
ar
X

iv
:a

st
ro

-p
h/

03
02

20
9 

v2
   

12
 F

eb
 2

00
3

First Year Wilkinson Microwave Anisotropy Probe (WMAP ) Observations:

Determination of Cosmological Parameters

D. N. Spergel2, L. Verde2,3, H. V. Peiris2, E. Komatsu2, M. R. Nolta4, C. L. Bennett5, M. Halpern6, G.

Hinshaw5, N. Jarosik4, A. Kogut5, M. Limon5,7, S. S. Meyer8, L. Page4, G. S. Tucker5,7,9, J. L. Weiland10,

E. Wollack5, & E. L. Wright11

dns@astro.princeton.edu

ABSTRACT

WMAP precision data enables accurate testing of cosmological models. We find that the

emerging standard model of cosmology, a flat Λ−dominated universe seeded by a nearly scale-

invariant adiabatic Gaussian fluctuations, fits the WMAP data. With parameters fixed only by

WMAP data, we can fit finer scale CMB measurements and measurements of large scale structure

(galaxy surveys and the Lyman α forest). This simple model is also consistent with a host of

other astronomical measurements: its inferred age of the universe is consistent with stellar ages,

the baryon/photon ratio is consistent with measurements of the [D]/[H] ratio, and the inferred

Hubble constant is consistent with local observations of the expansion rate. We then fit the

model parameters to a combination of WMAP data with other finer scale CMB experiments

(ACBAR and CBI), 2dFGRS measurements and Lyman α forest data to find the model’s best

fit cosmological parameters: h = 0.71+0.04
−0.03, Ωbh

2 = 0.0224 ± 0.0009, Ωmh2 = 0.135+0.008
−0.009, τ =

0.17 ± 0.06, ns(0.05 Mpc−1) = 0.93 ± 0.03, and σ8 = 0.84 ± 0.04. WMAP’s best determination

of τ = 0.17 ± 0.04 arises directly from the TE data and not from this model fit, but they are

consistent. These parameters imply that the age of the universe is 13.7 ± 0.2 Gyr. The data

favors but does not require a slowly varying spectral index: dns/d ln k = −0.031+0.016
−0.018.

By combining WMAP data with other astronomical data sets, we constrain the geometry

of the universe: Ωtot = 1.02 ± 0.02, the equation of state of the dark energy, w < −0.78 (95%

confidence limit), and the energy density in neutrinos, Ωνh2 < 0.0076 (95% confidence limit).

For 3 degenerate neutrino species, this limit implies that their mass is less than 0.23 eV (95%

confidence limit). The WMAP detection of early reionization rules out warm dark matter.
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1. INTRODUCTION

Over the past century, a standard cosmological model has emerged: With relatively few parameters, the

model describes the evolution of the Universe and astronomical observations on scales ranging from a few to

thousands of Megaparsecs. In this model the Universe is spatially flat, homogeneous and isotropic on large

scales, composed of radiation, ordinary matter (electrons, protons, neutrons and neutrinos), non-baryonic

cold dark matter, and dark energy. Galaxies and large-scale structure grew gravitationally from tiny, nearly

scale-invariant adiabatic Gaussian fluctuations. The Wilkinson Microwave Anisotropy Probe (WMAP ) data

offer a demanding quantitative test of this model.

The WMAP data are powerful because they result from a mission that was carefully designed to limit

systematic measurement errors (Bennett et al. 2003a,b; Hinshaw et al. 2003b). A critical element of this

design includes differential measurements of the full sky with a complex sky scan pattern. The nearly

uncorrelated noise between pairs of pixels, the accurate in-flight determination of the beam patterns (Page

et al. 2003c,a; Barnes et al. 2003), and the well-understood properties of the radiometers (Jarosik et al.

2003a,b) are invaluable for this analysis.

Our basic approach in this analysis is to begin by identifying the simplest model that fits the WMAP

data and determine the best fit parameters for this model using WMAP data only without the use of any

significant priors on parameter values. We then compare the predictions of this model to other data sets and

find that the model is basically consistent with these data sets. We then fit to combinations of the WMAP

data and other astronomical data sets and find the best fit global model. Finally, we place constraints on

alternatives to this model.

We begin by outlining our methodology (§2). Verde et al. (2003) describes the details of the approach

used here to compare theoretical predictions of cosmological models to data. In §3, we fit a simple, six

parameter ΛCDM model to the WMAP data-set (temperature-temperature and temperature-polarization

angular power spectra). In §4 we show that this simple model provides an acceptable fit not only to the

WMAP data, but also to a host of astronomical data. We use the comparison with these other datasets to

test the validity of the model rather than further constrain the model parameters. In §5, we include large

scale structure data from the 2dF Galaxy Redshift Survey (2dFGRS, Colless et al. (2001)) and Lyman α

forest data to perform a joint likelihood analysis for the cosmological parameters. We find that the data

favors a slowly varying spectral index. This seven parameter model is our best fit to the full data set. In

§6, we relax some of the minimal assumptions of the model by adding extra parameters to the model. We

examine non-flat models, dark energy models in which the properties of the dark energy are parameterized

by an effective equation of state, and models with gravity waves. By adding extra parameters we introduce

degenerate sets of models consistent with the WMAP data alone. We lift these degeneracies by including

additional microwave background data-sets (CBI, ACBAR) and observations of large-scale structure. We

use these combined data sets to place strong limits on the geometry of the universe, the neutrino mass,

the energy density in gravity waves, and the properties of the dark energy. In §7, we note an intriguing

discrepancy between the standard model and the WMAP data on the largest angular scales and speculate

on its origin. In §8, we conclude and present parameters for our best fit model.
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2. BAYESIAN ANALYSIS OF COSMOLOGICAL DATA

The basic approach of this paper is to find the simplest model consistent with cosmological data. We

begin by fitting a simple six parameter model first to the WMAP data and then to other cosmological data

sets. We then consider more complex cosmological models and evaluate whether they are a better description

of the cosmological data. Since Komatsu et al. (2003) found no evidence for non-Gaussianity in the WMAP

data, we assume the primordial fluctuations are Gaussian random phase throughout this paper. For each

model studied in the paper, we use a Monte Carlo Markov Chain to explore the likelihood surface. We

assume flat priors in our basic parameters, impose positivity constraints on the matter and baryon density

(these limits lie at such low likelihood that they are unimportant for the models) and require that H0 > 50

km/s/Mpc. This last prior is important only for non-flat and quintessence models when the WMAP dataset

alone is used. For most of the models considered in this paper, the conclusions are insensitive to the cutoff in

the priors. We assume a flat prior in τ , the optical depth, but bound τ < 0.3. This prior has little effect on the

fits but keeps the Markov Chain out of unphysical regions of parameter space. For each model, we determine

the best fit parameters from the peak of the N-dimensional likelihood surface. For each parameter in the

model we also compute its one dimensional likelihood function by marginalizing over all other parameters;

we then quote the (1-dimensional) expectation value12 as our best estimate for the parameter:

〈αi〉 =

∫

dNαL(α)αi, (1)

where ~α denotes a point in the N-dimensional parameter space (in our application these are points –sets of

cosmological parameters– in the output of the Markov Chain), L denotes the likelihood (in our application

the “weight” given by the chain to each point). The WMAP temperature (TT) angular power spectrum and

the WMAP temperature-polarization (TE) angular power spectrum are our core data sets for the likelihood

analysis. Hinshaw et al. (2003b) and Kogut et al. (2003) describe how to obtain the temperature and

temperature-polarization angular power spectra respectively from the maps. Verde et al. (2003) describes

our basic methodology for evaluating the likelihood functions using a Monte Carlo Markov Chain algorithm

and for including data-sets other than WMAP in our analysis. In addition to WMAP data we use recent

results from the CBI (Pearson et al. 2002) and ACBAR (Kuo et al. 2002) experiments. We also use the

2dFGRS measurements of the power spectrum (Percival et al. 2001) and the bias parameter (Verde et al.

2002), measurements of the Lyman α power spectrum (Croft et al. 2002; Gnedin & Hamilton 2002), supernova

Ia measurements of the angular diameter distance relation (Garnavich et al. 1998; Riess et al. 2001), and the

Hubble Space Telescope Key Project measurements of the local expansion rate of the universe (Freedman

et al. 2001).

3. POWER LAW ΛCDM MODEL AND THE WMAP DATA

We begin by considering a basic cosmological model: a flat Universe with radiation, baryons, cold dark

matter and cosmological constant, and a power-law power spectrum of adiabatic primordial fluctuations. As

we will see, this model does a remarkably good job of describing WMAP TT and TE power spectra with only

six parameters: the Hubble constant h (in units of 100 km/s/Mpc), the physical matter and baryon densities

wm ≡ Ωmh2 and wb ≡ Ωbh
2, the optical depth to the decoupling surface, τ , the scalar spectral index ns

and A, the normalization parameter in the CMBFAST code version 4.1 with option UNNORM. Verde et al.

12In a Monte Carlo Markov Chain, it is a more robust quantity than the mode of the a posteriori marginalized distribution.
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(2003) discusses the relationship between A and the amplitude of curvature fluctuations at horizon crossing,

|∆R|2 = 2.95× 10−9A. In §4, we show that this model is also in acceptable agreement with a wide range of

astronomical data.

This simple model provides an acceptable fit to both the WMAP TT and TE data (see Figure 1 and

2). The reduced13 χ2
eff for the full fit is 1.066 for 1342 degrees of freedom, which has a probability of ∼ 5%.

