Quasarmodelle

Zur Energiebilanz in AGN

Betrachte zwei charakteristische Fälle:

3C 273: Hellster bekannter Quasar. $z = 0.158 \Rightarrow d_L = 1.06 \text{ Gpc}, \ m - M = 40.1, \ K(z) \simeq -0.3;$ $V = 12.8 \Rightarrow M_V = -27.0; \ L(V) = 5 \times 10^{12} L_{\odot}.$ $\Rightarrow \sim 50 \text{fach leuchtkräftiger als hellste Galaxien} (M_V \simeq -23).$

NGC 5548: Nahe Seyfert 1-Galaxie.

 $z = 0.017 \Rightarrow d_L = 102 \text{ Mpc}, \ m - M = 35.0, \ K(z) \simeq 0;$ $V = 13.5 \Rightarrow M_V = -21.5; \ L(V) = 3 \times 10^{10} L_{\odot}.$

 \Rightarrow vergleichbar mit ganzer Milchstraße ($M_V \simeq -22$).

Bolometrische Leuchtkräfte jeweils um Faktor ~ 5 –10 höher

Energiequelle: vermutlich Akkretion auf ein kompaktes Zentralobjekt

Argument: Nutze Reservoir aus *potentieller* Energie in Muttergalaxie; Umwandlung in thermische Energie durch Reibung.

Betrachte Probeteilchen mit Masse m in Entfernung r von Zentralmasse M. Für schwarze Löcher: $r > r_s = 2GM/c^2$ (Schwarzschildradius).

Nichtrelativistische Abschätzung: Massenzuwachs durch Akkretion mit Rate M von $r = \infty$ auf Endradius $r > r_s$ liefert:

$$L \approx \frac{GM\dot{M}}{r}$$

In Analogie zur Energieerzeugung durch Kernfusion:

$$L = \eta \dot{M} c^2$$
 mit $\eta \simeq G M / r c^2$.

Großteil der Leuchtkraft kommt i.d.R. aus Bereich $r \simeq 5 \dots 10 r_s$ $\Rightarrow \eta \simeq 0.05 \dots 0.1$ (bestätigt in genaueren Rechnungen)

Akkretionsrate bei 3C 273: ~ $20M_{\odot}$ yr⁻¹; bei NGC 5548: ~ $0.5M_{\odot}$ yr⁻¹.

Quasarmodelle: Zutaten

Ansatz: Vereinheitlichung des AGN-Zoos durch Konzentration auf wesentliche Parameter. Ziel: *Ein* Basismodell für (fast) alle Typen.

- Zentrales schwarzes Loch Masse ~ $10^6 \dots 10^{10} M_{\odot}$. Vermutlich mehr oder weniger schnell rotierend.
- Akkretionsscheibe: Einfließende Materie hat geordneten Eigendrehimpuls, deshalb ist sphärische Akkretion unplausibel: Ausbildung einer Vorzugsebene (in Hauptebene der Muttergalaxie???). Viskose Heizung der Scheibe \Rightarrow Thermische Kontinuumsemission im optischen/UV/weichen Röntgenbereich (d.h. Temperatur ~ 10⁵ K).
- Jets: Ein (kleiner) Teil der akkretieren Materie wird wieder ausgeworfen –
 beschleunigt, gebündelt & ~ senkrecht zur Scheibenebene:
 ⇒ Synchrotron-Radioemission; hochenergetische Strahlung.
- Warme Gaswolken: Um Akkretionsscheibe herum bewegen sich Wolken mit bis $zu \sim 10\,000 \,\mathrm{km/s} \Rightarrow$ Broad-Line Region.
- Staubtorus (o.ä.): Außenzone der Akkretionsscheibe nicht transparent für opt/UV-Strahlung;
 ⇒ Abschattung der BLR in Sy 2-Galaxien; Re-Emission der absorbierten Strahlung im Infraroten.
- Ionisiertes Gas in Muttergalaxie Quasarstrahlung enthält große Mengen von UV-Photonen, kann große Bereiche des interstellaren Mediums in Muttergalaxie ionsieren \rightarrow Narrow-Line Region, Extended Narrow-Line Region, schmale Emissionslinien in Muttergalaxie

