO host galaxies at $0.5<\mathrm{z}<3$ is inconsistent with being old, but point to ages of the light-dominating population of a few 100 Myrs. This is consistent with results for luminous Type 1 and 2 QSO hosts in the local universe. We interprete this as a strong indication for a link of the accretion of black holes and global formation of stars in AGN hosts. However, as for the majority of AGN hosts no major starbursts are seen, star formation and accretion might differ by a time lag of the order of a few 100 Myrs. One possible explanation is that most AGN activity and starformation in hosts of more luminous AGN is triggered by merging of galaxies.

publications

- Jahnke K., Wisotzki L. 2003, MNRAS, 346, 308
- Jahnke K., Kuhlbrodt B., Wisotzki K. 2004a, MNRAS, 352, 399
- Jahnke K., Sánchez S. F., Wisotzki L., \& GEMS 2004b, ApJ, 614, 568
- Kuhlbrodt B., Örndahl E., Wisotzki L., Jahnke K. 2005, A\&A, 439, 497
- Sánchez S. F., Jahnke K., Wisotzki L., \& GEMS 2004, ApJ, 614, 586

collaborators

- GEMS: K. Jahnke, L. Wisotzki (AIP), S. F. Sanchez (CAHA/IAA), H.-W. Rix, E. Bell, M. Barden, A. Borch, B. Häußler, K. Meisenheimer (MPIA), C. Heymans (UBC), D. H. McIntosh (U Massachusetts), C. Wolf (Oxford), S. V. W. Beckwith, Peng C. Y., Somerville R. S.(STScl), J. A. R. Caldwell, S. Jogee (UT Austin)
- AO: K. Jahnke, L. Wisotzki, B. Kuhlbrodt (AIP), E. Örndahl (Tuorla)