For the TT data alone, χ2
eff/ν = 1.09, which for 893 degrees of freedom has a probability of 3%. Most of

the excess χ2
eff is due to the inability of the model to fit sharp features in the power spectrum near l ∼ 120,

the first TT peak and at l ∼ 350. In Figure 4 we show the contribution to χ2
eff per multipole. The overall

excess variance is likely due to our not including several effects, each contributing roughly 0.5 − 1% to our

power spectrum covariance near the first peak and trough: gravitational lensing of the CMB (Hu 2001), the

spatial variations in the effective beam of the WMAP experiment due to variations in our scan orientation

between the ecliptic pole and plane regions (Page et al. 2003a; Hinshaw et al. 2003a), and non-Gaussianity

in the noise maps due to the 1/f striping. Including these effects would increase our estimate of the power

spectrum uncertainties and improve our estimate of χ2
eff . Our next data release will include the corrections

and errors associated with the beam asymmetries. The features in the measured power spectrum could be

due to underlying features in the primordial power spectrum (see §5 of Peiris et al. (2003)), but we do not

yet attach cosmological significance to them.

Table 1 lists the best fit parameters using the WMAP data alone for this model and Figure (3) shows

the marginalized probabilities for each of the basic parameters in the model. The values in Table 1 (and the

subsequent parameter tables) are expectation values for the marginalized distribution of each parameter and

the errors are the 68% confidence interval. Most of the basic parameters are remarkably well determined

within the context of this model. Our most significant parameter degeneracy (see Figure 5) is a degeneracy

between ns and τ . The TE data favors τ ∼ 0.17 (Kogut et al. 2003); on the other hand, the low value of

the quadrupole (see Figure 1 and §7) and the relatively low amplitude of fluctuations for l < 10 disfavors

high τ as reionization produces additional large scale anisotropies. Because of the combination of these two

effects, the likelihood surface is quite flat at its peak: the likelihood changes by only 0.05 as τ changes from

0.11− 0.19. This particular shape depends upon the assumed form of the power spectrum: in §5.2, we show

that models with a scale-dependent spectral index have a narrower likelihood function that is more centered

around τ = 0.17.

Since the WMAP data allows us to accurately determine many of the basic cosmological parameters,

we can now infer a number of important derived quantities to very high accuracy; we do this by computing

these quantities for each model in the MCMC and use the chain to determine their expectation values and

uncertainties.

Table 2 lists cosmological parameters based on fitting a power law (PL) CDM model to the WMAP data

only. The parameters tdec and zdec are determined by using the CMBFAST code (Seljak & Zaldarriaga 1996)

to compute the redshift of the CMB “photosphere” (the peak in the photon visibility function). We determine

the thickness of the decoupling surface by measuring ∆zdec and ∆tdec, the full-width at half maximum of the

visibility function. The age of the Universe is derived by integrating the Friedmann equation, and σ8 (the

linear theory predictions for the amplitude of fluctuations within 8 Mpc/h spheres) from the linear matter

power spectrum at z = 0 is computed by CMBFAST.

13Here, χ2

eff
≡ −2 lnL and ν is number of data minus the number of parameters. We have used 100,000 Monte Carlo

realization of the WMAP data with our mask, noise and angle-averaged beams and found that the 〈−2 lnL/ν〉 = 1 for the

simulated temperature data.
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Table 1. Power Law ΛCDM Model Parameters- WMAP Data Only

Parameter Mean (68% confidence range) Maximum Likelihood

Baryon Density Ωbh
2 0.024± 0.001 0.023

Matter Density Ωmh2 0.14 ± 0.02 0.15

Hubble Constant h 0.72 ± 0.05 0.68

Amplitude A 0.9 ± 0.1 0.80

Optical Depth τ 0.166+0.076
−0.071 0.11

Spectral Index ns 0.99 ± 0.04 0.97

χ2
eff/ν 1431/1342

aFit to WMAP data only

Table 2. Derived Cosmological Parameters

Parameter Mean (68% confidence range)

Amplitude of Galaxy Fluctuations σ8 = 0.9 ± 0.1

Characteristic Amplitude of Velocity Fluctuations σ8Ω
0.6
m = 0.44 ± 0.10

Baryon Density/Critical Density Ωb = 0.047 ± 0.006

Matter Density/Critical Density Ωm = 0.29 ± 0.07

Age of the Universe t0 = 13.4 ± 0.3 Gyr

Redshift of Reionizationb zr = 17 ± 5

Redshift at Decoupling zdec = 1088+1
−2

Age of the Universe at Decoupling tdec = 372 ± 14 kyr

Thickness of Surface of Last Scatter ∆zdec = 194 ± 2

Thickness of Surface of Last Scatter ∆tdec = 115 ± 5 kyr

Redshift at Matter/Radiation Equality zeq = 3454+385
−392

Sound Horizon at Decoupling rs = 144 ± 4 Mpc

Angular Diameter Distance to the Decoupling Surface dA = 13.7 ± 0.5 Gpc

Acoustic Angular Scalec `A = 299 ± 2

Current Density of Baryons nb = (2.7 ± 0.1) × 10−7 cm−3

Baryon/Photon Ratio η = (6.5+0.4
−0.3) × 10−10

aFit to the WMAP data only

bAssumes ionization fraction, xe = 1

c lA = πdA/rs
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4. COMPARSION WITH ASTRONOMICAL PREDICTIONS

In this section, we compare the predictions of the best fit power law ΛCDM model to other cosmological

observations. We also list in Table 10 the best fit model to the full data set: a ΛCDM model with a running

spectral index (see §5.2). In particular we consider determinations of the local expansion rate (i.e. the Hubble

constant), the amplitude of fluctuations on galaxy scales, the baryon abundance, ages of the oldest stars,

large scale structure data and supernova Ia data. We also consider if our determination of the reionization

redshift is consistent with the prediction for structure formation in our best fit Universe and with recent

models of reionization. In §5 and 6, we add some of these data sets to the WMAP data to better constrain

parameters and cosmological models.

4.1. Hubble Constant

CMB observations do not directly measure the local expansion rate of the Universe rather they measure

the conformal distance to the decoupling surface and the matter-radiation ratio through the amplitude of

the early Integrated Sachs Wolfe (ISW) contribution relative to the height of the first peak. For our power

law ΛCDM model, this is enough information to “predict” the local expansion rate. Thus, local Hubble

constant measurements are an important test of our basic model.

The Hubble Key Project (Freedman et al. 2001) has carried out an extensive program of using Cepheids

to calibrate several different secondary distance indicators (Type Ia supernovae, Tully-Fisher, Type II super-

novae, and surface brightness fluctuations). With a distance modulus of 18.5 for the LMC, their combined

estimate for the Hubble constant is H0 = 72 ± 3(stat.)± 7(systematic) km/s/Mpc. The agreement between

the HST Key Project value and our value, h = 0.72 ± 0.05, is striking, given that the two methods rely on

different observables, different underlying physics, and different model assumptions.

As we will show in §6, models with equation of state for the dark energy very different from a cosmolog-

ical constant (i.e., w = −1) only fit the WMAP data if the Hubble constant is much smaller than the Hubble

Key Project value. An independent determination of the Hubble constant that makes different assumptions

than the traditional distance ladder can be obtained by combining Sunyaev-Zel’dovich and X-ray flux mea-

surements of clusters of galaxies, under the assumption of sphericity for the density and temperature profile

of clusters. This method is sensitive to the Hubble constant at intermediate redshifts (z ∼ 0.5), rather than

in the nearby universe. Reese et al. (2002), Jones et al. (2001), and Mason et al. (2001) have obtained values

for the Hubble constant systematically smaller than, the Hubble Key Project and WMAP ΛCDM model de-

terminations, but all consistent at the 1σ level. Table (3) summarizes recent Hubble constant determinations

and compares them with the WMAP ΛCDM model value.

4.2. Amplitude of Fluctuations

The overall amplitude of fluctuations on large-scale structure scales has been recently determined from

weak lensing surveys, clusters number counts and peculiar velocities from galaxy surveys. Weak lensing

surveys and peculiar velocity measurements are most sensitive to the combination σ8Ω
0.6
m , cluster abundance

at low redshift is sensitive to a very similar parameter combination σ8Ω
0.5
m , but counts of high redshift clusters

can break the degeneracy.
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4.2.1. Weak Lensing

Weak lensing directly probes the amplitude of mass fluctuations along the line of sight to the background

galaxies. Once the redshift distribution of the background galaxies is known, this technique directly probes

gravitational potential fluctuations, and therefore can be easily compared with our CMB model predictions

for the amplitude of dark matter fluctuations. Several groups have reported weak shear measurements within

the past year (see Table 4): while there is significant scatter in the reported amplitude, the best fit model to

the WMAP data lies in the middle of the reported range. As these shear measurements continue to improve,

the combination of WMAP observations and lensing measurements will be a powerful probe of cosmological

models.

4.2.2. Galaxy velocity fields

The galaxy velocity fields are another important probe of the large scale distribution of matter. The

Willick & Strauss (1998) analysis of the Mark III velocity fields and the IRAS redshift survey yields βIRAS =

0.50 ± 0.04. IRAS galaxies are less clustered than optically selected galaxies; Fisher et al. (1994) find

σIRAS
8 = 0.69±0.04 implying σmass

8 Ω0.6
m = 0.345±0.05, consistent with our ΛCDM model value of 0.44±0.10.