Verbotene vs. erlaubte Übergänge

- **Erlaubter Übergang:** Dipolübergang vorhanden \rightarrow hohe Übergangswahrscheinlichkeiten \rightarrow Strahlungsabregung passiert schnell (Linien: z.B. Ly α , H α , H β , C IV,...)
- **Verbotener Übergang:** verstößt gegen $\Delta S = 0$ (und eine weitere) Auswahlregel \rightarrow nur Übergänge höherer Momente (Quadrupol,...) \rightarrow Übergangswahrscheinlichkeiten klein (10^{-9} – 10^{-10}) \rightarrow wenn stoßangeregt dann relativ lang stabil (Voraussetzung: kleine Dichten)
- Halbverbotener Übergang: "Interkombinationslinien", $\Delta S \neq 0 \rightarrow$ Übergangswahrscheinlichkeiten ~ 10^{-6}
- **Bereiche nahe des Kerns:** Hohe Geschwindigkeiten, hohe Dichten \rightarrow breite Linien \rightarrow "Broad Line Region"

Erlaubte, halbverbotene Übergänge möglich, erzeugen Linien, verbotene Übergänge werden durch hohe Dichten wieder $Stoßabgeregt \rightarrow keine verbotenen Linien$

Bereiche weiter außen: Niedrigere Geschwindigkeiten, niedrigere Dichten \rightarrow schmale Linien \rightarrow "Narrow Line Region"

Erlaubte, halbverbotene Übergänge möglich, durch geringe Dichten werden verbotene Übergänge nicht mehr stoßabgeregt \rightarrow auch verbote Linien

 \longrightarrow verbotene Übergänge erscheinen immer als schmale Linien, erlaubte/hal verbotene Übergänge als breite oder schmale, je nach Entfernung vom Kern

Klassifikationsrelevante Parameter

- Zentralmasse und Akkretionsrate:
 - 1. LINERs \longleftrightarrow Seyfert 1 \longleftrightarrow Quasare
 - 2. Radiolaute \longleftrightarrow Radioleise Quasare?
- Eigendrehimpuls des schwarzen Lochs:
 - 1. Radiolaute \longleftrightarrow Radioleise AGN? (unsicher)
 - 2. Bündelung der Jets?
- Orientierungswinkel zum Beobachter:
 - 1. Seyfert $1 \leftrightarrow$ Seyfert 2 auch QSO $1 \leftrightarrow$ QSO 2? (Abschattung der BLR durch Torus)
 - 2. Radiolaute Quasare \longleftrightarrow Radiogalaxien (Abschattung des Kerns durch Torus)
 - BAL-Quasare ←→ nicht-BAL-Quasare
 (Abdeckung des Kerns durch BAL-Wolken/-Winde)
 - 4. Blazare \longleftrightarrow nicht-Blazare (Winkel relativ zur Jetachse)

Alternative Klassifikationskonzepte existieren – vor allem solche, die verschiedene AGN-Typen entlang einer *Entwicklungssequenz* aufreihen.

Schwarze Löcher in AGN

Hypothese superschwerer schwarzer Löcher (BH) in AGN: 10 Hinweise

- 1. Variabilität der AGN (Rees 1977): bis unter 1 min für einige Seyfertgalaxien
 - \rightarrow Lichtlaufzeit für \simeq Schwarzschildradius bei 107 M_{\odot}
 - Variabilität-Zeitskala skaliert mit AGN-Leuchtkraft
- 2. Effizienz der Energieerzeugung: hohe Leuchtkräfte der Quasare $\rightarrow L \simeq \eta \dot{M}c^2 \rightarrow \eta \lesssim 0.1$ bei Akkretion auf BH (zum Vergleich: 10⁻¹⁰ bei chem. Reakt.; 10⁻³ bei H–He Fusion)
- 3. Massen: $L \approx GM\dot{M}/r \rightarrow$ um Quasar-Leuchtkräfte zu erreichen, werden "kompakte Zentralobjekte" in Galaxienkernen bis zu ~ $10^{10} M_{\odot}$ benötigt.
- 4. Scheinbare Überlichtgeschwindigkeit der Jets: $\rightarrow v \simeq c$, relativistisch tiefer Potentialtopf
- 5. Radioquellen/-Jets: \rightarrow konstante Ausrichtung > 10⁶ Jahre, andere Ursachen (Supernovae etc.) scheiden aus
- 6. Geschwindigkeits
dispersion der Sterne nahe des Kerns: $\simeq 10^{-3}c$
- 7. Breite Emissionslinien: optisch und Röntgen (MCG 6-30-15 und andere) \rightarrow bis zu $\sim 10\% c \rightarrow$ relativistische Bewegung der Quelle
- 8. Statistische Evidenz: Schwarze Löcher in allen Galaxien mit signifikanter Sphäroid-Komponente (\rightarrow Vorlesung "Extragalaktische Astrophysik"), $\sim 0.12\%$ der Gesamtmasse des Sphäroids
- 9. Theoretisch-physikalisches Argument (Rees 1984): Zeitentwicklung eines extrem kompakten Sternhaufens führt zur Entstehung eines massereichen schwarzen Lochs
- 10. Rotationsquelle: Schwarze Löcher in einigen wenigen Galaxien (Milchstraße, NGC 4258) fast zweifelsfrei nachgewiesen (Massen $10^6 \dots 10^7 M_{\odot}$)

Die Frage nach der Entstehung der massereichen schwarzen Löcher in Galaxienkernen ist noch weitgehend ungeklärt. Im wesentlichen zwei Optionen: Ausbildung der schwarzen Löcher bereits in der Anfangsphase der Galaxienentstehung, oder langsames Wachstum aus stellaren schwarzen Löchern?

Vergleich Ark 120–Stern (oben) zu Stern 1–Stern 2 (unten) (Carini et al. 2003, AJ, 124, 1811)

"Überlichtgeschwindigkeit" bei Radioquellen: PKS 1502+106 (An et al. 2005, 2004, A&A, 421, 839)

Radioquasar 3C175, Länge der Radiostruktur > 300Lichtjahre (einseitig) (NRAO/AUI)

Fe K α Linie im Röntgenbereich (Nandra et al. 1999)

Bulge–BH Massenbeziehung (Marconi & Hunt 2003)

NGC 4258: H₂O-Maser (22 GHz), Auflösung 0".0006 (~0.017 pc) Rotationskurve der nuklearen Scheibe (Herrnstein et al. 1999): $\longrightarrow M(r < 0.13)$ pc = $3.3 \times 10^7 M_{\odot}$

 \longrightarrow perfekt Kepler'sch
! \longrightarrow Masse konzentriert $<0.012~{\rm pc}$

(Herrnstein et al. 1999, Nature)

Milchstraße: stellare Eigenbewegung (Schödel et al. 2002): $\longrightarrow M_{GC}(r < 17 \text{ lh}) = (3.7 \pm 1.5) \times 10^6 M_{\odot}$

(Schödel et al. 2002, Nature + ESO PR23c/02)'

Schwarze Löcher – Grundlagen

Schwarzes Loch, Definition:

- Lösung zu allgemein relativistischer Feldgleichung mit asymptotisch flacher Raumzeit und Ereignishorizont
- Horizont: trennt sichtbare Ereignisse von unsichtbaren, umschließt Singularität der klassischen Physik
- "cosmic censorship": Singularität immer unbeobachtbar

Schwarzes Loch, Parameter:

"no hair"-Theorem \rightarrow einzige Parameter:

– Masse M, Drehimpuls a = J/Mc, Ladung q

Radius des Ereignishorizonts (Konvention: G = 1, c = 1): $r_h = M + \sqrt{M^2 - a^2}$

a = 0: Schwarzschildradius, $r_s = 2M$

a = 1: "Gravitationsradius", $r_g = M$

 \longrightarrow Metrik beschrieben durch Boyer-Lindquist-Koordinaten: $ds^2 = \alpha^2 c^2 dt^2 - \tilde{\omega}^2 (d\phi - \omega dt)^2 - (\rho^2 / \Delta) dr^2 - \rho^2 d\theta^2$

$$\rho^2 \equiv r^2 + a^2 \cos^2 \theta, \qquad \Delta \equiv r^2 - 2GMr/c^2 + a^2$$

$$\Sigma^2 \equiv (r^2 + a^2)^2 - a^2 \Delta \sin^2 \theta, \qquad \tilde{\omega} \equiv (\Sigma/\rho) \sin \theta$$

$$\omega(r,\theta) \equiv 2aGMr/c\Sigma^2, \qquad \alpha(r,\theta) \equiv \rho\sqrt{\Delta}/\Sigma$$

"frame-dragging" ω : Raum-Winkelgeschwindigkeit \equiv ZAMO-Winkelgeschwindigkeit, $\omega = (d\phi/dt)_{\text{ZAMO}}$ (Zero Angular Momentum Observer)

"red-shift, time lapse" $\alpha :$ Gravitative Zeitverzögerung, Gravitationsrotverschiebung

(ZAMO-Eigenzeit $\tau \leftrightarrow$ globale Zeit $t, \alpha = (d\tau/dt)_{\text{ZAMO}}$)