4.2.3. Cluster Number Counts

Our best fit to the WMAP data is σ8Ω
0.5
m = 0.48± 0.12. Bahcall et al. (2002b) recent study of the mass

function of 300 clusters at redshifts 0.1 < z < 0.2 in the early SDSS data release yields σ8Ω
0.5
m = 0.33± 0.03.

This difference may reflect the sensitivity of the cluster measurements to the conversion of cluster richness

to mass. Observations of the mass function of high redshift clusters break the degeneracy between σ8 and

Ωm. The recent Bahcall & Bode (2002) analysis of the abundance of massive clusters at z = 0.5− 0.8 yields

σ8 = 0.95 ± 0.1 for Ωm = 0.25. Other cluster analysis yield different values: Borgani et al. (2001) best fit

values for a large sample of X-ray clusters are σ8 = 0.66+0.05
−0.05 and Ωm = 0.35+0.13

−0.10. On the other hand,

Reiprich & Böhringer (2002) find very different values: σ8 = 0.96+0.15
−0.12 and Ωm = 0.12+0.06

−0.04. Pierpaoli et al.

(2002) discuss the wide range of values that different X-ray analyses find for σ8. The best fit WMAP values

lie in the middle of the relevant range.

Measurements of the contribution to the CMB power spectrum on small scales from the Sunyaev-

Zel’dovich effect also probe the number density of high redshift clusters. The recent CBI detection of excess

Table 3. Recent Hubble Constant Determinations

Method Mean (68% confidence range) Reference

Hubble Key Project 72 ± 3 ± 7 Freedman et al. (2001)

SZE + X-ray 60 ± 4+13
−18 Reese et al. (2002)

66+14
−11 ± 15 Mason et al. (2001)

WMAP PL ΛCDM model 72 ± 5 §3
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fluctuations (Mason et al. 2001; Bond et al. 2002) at ` > 1500 implies σ8 = 1.04 ± 0.12 (Komatsu & Seljak

2002), if the signal is due to the Sunyaev-Zel’dovich effect.

4.3. Baryon Abundance

Both the amplitude of the acoustic peaks in the CMB spectrum (Bond & Efstathiou 1984) and the

primordial abundance of Deuterium (Boesgaard & Steigman 1985) are sensitive functions of the cosmological

baryon density. Since the height and position of the acoustic peaks depend upon the properties of the cosmic

plasma 372,000 years after the Big Bang and the Deuterium abundance depends on physics only three

minutes after the Big Bang, comparing the baryon density constraints inferred from these two different probes

provides an important test of the Big Bang model. The best fit baryon abundance based on WMAP data

only for the PL LCDM model, Ωbh
2 = 0.024±0.001, implies a baryon/photon ratio of η = (6.5+0.4

−0.3)×10−10 .

For this abundance, standard big bang nucleosynthesis (Burles et al. 2001) implies a primordial Deuterium

abundance relative to Hydrogen: [D]/[H] = 2.37+0.19
−0.21 × 10−5. As it will be clear from §5 and 6, the best fit

Ωbh
2 value for our fits is relatively insensitive to cosmological model and data set combination as it depends

primarily on the ratio of the first to second peak heights (Page et al. 2003b). For the running spectral index

model discussed in §5.2, the best fit baryon abundance, Ωbh
2 = 0.0224±0.0009, implies a primordial [D]/[H]

= 2.62+0.18
−0.20 × 10−5.

How does the primordial Deuterium abundance inferred from CMB compare with that observed from

the ISM? Galactic chemical evolution destroys Deuterium because the Deuterium nucleus is relatively fragile

and is easily destroyed in stars. Thus, measurements of the Deuterium abundance within the Galaxy are

usually treated as lower limits on the primordial abundance (Epstein et al. 1976). Local measurements of D

and H absorption find [D/H] abundance near 1.5 × 10−5, while more distant measurements by IMAP and

FUSE find significant variation in Deuterium abundances suggesting a complex Galactic chemical history

(Jenkins et al. 1999; Sonneborn et al. 2000; Moos et al. 2002).

Observations of Lyman α clouds reduce the need to correct the Deuterium abundance for stellar pro-

cessing as these systems have low (but non-zero) metal abundances. These observations require identifying

gas systems that do not have serious interference from the Lyman α forest. The Kirkman et al. (2003)

analysis of QSO HS 243+3057 yields a D/H ratio of 2.42+0.35
−0.25 × 10−5. They combine this measurement with

four other D/H measurements (Q01030-4021: D/H< 6.7 × 10−5, Q1009+2956: 3.98 ± 0.70 × 10−5, PKS

1937-1009: 3.24± 0.28× 10−5, and QSO HS0105+1619: 2.5± 0.25× 10−5), to obtain their current best D/H

ratio: 2.78+0.44
−0.38×10−5 implying Ωbh

2 = 0.0214±0.0020. D’Odorico et al. (2001) find 2.24±0.67×10−5 from

their observations of Q0347-3819 and Pettini & Bowen (2001) report a D/H abundance of 1.65±0.35×10−5

from STIS measurements of QSO 2206-199, a low metallicity (Z ∼ 1/200) Damped Lyman α system. The

WMAP value lies between the Pettini & Bowen (2001) estimate from DLAs, Ωbh
2 = 0.025± 0.001, and the

Kirkman et al. (2003) estimate of Ωbh
2 = 0.0214 ± 0.0020 The remarkable agreement between the baryon

density inferred from D/H values and our measurements is an important triumph for the basic Big Bang

model.

4.4. Cosmic Ages

The age of the Universe based on the best fit to WMAP data only, t0 = 13.4± 0.3 Gyr, is fairly model

independent. However, the addition of other data sets (see §5) implies a lower matter density and a slightly
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Table 4. Amplitude of Fluctuations, σ8

Method Mean (68% confidence range) Reference

PL ΛCDM + WMAP 0.9 ± 0.1 §3

Weak Lensinga,b 0.72 ± 0.18 Brown et al. (2002)

0.79+0.14
−0.19 Hoekstra et al. (2002)

0.69+0.12
−0.16 Jarvis et al. (2002)

0.96 ± 0.12 Bacon et al. (2002)

0.92 ± 0.2 Refregier et al. (2002)

Galaxy Velocity Fieldsb 0.73 ± 0.1 Willick & Strauss (1998)

CBI SZ detection 1.04 ± 0.12c Komatsu & Seljak (2002)

High redshift clustersb 0.95 ± 0.1 Bahcall & Bode (2002)

aSince most weak lensing papers report 95% confidence limits in their papers, the table lists the 95%

confidence limit for these experiments.

bAll of the σ8 measurements have been normalized to Ωm = 0.287, the best fit value for a fit to the WMAP

data only.

c95% confidence limit

Table 5. Measured ratio of Deuterium to Hydrogen

Quasar [D]/[H] Reference

Q0130-403 < 6.8 × 10−5 O’Meara et al. (2001)

Q1009+299 4.0 ± 0.65 × 10−5 O’Meara et al. (2001)

PKS 1937-1009 3.25 ± 0.3 × 10−5 O’Meara et al. (2001)

HS0105+1619 2.5 ± 0.25 × 10−5 O’Meara et al. (2001)

Q2206-199 1.65 ± 0.35 × 10−5 Pettini & Bowen (2001)

Q0347-383 2.24 ± 0.67 × 10−5 D’Odorico et al. (2001)

Q1243+3047 2.42+0.35
−0.25 × 10−5 Kirkman et al. (2003)

Table 6. Cosmic Age

Method Age

WMAP data (ΛCDM) 13.4 ± 0.3 Gyr

Globular Cluster Ages > 11 − 16 Gyr

White Dwarf > 12.7 ± 0.7 Gyr

OGLEGC-17 > 10.4 − 12.8 Gyr

Radioactive dating > 9.5 − 20 Gyr
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larger age. The best fit age for the power law model based on a combination of WMAP , 2dFGRSand Lyman

α forest data is t0 = 13.6 ± 0.2Gyr. The best fit age for the same data set for the running index model of

§5.2 is t0 = 13.7 ± 0.2Gyr.

A lower limit to the age of the universe can independently be obtained from dating the oldest stellar

populations. This has been done traditionally by dating the oldest stars in the Milky Way (see e.g., Chaboyer

(1998); Jimenez (1999)). For this program, globular clusters are an excellent laboratory for constraining

the age of the universe: each cluster has a chemically homogeneous population of stars all born nearly

simultaneously. The main uncertainty in the age determination comes from the poorly known distance

(Chaboyer 1995). Well-understood stellar populations are useful tools for constraining cluster distances:

Renzini et al. (1996) used the white dwarf sequence to obtain an age of 14.5 ± 1.5 Gyr for NGC 6752.

Jimenez et al. (1996). using a distance-independent method determined the age of the oldest globular

clusters to be 13.5± 2 Gyr. Using the luminosity function method, Jimenez & Padoan (1998) found an age

of 12.5 ± 1.0 Gyr for M55. This method gives a joint constraint on the distance and the age of the globular

cluster. Other groups find consistent ages: Gratton et al. (1997) estimate an age of 11.8+2.1
−2.5 Gyr for the

oldest Galactic globulars; VandenBerg et al. (2002) estimates an age of ∼ 13.5 Gyr for M92.

Observations of eclipsing double line spectroscopic binaries enable globular cluster age determinations

that avoid the considerable uncertainty associated with the globular cluster distance scale (Paczynski 1997).