Für nicht-rotierendes Schwarzschild BH: $a=0,\,d\phi=0,\,d\theta=0$ \rightarrow

$$\begin{split} \rho^2 &= r^2, \qquad \Delta = r^2 - 2GMr/c^2\\ \Sigma &= r^2, \qquad \tilde{\omega} = r\sin\theta\\ \omega(r,\theta) &= 0, \qquad \alpha(r,\theta) = \sqrt{1 - 2GM/rc^2}\\ ds^2 &= \alpha^2 c^2 dt^2 - \tilde{\omega}^2 (d\phi - \omega dt)^2 - (\rho^2/\Delta) dr^2 - \rho^2 d\theta^2\\ \Rightarrow ds^2 &= (c^2 - 2GM/r) dt^2 - (1/(1 - 2GM/rc^2)) dr^2\\ (Schwarzschild-Koordinaten) \end{split}$$

Orbits um schwarze Löcher:

Schwarzschild-Metrik: \rightarrow unabhängig von t, ϕ

- Energie- (E) und Drehimpuls (L)-Erhaltung
- Bewegungsgleichung (vgl. mit Newton'schem Fall) $\dot{r} \equiv dr/d\tau = -\sqrt{\tilde{E}^2 - V(r)}$ $V(r) = (1 - 2M/r)(1 + \tilde{L}^2/r^2)$ effektives Potential
- Stabile Kreisorbits bei Radien, die V(r) minimieren Aber: Orbits nicht geschlossen für $\tilde{E} > \sqrt{2V(r_{\min})}$
- Instabile Kreisorbits bei Radien, die V(r) maximieren Kleinster stabiler Orbit bei $r_{\rm ms}=3r_s,\,(1-\tilde{E}_{\rm ms})=0.057$

Kerr-Metrik:

Für a = 1: $r_{\rm ms} = r_g$ (direkt), $r_{\rm ms} = 9r_g$ (retrograd)

Ergosphäre rotierender schwarzer Löcher:

 \rightarrow Kerr-Metrik

Stationäre Beobachter, (r, θ) fest, Rotation $\Omega = d\phi/dt$

- Aus $u^{\alpha}u_{\alpha} = -1$ (Vierergeschwindigkeit) folgt: $\Omega_{\min} < \Omega < \Omega_{\max}$
- Für rotierendes BH: $\Omega_{\min} > 0$ oder $r < r_E = M + \sqrt{M^2 - a^2 \cos^2 \theta}$ für $r \to r_h$: $\Omega_{\min} = \Omega_{\max} = \Omega_h = a/(r_h^2 + a^2)$

Ergosphäre: Region zwischen r_h und r_E :

- "static limit" r_E : Beobachter **muß** mitrotieren
- Orbits $r < r_h$ möglich mit negativer Gesamtenergie, Teilchen mit $\tilde{E} < 0$ kann Loch-Masse reduzieren!
- Irreduzible Masse (Hawking): $M_{\rm irr} = \sqrt{Mr_h/2}, \, \Omega_h < 1/\sqrt{8}M_{\rm irr}$
- $-M M_{\rm irr} < 0.29M$ Energiegewinn aus rotierendem BH

Ergosphäre (Perlik, 2004)

Frame Dragging (Sochichi Uchii)

Schwarze Löcher – wichtigste Punkte

"No Hair" Theorem: BHs haben nur Masse, Drehimpuls und Ladung (aber keine Haare)

Metrik: Unterschiede nicht-rotatierend und rotierend (Schwarzschild, Kerr)

Ereignishorizont:

a = 0: Schwarzschildradius $r_s = 2M$

a = 1: Gravitationsradius $r_g = M$

letzte stabile Bahn:

Schwarzschild: $r_{ms} = 3r_s$

Kerr: $r_{ms} = r_g$ (prograd), $r_{ms} = 9r_g$ (retrograd)

aber: in Kerr Metrik innerhalb von Ergosphäre r_E muß der Beobachter mitrotieren um auf stabiler Bahn zu sein \to Frame Dragging, kein Inertialsystem mehr

in Ergosphäre:

Orbits mit negativer Gesamtenergie möglich Energiegewinn bis Größe $0.29M_{BH}$ aus Rotation möglich

Energiegewinnung aus rotierenden schwarzen Löchern:

Blandford-Znajek-Prozess: elektromagnetische Kopplung an BH

Vier Gedankenexperimente:

- 1. BH in konstantem elektrischen Feld
 - \rightarrow löse Maxwell-Gleichungen in Schwarzschildmetrik
 - \rightarrow BH ist elektrischer Leiter (Horizont Equipotentialfläche)
- 2. BH in magnetisierter (\mathbf{B}, \mathbf{E}) Wolke \rightarrow Akkretion
 - \rightarrow **B**, **E**-Fluktuationen, Zerfallszeit $\tau \sim r_g/c$

$$\rightarrow \frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E} \simeq -\frac{E}{r_g} \simeq -\frac{jR_h}{r_g} \simeq -\frac{BR_h}{4\pi r_g}$$

 \rightarrow "Widerstand" des BH R_h , mit

$$\frac{\partial B}{\partial t} \simeq -\frac{B}{\tau} \quad \to \quad R_h = 4\pi = 377 \,\Omega$$

- 3. Schwarzschild-BH, konstantes \mathbf{B} , mit Batterie verbunden
 - \rightarrow Elektrischer Strom $I\simeq V/R_h$ quer zu ${\bf B}$
 - \rightarrow Lorentz-Kraft $\mathbf{F}_L \sim \mathbf{j} \times \mathbf{B}$, Drehmoment $\simeq IB$
- 4. Rotierendes BH, konstantes **B** Da Leiter \rightarrow Induktion einer Potential-Differenz
 - $\rightarrow V \simeq \Omega_h r_g^2 B \simeq r_g B$

 \rightarrow bei externem elektrischen Strom zwischen Pol und Äquator Arbeitsleistung im externen Medium / Energie aus BH

Blandford-Znajek-Prozess: Arbeitsleistung Abschätzung: Ohm'sche Heizung $L_{BZ} \simeq I^2 R_h + I^2 R_{\text{ext}}$ Für $R_h \simeq R_{\text{ext}}$ maximale externe Leistung: $\rightarrow L_{BZ} \simeq I^2 R_{\text{ext}} \simeq r_g^2 B^2 / R_h$

Blandford-Znajek-Prozess: Anwendung auf AGN:

Magnetfeld, aus Akkretionsscheibe: Dynamoprozess oder Advektion (?)
→ Equipartition (P_{gas} ≃ P_{mag}) → B ≃ 10⁴ G
BH-Masse: 10⁸M_☉

daraus

– Spannung eines rotierenden BH:

$$V \sim r_g B = 10^{19} \left(\frac{M}{10^8 M_{\odot}}\right)^2 \left(\frac{B}{10^4 \text{G}}\right)^2 \text{V}$$

- Arbeitsleistung eines rotierenden BH:

$$L_{BZ} \simeq 10^{45} \left(\frac{a}{M}\right)^2 \left(\frac{M}{10^8 M_{\odot}}\right)^2 \left(\frac{B}{10^4 \text{G}}\right)^2 \text{ erg s}^{-1}$$

– Zum Vergleich: "Freie Energie":

$$M - M_{\rm err} \simeq 4M^3 \Omega_h^2 \simeq 10^{61} \left(\frac{a}{M}\right)^2 \left(\frac{M}{10^8 M_{\odot}}\right)^2 {\rm erg}$$

Schwarze Löcher außerhalb von AGN

- stellare Schwarze Löcher nach Supernova-Kollaps oder Verschmelzung von Neutronendoppelsternen \to 1–3 M_\odot
- in Sternhaufen Verschmelzung und Akkretion $\rightarrow 10^3-10^4 M_{\odot}$? möglicherweise in Frühzeit "Saat" für galaktische BHs
- galaktische BHs \rightarrow $10^5\text{--}10^{10}~M_{\odot}$

Stellare BHs:

Röntgendoppelsterne (X-ray binaries, XRB)

- früher 1970er: Entdeckung sehr heller Röntgenquelle im Sternbild Schwan (Cygnus): Cygnus X-1
- damals Position sehr ungenau: optisches Gegenstück?
- Frühjahr 1972: plötzliches Auftauchen einer Radioquelle, gleichzeitig Ausbruch von Cyg X-1 im Röntgenbereich
- Eindeutige Identifikation der Radioquelle mit OB Überriese HDE 226868 (O9.7 Iab) \rightarrow sehr wahrscheinlich Doppelstern
- Messungen: 5.6 Tage Periodizität in Radialgeschwindigkeit und Röntgenlichtkurve
- Röntgenvariation nicht periodisch variabel \rightarrow Röntgenquelle hat keine feste Oberfläche! \rightarrow kein Neutronenstern sondern Schwarzes Loch mit Akkretionsscheibe
- aus Orbits: 10 M_{\odot}

Mikroquasare

- Röntgenquellen und Jets wie bei "echten" Quasaren
- Jet-Ausdehnung statt 100 Kiloparsec nur im Parsecbereich
- Röntgendoppelsterne mit einem stellaren BH im Zentrum, Akkretionsscheibe überträgt Masse, relativistische Elektronen in Jets produzieren Radiostrahlung
- alle Vorgänge laufen im Vergleich zu QSOs sehr schnell ab \rightarrow Testlaboratorien für Teile der AGN-Physik

Optisches Spektrum (oben) und Radialgeschwindigkeitsperiodizität (unten) von HDE 226868, 5.6 Tage (LaSala et al. 1998)

Röntgenemission: Periodischer Neutronenstern Hercules X-1 (oben), aperiodisches BH Cygnus X-1 (Mitte, unten)

Mikro- vs. Makroquasar, skalierbare Physik, ähnliche Phänomene (Mirabel et al. 1998)

Superluminale Geschwindigkeiten im Mikroquasar GRS 1915+105 (Mirabel et al. 1994)

Fe K α Emissionslinie im Röntgenbereich

- \bullet Fluoreszenz
linie Fe ${\rm K}$ bei $6.4\,{\rm keV}$
- natürliche Breite ${\lesssim}200\,{\rm eV}$
- beobachtet sowohl bei AGN, XRB: sehr breite Linie (>2 keV)
- Linienbreite wie im optischen/UV durch tiefen Potentialtopf und großen Rotationsgeschwindigkeiten
- \bullet Energien ${<}4\,{\rm keV}$ nur mit rotierendem Kerr BH möglich

BHs mittlerer Masse:

Ultraleuchtkräftige Röntgenquellen (ULX)

- optische Gegenstücke und integrierte Röntgenleuchtkraft deuten auf sehr energetische Röntgenquelle hin
- Masse größer als stellares BH
- evtl. Überreste von Cluster?

Fe K α Linie, Ruhewellenlänge 6.4keV. Stellare Röntgenquellen Cyg X-1 und XTE J1650-500; nichtrotierendes BH oben, rotierendes BH unten.

Fe K α Linie, Ruhewellenlänge 6.4keV. Seyfertgalaxien NGC3516 und MCG 6-30-15; nichtrotierendes BH oben, rotierendes BH unten.

Ultraleuchtkräftige Röntgenquelle in Galaxie Holmberg II: Röntgen, Radio und optische Integral-Field Spektroskopie (Lehmann et al. 2005)

Direkter Nachweis von Schwarzen Löchern: Gravitationswellen

Interferometrischer Nachweis

- Michelson Interferometer mit großer Armlänge
- sehr konstanter Laserstrahl
- sich verschiebende Interferenzmuster bei unterschiedlicher Längenänderung in den beiden Armen \rightarrow Licht in Photodiode
- Nachweisempfindlichkeit \propto Schenkellänge und Lichtleistung
- Signalverstärkung durch mehrfaches Durchlaufen der Arme
- Empfindlichkeit von 10–5000Hz (entsprechend Umlauffrequenz von engen Binärsystemen)
- angestrebte Genauigkeit: $10^{-21} \rightarrow$ ein Atom
durchmesser auf 1km Armlänge!

Resonanzdetektoren

- Längenänderung eines Metallzylinders durch durchlaufende GW \rightarrow Änderung der Eigenfrequenz
- ständige Messung der Eigenfrequenz
- $\bullet\,$ empfindlich nur auf Signale nahe Eigenfrequenz $\rightarrow\, {\rm von}\, {\rm Masse}\, {\rm abhängig}\,$
- \bullet war erste GW-Meßmethode in den 1960ern

Bestehende Detektoren

- Geo600 (bei Hannover, 600 Meter Armlänge)
- LIGO (Hanford+Livingston/USA, 4km, 4km, 2km)
- VIRGO (bei Pisa, 3km)
- TAMA300 (Tokyo, 300 Meter Länge)
- einige Resonanzdetektoren

Geplante Detektoren

• LISA (Weltraum, 5 Millionen km), ESA/NASA, 2013–15

Bis jetzt kein Nachweis von GW! Die Meßgenauigkeiten sind aber so groß, daß bald (5 Jahre) erste Signale erwartet werden: verschmelzende stellare BHs

GW-Interferometer Grundprinzip (oben), Nautilus Resonanzdetektor (unten)