Thompson et al. (2001) were able to obtain a high precision mass estimate for the detached double line

spectroscopic binary, OGLEGC-17 in ω−Cen. Using the age/turnoff mass relationship, the Kaluzny et al.

(2002) analysis of this system yielded an age for this binary of 11.8 ± 0.6 Gyr. Chaboyer & Krauss (2002)

re-analysis of the age/turnoff mass relationship for this system yields a similar age estimate: 11.1±0.67 Gyr.

The WMAP determination of the age of the universe implies that globular clusters form within 2 Gyr after

the Big Bang, a reasonable estimate that is consistent with structure formation in the ΛCDM cosmology.

White dwarf dating provides an alternative approach to the traditional studies of the main sequence turn-off.

Richer et al. (2002) and Hansen et al. (2002) find an age for the globular cluster M4 of 12.7 ± 0.7 Gyrs (2

σ errors, ±0.35 at the 1 σ level assuming Gaussian errors) using the white dwarfs cooling sequence method.

These results, which yield an age close to the cosmological age, are potentially very useful: further tests of

the assumptions of the white dwarf age dating method will clarify its systematic uncertainties.

Observations of nearby halo stars enable astronomers to obtain spectra of various radio-isotopes. By

measuring isotopic ratios, they infer stellar ages that are independent of much of the physics that determines

main sequence turn-off (see Thielemann et al. (2002) for a recent review). These studies yield stellar ages

consistent with both the globular cluster ages and the ages in our best fit models. Schatz et al. (2002) study

Thorium and Uranium in CS 31082-001 and estimate an age of 15.5 ± 3.2 Gyr for the r-process elements in

the star. Other groups find similar estimates: the Cayrel et al. (2001) analysis of U-238 in the old halo star

CS 31082-001 yields an age of 12.5± 3 Gyr, while Hill et al. (2002) find an age of 14.0± 2.4 Gyr. Studies of

other old halo stars yield similar estimates: Cowan et al. (1999) two stars CS 22892-052 and HD115444 find

15.6 ± 4.6 Gyr.

Table 6 summarizes the lower limits on the age of the universe from various astronomical measurements.

While the errors on these measurements remain too large to effectively constrain parameters, they provide

an important consistency check on our basic cosmological model.
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4.5. Large Scale Structure

The large scale structure observations and the Lyman α forest data complement the CMB measurements

by measuring similar physical scales at very different epochs. The WMAP angular power spectrum has the

smallest uncertainties near ` ∼ 300, which correspond to wavenumbers k ∼ 0.02 Mpc−1. With the ACBAR

results, our CMB data set extends to ` ∼ 1800, corresponding to k ∼ 0.1 Mpc−1. If we assume that gravity

is the primary force determining the large-scale distribution of matter and that galaxies trace mass at least

on large scales, then we can directly compare our best fit Λ CDM model (with parameters fit to the WMAP

data) to observations of large scale distribution of galaxies. There are currently two major ongoing large

scale structure surveys: the Anglo-Australian Telescope two degree field Galaxy Redshift Survey (2dFGRS)

(Colless et al. 2001), and the Sloan Digital Sky Survey14 (SDSS). Large scale structure data sets are a

powerful tool for breaking many of the parameter degeneracies associated with CMB data. In §5, we make

extensive use of the 2dFGRS data set.

Figure 6 shows that the ΛCDM model obtained from the WMAP data alone is an acceptable fit to the

2dFGRS power spectrum. The best fit has β = 0.45 consistent with Peacock et al. (2001) measured value of

β = 0.43 ± 0.07.

The Lyman α forest observations are an important complement to CMB observations since they probe

the linear matter power spectrum at z = 2− 3 (Croft et al. 1998, 2002). These observations are sensitive to

small length scales, inaccessible to CMB experiments. Unfortunately, the relationship between the measured

flux power spectrum and the linear power spectrum is complex (Gnedin & Hamilton 2002; Croft et al. 2002)

and needs to be calibrated by numerical simulations. In Verde et al. (2003), we describe our methodology for

incorporating the Lyman α forest data into our likelihood approach. Figure 6 compares the predicted power

spectra for the best fit ΛCDM model to the linear power spectra inferred by Gnedin & Hamilton (2002) and

by Croft et al. (2002).

4.6. Supernova Data

Over the past decade, Type Ia supernovae have emerged as important cosmological probes. Once

supernova light curves have been corrected using the correlation between decline rate and luminosity (Phillips

1993; Riess et al. 1995) they appear to be remarkably good standard candles. Systematic studies by the

supernova cosmology project (Perlmutter et al. 1999) and by the high z supernova search team (Riess

et al. 1998) provide evidence for an accelerating universe. The combination of the large scale structure,

CMB and supernova data provide strong evidence for a flat universe dominated by a cosmological constant

(Bahcall et al. 1999). Since the supernova data probes the luminosity distance versus redshift relationship at

moderate redshift z < 2 and the CMB data probes the angular diameter distance relationship to high redshift

(z ∼ 1089) , the two data sets are complementary. The supernova constraint on cosmological parameters

are consistent with the ΛCDM WMAP model. As we will see in the discussion of non-flat models and

quintessence models, the SNIa likelihood surface in the Ωm − ΩΛ and in the Ωm − w planes provides useful

additional constraints on cosmological parameters.

14www.sdss.org
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4.7. Reionization & Small Scale Power

The WMAP detection of reionization (Kogut et al. 2003) implies the existence of an early generation

of stars able to reionize the Universe at z ∼ 20. Is this early star formation compatible with our best fit

ΛCDM cosmological model? We can evaluate this effect by first computing the fraction of collapsed objects,

fDM , at a given redshift:

fDM (z) =
1

ρ0

∫ ∞

Mmin

Φ(M, z)MdM, (2)

where Φ(M, z) is the Sheth & Tormen (1999) mass function. The first stars correspond to extremely rare

fluctuations of the overdensity field: Eq. (2) is very sensitive to the tail of the mass function. Thus

the very small change in the minimum mass needed for star formation results in a significant change in

the fraction of collapsed objects. The minimum halo mass for star formation, Mmin, is controversial and

depends on whether molecular hydrogen (H2) is available as a coolant. If the gas temperature is fixed to

the CMB temperature, then the Jean Mass, M j = 106M�. If molecular hydrogen is available, then the

Jeans mass before reionization is M j′ ∼ 2.2 × 103[ωb/h(ωm)]1.5(1 + z)/10 for z < 150 (Venkatesan et al.

2001). At z > 150, the electrons are thermally coupled to the CMB photons. However, as Haiman et al.

(1997) point out, a small UV background generated by the first sources will dissociate H2, thus making the

minimum mass much larger than the Jeans mass. They suggest using a minimum mass that is much higher:

MHRL
min (z) = 108(1 + z)/10)−3/2. On the other hand if the first stars generated a significant flux of X-rays

(Oh 2001) then this would have promoted molecular hydrogen formation (Haiman et al. 2000; Venkatesan

et al. 2001; Cen 2002). Thus lowering the minimum mass back to M j .

Following Tegmark & Silk (1995) we estimate the rate of reionization by multiplying the collapse factor

by an efficiency factor. A fraction of baryons in the universe, fb, falls into the non-linear structures. We

assume fb = fDM (i.e., constant baryon/dark matter ratio). A certain fraction of these baryons form stars

or quasars, fburn, which emit UV radiation with some efficiency, fUV . Some of this radiation escapes into

the intergalactic medium photoionizing it; however, the net number of ionizations per UV photons, fion, is

expected to be less than unity (due to cooling and recombinations). Finally the intergalactic medium might

be clumpy, making the photoionization process less efficient. This effect is counted for by the clumping

factor Cclump. Thus in this approximation the ionization fraction is given by: xe = 3.8 × 105fnetfb where

fnet = fburnfUV fescfion/Cclump. The factor 3.8 × 105 arises because 7.3 × 10−3 of the rest mass is released

in the burning of hydrogen to helium and we assume the primordial helium mass fraction to be 24%. We

assume fburn . 25%, fesc . 50%, fUV . 50%, fion . 90%, and 1 . Cclump . 100, thus fnet . 5.6 × 10−3.

Figure 7 shows the fraction of collapsed objects and the maximum ionization fraction as a function of

redshift for our best fit WMAP ΛCDM model. The solid lines correspond to Mmin = MHRL
min (z) while the

dashed lines correspond to Mmin = M j. The WMAP detection of reionization at high redshift suggests that

H2 cooling likely played an important role in early star formation.

Because early reionization requires the existence of small scale fluctuations, the WMAP TE detection

has important implications for our understanding of the nature of the dark matter. Barkana et al. (2001)

note that the detection of reionization at z > 10 rules out warm dark matter as a viable candidate for the

missing mass as structure forms very late in these models. Warm dark matter can not cluster on scales

smaller than the dark matter Jeans’ mass. Thus, this limit applies regardless of whether the minimum mass

is MHRL or M j .
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5. COMBINING DATA SETS

In this section, we combine the WMAP data with other CMB experiments that probe smaller angular

scales (ACBAR and CBI) 15 and with astronomical measurements of the power spectrum (the 2dFGRS and

Lyman α forest). We begin by exploring how including these data sets affects our best fit power law ΛCDM

model parameters (§5.1). The addition of data sets that probe smaller scales systematically pulls down the

amplitude of the fluctuations in the best fit model. This motivates our exploration of an extension of the

power law model, a model where the primordial power spectrum of scalar density fluctuations is fit by a

running spectral index (Kosowsky & Turner 1995):

P (k) = P (k0)

(

k

k0

)ns(k0)+(1/2)dns/d ln k ln(k/k0)

, (3)

where we fix the scalar spectral index and slope at k0 = 0.05Mpc−1. Note that this definition of the running

index matches the definition used in Hannestad et al. (2002) analysis of running spectral index models and

differs by a factor of 2 from the Kosowsky & Turner (1995) definition. As in the scale independent case, we

define

ns(k) =
d lnP

d ln k
. (4)

We explicitly assume that d2ns/dlnk2 = 0, so that

ns(k) = ns(k0) +
dns

d ln k
ln

(

k

k0

)

. (5)

In §5.2, we show that the running spectral index model is a better fit than the pure power law model to

the combination of WMAP and other data sets. Peiris et al. (2003) explores the implications of this running

spectral index for inflation.

5.1. Power Law CDM Model

The power law ΛCDM model is an acceptable fit to the WMAP data. While it overpredicts the amplitude

of fluctuations on large angular scales (see §6), this deviation may be due to cosmic variance at these large

scales. Intriguingly, it also overpredicts the amplitude of fluctuations on small angular scales.

Table (7) shows the best fit parameters for the power law ΛCDM model for different combination of data

sets. As we add more and more data on smaller scales, the best fit value for the amplitude of fluctuations at

k = 0.05 Mpc−1 gradually drops: When we fit to the WMAP data alone, the best fit is 0.9 ± 0.1. When we

add the CBI, ACBAR and 2dFGRS data, the best fit value drops to 0.8 ± 0.1. Adding the Lyman α data

further reduces A to 0.75+0.08
−0.07. The best fit spectral index shows a similar trend: the addition of more and

more small scale data drives the best fit spectral index to also change by nearly 1 σ from its best fit value

for WMAP data only: 0.99 ± 0.04 (WMAP only) to 0.96 ± 0.02 (WMAPext+2dFGRS+Lyα). When the

addition of new data continuously pulls a model away from its best fit value, this is often the signature of

the model requiring a new parameter.

15In the following sections, we refer to the combined WMAP , ACBAR and CBI data sets as WMAPext.
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5.2. Running Spectral Index ΛCDM Model

Inflationary models predict that the spectral index of fluctuations should be a slowly varying function

of scale. Peiris et al. (2003) discusses the inflationary predictions and shows that a plausible set of models

predicts a detectable varying spectral index. There are classes of inflationary models that predict minimal

tensor modes. This section explores this class of models. In §6.4, we explore a more general model that has

both a running spectral index and tensor modes.

Table 8 shows the best fit parameters for the running (RUN) spectral index model as a function of data

set and for the power law (PL) ΛCDM model for MAP data only. Note that the best fit parameters for these

models barely change as we add new data sets; however, the error bars shrink. When we include all data

sets, the best fit value of the running of the spectral index is −0.031+0.016
−0.017: fewer than 5% of the models

have dns/d ln k > 0.

Figure 9 shows the the power spectrum as a function of scale. The figure shows the results of our

Markov chain analysis of the combination of WMAP , CBI, ACBAR, 2dFGRS and Lyman α data. At each

wavenumber, we compute the range of values for the power law index for all of the points in the Markov chain.

The 68% and 95% contours at each k value are shown in Figure 9 for the fit to the WMAPext+2dFGRS +

Lyman α data sets.

Over the coming year, new data will significantly improve our ability to measure (or constrain) this

running spectral index. When we complete our analysis of the EE power spectrum, the WMAP data will

place stronger constraints on τ . Because of the ns − τ degeneracy, this implies a strong constraint on ns

on large scales. The SDSS collaboration will soon release its galaxy spectrum and its measurements of the

Lyman α forest. These observations will significantly improve our measurements of ns on small scales. Peiris

et al. (2003) shows that the detection of a running spectral index and particularly the detection of a spectral

index that varies from ns > 1 on large scales to ns < 1 on small scales would severely constrain inflationary

models.

The running spectral index model predicts a significantly lower amplitude of fluctuations on small scales

than the standard ΛCDM model (see figure 9). This suppression of small scale power has several important

astronomical implications: (a) the reduction in small scale power makes it more difficult to reionize the

universe unless H2 cooling enables mass dark halos to collapse and form galaxies (see §4.7 and Figure 10);

(b) a reduction in the small scale power reduces the amount of substructure within galactic halos (Zentner

& Bullock 2002) (c) since small objects form later, their dark matter halos will be less concentrated as there

is a monotonic relationship between collapse time and halo central concentration (Navarro et al. 1997; Eke

et al. 2001; Zentner & Bullock 2002; Wechsler et al. 2002; Huffenberger & Seljak 2003). The reduction in

the amount of substructure will also reduce angular momentum transport between dark matter and baryons

and will also reduce the rate of disk destruction through infall (Toth & Ostriker 1992). We suspect that our

proposed modification of the primordial power spectrum will resolve many of the long-standing problems of

the CDM model on small scales (see Moore (1994) and Spergel & Steinhardt (2000) for discussions of the

failings of the power law Λ CDM model on galaxy scales).

6. BEYOND THE ΛCDM MODEL

In this section, we consider various extensions to the ΛCDM model. In §6.1, we consider dark energy

models with a constant equation of state. In §6.2, we consider non-flat models. In §6.3, we consider models
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Table 7. Best Fit Parameters: Power Law Λ CDM

WMAP WMAPext16a WMAPext+2dFGRS WMAPext+ 2dFGRS+ Lyman α

A 0.9 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.75+0.08
−0.07

ns 0.99 ± 0.04 0.97 ± 0.03 0.97 ± 0.03 0.96 ± 0.02

τ 0.166+0.076
−0.071 0.143+0.071

−0.062 0.148+0.073
−0.071 0.117+0.057

−0.053

h 0.72 ± 0.05 0.73 ± 0.05 0.73 ± 0.03 0.72 ± 0.03

Ωmh2 0.14 ± 0.02 0.13 ± 0.01 0.134 ± 0.006 0.133 ± 0.006

Ωbh
2 0.024 ± 0.001 0.023 ± 0.001 0.023 ± 0.001 0.0226± 0.0008

χ2
eff/ν 1431/1342 1440/1352 1468/1381 · · · b

aWMAP +CBI+ACBAR

bSince the Lyman α data points are correlated, we do not quote an effective χ2 for the combined

likelihood including Lyman α data (see Verde et al. (2003)).

Table 8. Best Fit Parameters for the Running Spectral Index ΛCDM Model

WMAP WMAPext WMAPext+2dFGRS WMAPext+ 2dFGRS+ Lyman α

MODEL PL Run Run Run

A 0.9 ± 0.1 0.9 ± 0.1 0.84 ± 0.09 0.83+0.09
−0.08

ns 0.99 ± 0.04 0.91 ± 0.06 0.93+0.04
−0.05 0.93 ± 0.03

dns/d ln k · · · −0.055± 0.038 −0.031+0.023
−0.025 −0.031+0.016

−0.017

τ 0.166+0.076
−0.071 0.20 ± 0.07 0.17 ± 0.06 0.17 ± 0.06

h 0.72 ± 0.05 0.71 ± 0.06 0.71 ± 0.04 0.71+0.04
−0.03

Ωmh2 0.14 ± 0.02 0.14 ± 0.01 0.136± 0.009 0.135+0.008
−0.009

Ωbh
2 0.024 ± 0.001 0.022± 0.001 0.022± 0.001 0.0224± 0.0009

χ2
eff/ν 1431/1342 1437/1350 1465/1380 *a

aSince the Lyman α data points are correlated, we do not quote χ2
eff for the combined likelihood including

Lyman α data (see Verde et al. (2003)).
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with a massive light neutrino. In §6.4, we include tensor modes.

In this section of the paper, we combine the WMAP data with external data sets so that we can break

degeneracies and obtain significant constraints on the various extensions of our standard cosmological model.

6.1. Dark Energy

The properties of the dark energy, the dominant component in our universe today, is a mystery. The

most popular alternative to the cosmological constant is quintessence. Ratra & Peebles (1988) and Peebles

& Ratra (1988) suggest that a rolling scalar field could produce a time-variable dark energy term, which

leave a characteristic imprint on the CMB and on large scale structure (Caldwell et al. 1998). In these

quintessence models, the dark energy properties are quantified by the equation of state of the dark energy:

w = p/ρ, where p and ρ are the pressure and the density of the dark energy. A cosmological constant has

an equation of state, w = −1.

Since the space of possible models is quite large, we only consider models with a constant equation

of state. We now increase our model space so that we have 7 parameters in the cosmological model

(A, ns, h, Ωm, Ωb, τ and w). We restrict our analysis to w > −1 motivated both by the difficulties in con-

structing stable models with w < −1 (Carroll et al. 2003) and by the desire to simplify our analysis. Further

analysis is needed for models where w and the quintessence sound speed are a function of time (Dedeo et al.

2003). The addition of a new parameter introduces a new degeneracy between Ωm, h, and w that can not

be broken by CMB data alone (Huey et al. 1999; Verde et al. 2003): models with the same values of Ωmh2,

Ωbh
2 and first peak position have nearly identical angular power spectra.

For example, a model with Ωm = 0.47, w = −1/2 and h = 0.57 has a nearly identical angular power

spectrum to our ΛCDM model. Note, however, that this Hubble Constant value differs by 2σ from the HST

Key Project value and the predicted shape of the power spectrum is a poor fit to the 2dFGRS observations.

This model is also a worse fit to the supernova angular diameter distance relation.

We consider five different combinations of astronomical data sets: (a) WMAPext data combined with

the supernova observations; (b) WMAPext data combined with HST data; (c) WMAPext data combined

with the 2dFGRS large scale structure data; (d) WMAPext combined with 2dFGRS and Lyman α data and

(e) all data sets combined.

The CMB peak positions constrain the conformal distance to the decoupling surface. The amplitude

of the early ISW signal determines the matter density, Ωmh2. The combination of these two measurements

strongly constrains Ω(w) and h(w) (see Figure 11). The HST Key Project measurement of H0 agrees with

the inferred CMB value if w = −1. As w increases, the best fit H0 value for the CMB drops below the

Key Project value. Our joint analysis of CMB + HST Key Project data implies that w < −0.5 (95%

confidence interval). If future observations can reduce the uncertainties associated with the distance to the

LMC, the H0 measurements could place significantly stronger limits on w. Figures 11 and 12 show that the

combination of either CMB+supernova data or CMB+large scale structure data place similar limits on dark

energy properties. Figure 11 shows that all of the data set combinations prefer models with w close to −1.

For our combined data set, we marginalize over all other parameters and find that w < −0.78(95% CL). All

of the combined data sets appear to favor a model where the properties of the dark energy are close to the

predicted properties of a cosmological constant (w = −1).
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6.2. Non-Flat Models

The position of the first peak constrains the universe to be nearly flat (Kamionkowski et al. 1994);

low density models with ΩΛ = 0 have their first peak position at l ∼ 200Ω
−1/2
m . However, if we allow for

the possibility that the universe is non-flat and there is a cosmological constant, then there is a geometric

degeneracy (Efstathiou & Bond 1999): along a line in Ωm − ΩΛ space, there is a set of models with nearly

identical angular power spectra. While the allowed range of Ωtot is relatively small, there is a wide range in

Ωm values compatible with the CMB data in a non-flat universe.

If we place no priors on cosmological parameters, then there is a model with ΩΛ = 0 consistent with the

WMAP data. However, the cosmological parameters for this model (H0 = 32.5 km/s/Mpc, and Ωtot = 1.28)

are violently inconsistent with a host of astronomical measurements.

If we include a weak prior on the Hubble Constant, H0 > 50km/s/Mpc, then this is sufficient to constrain

0.98 < Ωtot < 1.08 (95% confidence interval). Combining the WMAPext data with supernova measurements

of the angular diameter distance relationship (see figure 13) we obtain 0.98 < Ωtot < 1.06. This confidence

interval does not require a prior on h. If we further include the HST Key Project measurement of H0 as

a prior, then the limits on Ω0 improve slightly: Ωtot < 1.02 ± 0.02 Figure 13 shows the two dimensional

likelihood surface for various combinations of the data.

6.3. Massive Neutrinos

Copious numbers of neutrinos were produced in the early universe. If these neutrinos have non-negligible

mass they can make a non-trivial contribution to the total energy density of the universe during both matter

and radiation domination. During matter domination, the massive neutrinos cluster on very large scales but

free-stream out of smaller scale fluctuations. This free-streaming changes the shape of the matter power

spectrum (Hu et al. 1998) and most importantly, suppresses the amplitude of fluctuations. Since we can

normalize the amplitude of fluctuations to the WMAP data, the amplitude of fluctuations in the 2dFGRS

data places significant limits on neutrino properties.

The contribution of neutrinos to the energy density of the universe depends upon the sum of the mass

of the light neutrino species:

Ωνh2 =

∑

i mi

93.5eV
. (6)

Note that the sum only includes neutrino species light enough to decouple while still relativistic.

Experiments that probe neutrino propagation from source to detector are sensitive not to the neutrino

mass but to the mass difference between different neutrino species. Solar neutrino experiments (Bahcall et al.

2002a) imply that the mass difference between the electron and muon neutrinos is ∼ 10−4 eV. The deficit

of muon neutrinos in atmospheric showers imply that the square mass difference between muon and tau

neutrinos is 10−3 − 10−2eV2 (Kearns 2002). If the electron neutrino is much lighter than the tau neutrino,

then the combination of these results imply that mντ
< 0.1 eV: still below the detection limits for our

data-set. On the other hand, if mνe
∼ mντ

, then the three neutrino species can leave an observable imprint

on the CMB angular power spectrum and the galaxy large scale structure power spectrum. In our analysis,

we consider this latter case and assume that there are three degenerate light neutrino species.

Figure 14 shows the cumulative likelihood of the combination of WMAP, CBI, ACBAR, 2dFGRS and

Lyman α data as a function of the energy density in neutrinos. Based on this analysis, we conclude that
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Ωνh2 < 0.0076 (95% confidence limit). For three degenerate neutrino species, this implies that mν < 0.23eV.

This limit is roughly an order of magnitude improvement over previous analyses (e.g., Elgarøy et al. (2002))

that had to assume strong priors on Ωm and H0.

6.4. Tensors

Many models of inflation predict a significant gravity wave background. These tensor fluctuations were

generated during inflation. Tensor fluctuations have their largest effects on large angular scales where they

add in quadrature to the fluctuations generated by scalar modes.

Here, we place limits on the amplitude of tensor modes. We define the tensor amplitude using the same

convention as Leach et al. (2002):

r ≡
Ptensor(k∗)

Pscalar(k∗)
, (7)

where Ptensor and Pscalar are the primordial amplitude of tensor and scalar fluctuations and k∗ = 0.002

Mpc−1. Since we see no evidence for tensor modes in our fit, we simplify the analysis by assuming that the

tensor spectral index satisfies the single field inflationary consistency condition:

nt = −r/8. (8)

This constraint reduces the number of parameters in this model to 8: A, Ωbh
2, Ωmh2, h, ns, dns/d lnk, r and

τ . We ignore the running of nt. The addition of this new parameter does not improve the fit as figure (15)

shows the combination of WMAPext+ 2dFGRS is able to place a limit on the tensor amplitude: r < 0.71

(95% confidence limit). As figure (15) shows, this limit is much more stringent if we restrict the parameter

space to models with either ns < 1 or |dn/d ln k| < 0.01.

Peiris et al. (2003) discuss the implications of our limits on tensor amplitude for inflationary scenarios.

Using the results of this analysis, Peiris et al. (2003) shows that the inferred joint likelihood of ns, dns/d lnk

and r places significant constraints on inflationary models.

7. INTRIGUING DISCREPANCIES

While the ΛCDM model’s success in fitting CMB data and a host of other astronomical data is truly

remarkable, there remain a pair of intriguing discrepancies: on both the largest and smallest scales. While

adding a running spectral index may resolve problems on small scales, there remains a possible discrepancy

between predictions and observations on the largest angular scales.

Figure 16 shows the measured angular power spectrum and the predictions of our best fit Λ−CDM

model, where the data were fit to both CMB and large-scale structure data. The figure also shows the

measured angular correlation function; the lack of any correlated signal on angular scales greater than 60

degrees is noteworthy. We quantify this lack of power on large scales by measuring a four point statistic:

S =

∫ 1/2

−1

[C(θ)]2d cos θ. (9)

The upper cutoff and the form of this statistic were both determined a posteori in response to the shape

of the correlation function. We evaluate the statistical significance of these discrepancies by doing Monte-

Carlo realizations of the first 100,000 models in the Markov chains. This allows us to average not only over
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cosmic variance but also over our uncertainties in cosmological parameters. For our ΛCDM Markov chains

(fit to the WMAPext+ 2dFGRS data sets), we find that only 0.7% of the models have lower values for the

quadrupole and only 0.15% of the simulations have lower values of S. For the running model, we find that

only 0.9% of the models have lower values for the quadrupole and only 0.3% of the simulations have lower

values of S. The shape of the angular correlation function is certainly unusual for realizations of this model.

Is this discrepancy meaningful? The low quadrupole was already clearly seen in COBE and was usually

dismissed as due to cosmic variance (Bond et al. 1998) or foreground contamination. While the WMAP

data reinforces the case for its low value, cosmic variance is significant on these large angular scales and any

Gaussian field will always have unusual features. On the other hand, this discrepancy could be the signature

of interesting new physics.

The discovery of an accelerating universe implies that at these large scales, there is new and not un-

derstood physics. This new physics is usually interpreted to be dark energy or a cosmological constant. In

either case, we would expect that the decay of fluctuations at late times produces a significant ISW signal.

Boughn et al. (1998) argue that in a ΛCDM model with Ωm = 0.25, there should be a detectable correlation

between the CMB signal and tracers of large-scale structure; yet they were not able to detect a signal. There

are alternative explanations of the accelerating universe, such as extra dimensional gravity theories (Deffayet

et al. 2002) that do not require a cosmological constant and should make radically different predictions for

the CMB on these angular scales. These predictions have not yet been calculated.

What could generate this unusual shaped angular correlation function? As an example, we compute the

angular correlation function in a toy model, where the power spectrum has the form:

P (k) =

∞
∑

n=1

δ(k − 5.8n/τ0)

k
. (10)

where τ0 is the conformal distance to the surface of last scatter. This toy model simulates both the effects

of a discrete power spectrum due to a finite universe and the effects of ringing in the power spectrum due to

a feature in the inflaton potential (see Peiris et al. (2003) for a discussion of inflationary models). Figure 16

shows the angular correlation function and the TE power spectrum of the model. Note that the TE power

spectrum is particularly sensitive to features in the matter power spectrum. Intriguingly, this toy model is a

better match to the observed correlation function than the ΛCDM model and predicts a distinctive signature

in the TE spectrum. Cornish et al. (1998) show that if the universe was finite and smaller than the volume

within the decoupling surface, then there should be several pairs of circles detectable on the sky. Should we

be able to detect circles if the power spectrum cutoff is due to the size of the largest mode being ∼ 1/τ0?

While there is no rigorous theorem relating the size of the largest mode to the diameter of the fundamental

domain, D, analysis of both negatively curved (Cornish & Spergel 2000) and positively curved (Lehoucq

et al. 2002) topologies suggest that D ∼ (0.6 − 1)λ. Thus, if the “peak” in the power spectrum at l = 5

corresponds to the largest mode in the domain, we should be able to detect a pattern of circles in the sky.

Due to the finite size of the patch of the universe visible to WMAP (or any future satellite), our ability

to determine the origin and significance of this discrepancy will be limited by cosmic variance. However,

future observations can offer some new insight into its origin. By combining the WMAP data with tracers of

large scale structure (Boughn et al. 1998; Peiris & Spergel 2000), astronomers may be able to directly detect

the component of the CMB fluctuations due to the ISW effect. WMAP’s ongoing observations of large-scale

microwave background polarization fluctuations will enable additional measurements of fluctuations at large

angular scales. Since the TE observations are probing different regions of the sky from the TT observations,

they may enlighten us on whether the lack of correlations on large angular scales is a statistical fluke or the
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signature of new physics.

8. CONCLUSIONS

Cosmology now has a standard model: a flat universe composed of matter, baryons and vacuum energy

with a nearly scale-invariant spectrum of primordial fluctuations. In this cosmological model, the properties

of the universe are characterized by the density of baryons, matter and the expansion rate: Ωb, Ωm, and h.

For the analysis of CMB results, all of the effects of star formation can be incorporated in a single number:

the optical depth due to reionization, τ . The primordial fluctuations in this model are characterized by

a spectral index. Despite its simplicity, it is an adequate fit not only to the WMAP temperature and

polarization data but also to small scale CMB data, large scale structure data, and supernova data. This

model is consistent with the baryon/photon ratio inferred from observations of D/H in distant quasars, the

HST Key Project measurement of the Hubble constant, stellar ages and the amplitude of mass fluctuations

inferred from clusters and from gravitational lensing. When we include large scale structure or Lyman α

forest data in the analysis, the data suggest that we may need to add an additional parameter: dns/d lnk.

Since the best fit models predict that the slope of the power spectrum is redder on small scales, this model

predicts later formation times for dwarf galaxies. This modification to the power law ΛCDM model may

resolve many of its problems on the galaxy scale. Table (10) lists the best fit parameters for this model.

While there have been a host of papers on cosmological parameters, WMAP has brought this program

to a new stage: WMAP ’s more accurate determination of the angular power spectrum has significantly

reduced parameter uncertainties, WMAP ’s detection of TE fluctuations has confirmed the basic model and

its detection of reionization signature has reduced the ns − τ degeneracy. Most importantly, the rigorous

propagation of errors and uncertainties in the WMAP data has strengthened the significance of the inferred

parameter values.

In this paper, we have also examined a number of more complicated models: non-flat universes,

quintessence models, models with massive neutrinos, and models with tensor gravitational wave modes.

By combining the WMAP data with finer scale CMB experiments and with other astronomical data sets

(2dFGRS galaxy power spectrum and SNIa observations), we place significant new limits on these parame-

ters.

Cosmology is now in a similar stage in its intellectual development to particle physics three decades ago

when particle physicists converged on the current standard model. The standard model of particle physics

fits a wide range of data, but does not answer many fundamental questions: “what is the origin of mass?

why is there more than one family?, etc.” Similarly, the standard cosmological model has many deep open

questions: ”what is the dark energy? what is the dark matter? what is the physical model behind inflation

(or something like inflation)?” Over the past three decades, precision tests have confirmed the standard model

of particle physics and searched for distinctive signatures of the natural extension of the standard model:

supersymmetry. Over the coming years, improving CMB, large scale structure, lensing, and supernova data

will provide ever more rigorous tests of the cosmological standard model and search for new physics beyond

the standard model.
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Table 9. Best fit parameters for the running spectral index Λ CDM + Tensors Model

Parameter WMAPext+2dFGRS WMAPext+ 2dFGRS+ Lyman α

A 0.85+0.11
−0.10 0.84+0.10

−0.09

ns 0.96 ± 0.04 0.96 ± 0.03

dns/d ln k −0.046+0.030
−0.031 −0.042+0.021

−0.020

τ 0.17+0.07
−0.06 0.17 ± 0.06

h 0.74 ± 0.03 0.74 ± 0.03

Ωmh2 0.135± 0.006 0.135 ± 0.006

Ωbh
2 0.023± 0.001 0.023 ± 0.001

r < 0.71 < 0.71

χ2
eff/ν 1465/1379 · · · a

aSince the Lyman α data points are correlated, we do not quote an effective

χ2 for the combined likelihood including Lyman α data (see Verde et al.

(2003)).
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Table 10. Basic and Derived Cosmological Parameters: Running Spectral Index Modela

Mean and 68% Confidence Errors

Amplitude of fluctuations A = 0.83+0.09
−0.08

Spectral Index at k = 0.05 Mpc−1 ns = 0.93 ± 0.03

Derivative of Spectral Index dns/d ln k = −0.031+0.016
−0.018

Hubble Constant h = 0.71+0.04
−0.03

Baryon Density Ωbh
2 = 0.0224± 0.0009

Matter Density Ωmh2 = 0.135+0.008
−0.009

Optical Depth τ = 0.17 ± 0.06

Matter Power Spectrum Normalization σ8 = 0.84 ± 0.04

Characteristic Amplitude of Velocity Fluctuations σ8Ω
0.6
m = 0.38+0.04

−0.05

Baryon Density/Critical Density Ωb = 0.044± 0.004

Matter Density/Critical Density Ωm = 0.27 ± 0.04

Age of the Universe t0 = 13.7 ± 0.2 Gyr

Reionization Redshiftb zr = 17 ± 4

Decoupling Redshift zdec = 1089± 1

Age of the Universe at Decoupling tdec = 379+8
−7 kyr

Thickness of Surface of Last Scatter ∆zdec = 195 ± 2

Thickness of Surface of Last Scatter ∆tdec = 118+3
−2 kyr

Redshift of Matter/Radiation Equality zeq = 3233+194
−210

Sound Horizon at Decoupling rs = 147 ± 2 Mpc

Angular Diameter Distance to the Decoupling Surface dA = 14.0+0.2
−0.3 Gpc

Acoustic Angular Scalec `A = 301 ± 1

Current Density of Baryons nb = (2.5 ± 0.1) × 10−7 cm−3

Baryon/Photon Ratio η = (6.1+0.3
−0.2) × 10−10

aFit to the WMAP , CBI, ACBAR, 2dFGRS and Lyman α forest data

bAssumes ionization fraction, xe = 1

c lA = πdA/rs
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P., Gry, C., Dupree, A. K., Ferlet, R., Feldman, P. D., Green, J. C., Howk, J. C., Hutchings, J. B.,

Jenkins, E. B., Linsky, J. L., Murphy, E. M., Oegerle, W. R., Oliveira, C., Roth, K., Sahnow, D. J.,

Savage, B. D., Shull, J. M., Tripp, T. M., Weiler, E. J., Welsh, B. Y., Wilkinson, E., & Woodgate,

B. E. 2002, ApJS, 140, 3

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493

Oh, S. P. 2001, ApJ, 553, 499

O’Meara, J. M., Tytler, D., Kirkman, D., Suzuki, N., Prochaska, J. X., Lubin, D., & Wolfe, A. M. 2001,

ApJ, 552, 718

Paczynski, B. 1997, in The Extragalactic Distance Scale, 273–280

Page, L. et al. 2003a, ApJ, submitted

—. 2003b, ApJ, submitted

—. 2003c, ApJ, 585, in press

Peacock, J. A., Cole, S., Norberg, P., Baugh, C. M., Bland-Hawthorn, J., Bridges, T., Cannon, R. D.,

Colless, M., Collins, C., Couch, W., Dalton, G., Deeley, K., De Propris, R., Driver, S. P., Efstathiou,

G., Ellis, R. S., Frenk, C. S., Glazebrook, K., Jackson, C., Lahav, O., Lewis, I., Lumsden, S., Maddox,

S., Percival, W. J., Peterson, B. A., Price, I., Sutherland, W., & Taylor, K. 2001, Nature, 410, 169

Pearson, T. J., Mason, B. S., Readhead, A. C. S., Shepherd, M. C., Sievers, J. L., Udomprasert, P. S.,

Cartwright, J. K., Farmer, A. J., Padin, S., Myers, S. T., Bond, J. R., Contaldi, C. R., Pen, U.-L.,

Prunet, S., Pogosyan, D., Carlstrom, J. E., Kovac, J., Leitch, E. M., Pryke, C., Halverson, N. W.,

Holzapfel, W. L., Altamirano, P., Bronfman, L., Casassus, S., May, J., & Joy, M. 2002, ApJ, submitted

(astro-ph/0205388)

Peebles, P. J. E. & Ratra, B. 1988, ApJ, 325, L17

Peiris, H. et al. 2003, ApJ, submitted

Peiris, H. V. & Spergel, D. N. 2000, ApJ, 540, 605

Percival, W. J., Baugh, C. M., Bland-Hawthorn, J., Bridges, T., Cannon, R., Cole, S., Colless, M., Collins,

C., Couch, W., Dalton, G., De Propris, R., Driver, S. P., Efstathiou, G., Ellis, R. S., Frenk, C. S.,

Glazebrook, K., Jackson, C., Lahav, O., Lewis, I., Lumsden, S., Maddox, S., Moody, S., Norberg, P.,

Peacock, J. A., Peterson, B. A., Sutherland, W., & Taylor, K. 2001, MNRAS, 327, 1297



– 28 –

Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A., Nugent, P., Castro, P. G., Deustua, S., Fabbro,

S., Goobar, A., Groom, D. E., Hook, I. M., Kim, A. G., Kim, M. Y., Lee, J. C., Nunes, N. J.,

Pain, R., Pennypacker, C. R., Quimby, R., Lidman, C., Ellis, R. S., Irwin, M., McMahon, R. G.,

Ruiz-Lapuente, P., Walton, N., Schaefer, B., Boyle, B. J., Filippenko, A. V., Matheson, T., Fruchter,

A. S., Panagia, N., Newberg, H. J. M., Couch, W. J., & The Supernova Cosmology Project. 1999,

ApJ, 517, 565

Pettini, M. & Bowen, D. V. 2001, ApJ, 560, 41

Phillips, M. M. 1993, ApJ, 413, L105

Pierpaoli, E., Borgani, S., Scott, D., & White, M. 2002, astro-ph/0210567

Ratra, B. & Peebles, P. J. E. 1988, Phys. Rev. D, 37, 3406

Reese, E. D., Carlstrom, J. E., Joy, M., Mohr, J. J., Grego, L., & Holzapfel, W. L. 2002, ApJ, 581, 53

Refregier, A., Rhodes, J., & Groth, E. J. 2002, ApJ, 572, L131
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Fig. 1.— This figure compares the best fit power law ΛCDM model to the WMAP temperature angular

power spectrum. The gray dots are the unbinned data.
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Fig. 2.— This figure compares the best fit power law ΛCDM model to the WMAP temperature angular

power spectrum.
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Fig. 3.— This figure shows the likelihood function of the WMAP TT + TE data as a function of the basic

parameters in the power law ΛCDM WMAP model. (Ωbh
2, Ωmh2, h, A, ns and τ .) The points are the

binned marginalized likelihood from the Markov chain and the solid curve is an Edgeworth expansion of

the Markov chains points. The marginalized likelihood function is nearly Gaussian for all of the parameters

except for τ . The dashed lines show the maximum likelihood values of the global six dimensional fit.
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Fig. 4.— This figures shows the contribution to 1/2 lnL per multipole binned at ∆l = 15. The excess χ2

comes primarily from three regions, one around ` ∼ 120, one around ` ∼ 200 and the other around ` ∼ 340.
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Fig. 5.— Spectral Index Constraints. Left panel: the ns − τ degeneracy in the WMAP data for a power-law

ΛCDM model. The TE observations constrain the value of τ and the shape of the CTT
l spectrum constrain

a combination of ns and τ . Right panel: ns − Ωbh
2 degeneracy. The shaded regions show the joint one and

two sigma confidence regions.

Fig. 6.— (Left) This figure compares the best fit ΛCDM model of §3 based on MAP data only to the 2dFGRS

Power Spectrum(Percival et al. 2001). The bias parameter for the best fit Power Law ΛCDM model is 1.0

corresponding to a best fit value of β = 0.45. (Right) This figure compares the best fit Power Law ΛCDM

model of §3 to the power spectrum at z = 3 inferred from the Lyman α forest data. The data points have

been scaled downwards by 20%, which is consistent with the 1 σ calibration uncertainty (Croft et al. 2002).



– 35 –

Fig. 7.— (Left panel) This figure shows the fraction of mass in bound objects as a function of redshift. The

black lines show the mass in collapsed objects with mass greater than MHRL(z), the effective Jeans mass in

the absence of H2 cooling for our best fit PL ΛCDM model (thin lines are for the fit to MAP only and thick

lines are for the fit to all data sets). The heavy line uses the best fit parameters based on all data (which

has a lower σ8) and the light line uses the best fit parameters based on fitting to the WMAP data only. The

dashed lines show the mass in collapsed objects with masses greater than the Jeans mass assuming that the

minimum mass is 106M�. More objects form if the minimum mass is lower. (Right Panel) This figure shows

the ionization fraction as a function of redshift. The solid line shows ionization fraction for the best fit PL

ΛCDM model if we assume that H2 cooling is suppressed by photo-destruction of H2. This figure suggests

that H2 cooling may be necessary for enough objects to form early enough to be consistent with the WMAP

detection. The heavy line is for the best fit parameters for all data sets and the light line is for the best

fit parameters for the WMAP only fit. The dashed lines assume that the objects with masses greater than

106M� can form stars. The gray band shows the 68% likelihood region for zr based on the assumption of

instantaneous complete reionization (Kogut et al. 2003).
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Fig. 8.— This figure shows the marginalized likelihood for various cosmological parameters in the running

spectral index model for our analysis of the combined WMAP , CBI, ACBAR, 2dFGRS and Lyman α data

sets. The dashed lines show the maximum likelihood values of the global seven dimensional fit.
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Fig. 9.— (Left)The shaded region in the figure shows the 1 − σ contours for the amplitude of the power

spectrum as a function of scale for the running spectral index model fit to all data sets. The dotted lines

bracket the 2-σ region for this model. The dashed line is the best fit power spectrum for the power law

ΛCDM model. (Right)The shaded region in the figure shows the 1 -σ contours for the amplitude of the

amplitude of mass fluctuations, ∆2(k) = (k3/(2π2)P (k), as a function of scale for the running spectral index

model fit to all data sets. The dotted lines bracket the 2-σ region for this model. The dashed line is the best

fit for the power law ΛCDM model.
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Fig. 10.— (Left) This figure shows the fraction of the universe in bound objects with mass greater than

MHRL (dashed), M j = 106M� (solid) and M j′ (dotted) in a model with a running spectral index. The

curves were computed for the 1σ upper limit parameters for this model (see Figure 9). These should be

viewed as upper limits on the mass fraction in collapsed objects. (Right) This figure shows the ionization

fraction as a function of redshift and is based on the assumptions described in §4.7. As in the figure on the

left, we use the 1σ upper limit estimate of the power spectrum so that we obtain ”optimistic” estimates of

the reionization fraction. In the context of a running spectral index fit to the data, the WMAP detection of

reionization appears to require that H2 cooling played an important role in early star formation.
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Fig. 11.— Constraints on Dark Energy Properties. The upper left panel shows the marginalized maximum

likelihood surface for the WMAPext data alone and for a combination of the WMAPext + 2dFGRS data sets.

The solid lines in the figure show the 68% and 95% confidence ranges for the supernova data from Turner &

Riess (2002). In the upper right panel, we multiply the supernova likelihood function by the WMAPext +

2dFGRS likelihood functions. The lower left panel shows the maximum likelihood surface for h and w for the

WMAPext data alone and for the WMAPext + 2dFGRSdata sets. The solid lines in the figures are the 68%

and 95% confidence limits on H0 from the HST Key Project, where we add the systematic and statistical

errors in quadrature. In the lower right panel, we multiply the likelihood function for the WMAPext +

2dFGRS data by the likelihood surface for the HST data to determine the joint likelihood surface. The dark

areas in these plots are the 68% likelihood regions and the light areas are the 95% likelihood regions.
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Fig. 12.— This figure shows the marginalized cumulative probability of w for several different combinations

of data sets. The dashed line shows the 95% confidence upper limit on w based on combining all of the data

sets. The values quoted in the captions are the 95% upper limit for various combinations of data sets. All

combinations favor models where the dark energy behaves like a cosmological constant w = −1.



– 41 –

Fig. 13.— Constraints on the geometry of the universe: Ωm−ΩΛ plane. This figure shows the two dimensional

likelihood surface for various combinations of data: (upper left) WMAPext + H0 > 50 km/s/Mpc prior

(supernova limits (Riess et al. 1998, 2001) are shown in the panel but not used in the likelihood in this part

of the panel); (upper right) WMAPext+ supernova data; (lower left) WMAPext+ HST Key Project; (lower

right) WMAPext+ HST Key Project + supernova
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Fig. 14.— This figure shows the marginalized cumulative probability of Ωνh2 based on a fit to the

WMAPext+ 2dFGRS data sets.
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Fig. 15.— This figure shows the cumulative likelihood of the combination of the WMAPext+ 2dFGRS data

sets as a function of r, the tensor/scalar ratio. The three lines show the likelihood for no priors, for models

with |dn/d ln k| < 0.005 and for models with ns < 1.
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Fig. 16.— Angular correlation function of the best fit ΛCDM model, toy finite universe model, and WMAP

data on large angular scales. The data points are computed from the template-cleaned V band WMAP using

the Kp0 cut (Bennett et al. 2003c).
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Fig. 17.— TE Power Spectrum. This figure compares the data to the predicted TE power spectrum in

our toy finite universe model and the ΛCDM model. Both models assume that τ = 0.17 and have identical

cosmological parameters. This figure shows that the TE power spectrum contains additional information

about the fluctuations at large angles. While the current data can not distinguish between these models,

future observations could detect the distinctive TE signature of the model.


