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1. INTRODUCTION

The concept of inflation was introduced into cosmology by Guth (48)
about a decade ago. It has generated a remarkable degree of response,
both positive and negative, from physicists. By hindsight, the idea appears
a natural consequence of the concept of the phase transition, which is
believed to have occurred in the very early epochs of the big bang universe,
when the breakdown of the so-called grand unification symmetry took
place. When it was first proposed, the concept was somewhat difficult to
understand, however, as it combined ideas from particle physics with those
from the general theory of relativity. Even today, controversy remains
about important questions, e.g.: Was there really an inflationary phase in
the universe? If yes, what was the physical mechanism behind it? Given
the mode of inflation, what tangible relics should that era have left for
today?

Although excellent reviews are available on this subject (see e.g. 17),
they have been written largely by and for the theoreticians working on the
frontier between particle physics and cosmology. This review, as its title
indicates, is written for astronomers. We present the basic idea in a form
that is as free of the jargon of particle physics as possible, and focus
attention on the last of the three questions posed above.
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Table 1 Notation

FRW: Friedman-Robertson-Walker

MBR: Mirowave background radiation

LSS: the last scattering surface

GUTs: grand unified theories

HDM: hot dark matter

CDM: cold dark matter

a(t) = the expansion factor of the universe at cosmic time ¢

t, = the age of the universe, taking a(0) = 0 (thus ¢ = ¢, is the present epoch)

H, = Hubble’s constant at the present epoch

h = Hubble’s constant today (i.e. at ¢ = #,) in units of 100 kms™' Mpc™'

p. = (3H}/8nG) = critical density separating the closed and open FRW models

Q = mass density of nonrelativistic particles at ¢ = ¢, in units of the present critical density
Qp = baryonic contribution to Q at the present epoch

Q,.., = energy density of gravitational waves at ¢ = ¢, in units of the present critical density
Q, = any physical quantity Q evaluated at t = ¢,

T, = temperature of MBR at ¢ = ¢,

0 =T,/2.75K)

f,q = epoch when the matter and radiation energy densities were equal

t4.c = epoch when matter (baryons and leptons) decoupled from radiation

H = Hubble’s constant during the inflationary phase

1 MeV = 106 electron volts (this energy corresponds to a temperature of 1.16 x 10!° K)
t, = Planck epoch; m, = Planck mass.

To help the reader (and ourselves!), an outline of the notation to be
used in this article is presented in Table 1.

2. THE STANDARD MODEL AND
ITS DIFFICULTIES

2.1 The Friedman-Robertson-Walker Model with a
Hot Big Bang

The Friedman models (44, 45) were proposed as the simplest solutions of
Einstein’s equations without the A-term. Robertson (104) and Walker
(121) showed that global symmetry arguments of homogeneity and iso-
tropy lead to a spacetime geometry described by the line element

2
ds* = 2(1)[ dr " +r*(d6*+ sin? qubz)} k=0,+1. 1.

For k& = 0, the expression in parentheses describes the Euclidean metric
for three dimensional space in spherical polar coordinates. For k = +1,
the three-space has the closed topology of the surface of a hypersphere in
four dimensions, whereas for k = — 1, the three-space is open. The (r, 6, ¢)
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coordinates are the “comoving coordinates” of a typical “fundamental
observer” who “‘sees” the universe as homogeneous and isotropic. The
proper time of such an observer is measured by ¢, called the cosmic time,
and the corresponding frame of reference is called the cosmic rest frame.
The function a(¢) denotes the typical length scale of the universe and, for
an expanding model, it is called the expansion factor.

This function a(z) is determined by Einstein’s equations if the energy
momentum tensor of the physical contents of the universe are known. If
¢ is the energy density (= pc?) and p the pressure of these contents, these
equations can be reduced to

a*+kc? _ 8nGe
a>  3cr

d
= (ea®)+3pa® = 0. 3.

The second equation is none other than that of energy conservation under
adiabatic expansion.

The present state of the universe is matter-dominated in the sense that
bulk of the contribution to p comes from matter that is either at rest in
the cosmic rest frame or is moving slowly (compared to c) relative to it.
For such matter p,, ~ 0, and from Eq. 3 we get p oc a—>. The simplest
model of this kind is the flat model, for which p,, oc (¢/a)*. This leads
therefore to a critical density p, = 2 x 10~2?° h? gcm ™~ of the matter. For
k = +1 models, p > p., whereas for k = —1 models, p < p.. In general
we write the density p as Qp . withQ > 1fork=1,Q < 1fork = —1.

The small component of radiation present today was, however, more
dominant in the past. This is because for radiation with the equation of
state & = 3p,, Eq. 3 gives ¢ oc a~*. We denote by ¢, and a., = a(z,y), the
epoch and the expansion factor when ¢, = ¢,. Clearly,

ae T
T (8—> . 4,
ap €m/0
The microwave background radiation (MBR) energy density may be taken
as a close approximation to (g;),. A simple calculation gives

(@) — 431 x 10~ 5(Qh%)~'6*. 5,

ay

We may specify the redshift z of an epoch by the relation
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1+Z=@. . 6.
a

Clearly 14z, ~ 2.3 x 10*(Qh*)0~%; if we take pn, ~# 3 x 1077 gem ™2,
then z,, &~ 10°. This means that for z > z,, the universe is radiation-domi-
nated, whereas for z < z, it is matter-dominated.

At times ¢ < t.q (1.€. z » z,), the radiation dominated over matter, and

we find that the function a(¢) was approximately given by
a(f) oc tV2, 7.

(This presupposes the neglect of the curvature term kc?/a® in Eq. 2 in
comparison with d?/a?. As discussed below, this assumption is nontrivial.)
Since & oc T* for radiation, it follows that T oc ¢~ /2 This time-temperature
relationship can be written, more quantitatively, as

i — —1/2 r -’
<1s>_2'4~" (lMeV) ’ 8.

where g denotes the effective degrees of freedom of relativistic particles
present in thermodynamic equilibrium at that temperature. The number
varies between a value of about 10% (at 102° MeV) and 3 or so (at present).

Working backwards chronologically, there are three significant epochs
in the early universe. In the first epoch, electrons combined with ions to
form neutral atoms. The characteristic energy was the binding energy
(~13.6 eV) of the H-atom, and the temperature was about 30004000 K.
We denote this epoch by ¢ = 4. to indicate that the radiation decoupled
from matter in the absence of free electrons as scatterers. During the
second epoch, free neutrons and protons combined to form light nuclei at
temperatures between 10°~10° K. In the third epoch, that of the grand
unified theories (GUTs), the breakdown of grand-unification symmetry at
energies of about 10'* GeV led to the bifurcation of the electroweak
interaction from the strong interaction. For this  ~ 1072 s. (There is also
a fourth epoch preceding the GUTs epoch, prior to which the universe
was governed by the laws of quantum gravity. Known as the Planck epoch,
it was at 7, ~ 10~ ** 5. Classical general relativity could not be valid up to
this epoch.)

The third epoch, at temperatures around 10'* GeV, is of interest to
particle physicists. Some of the basic features of our universe—e.g. the
photon-to-baryon-number ratio, which is presently observed to be
(N,/Ng) = 3.52 x 107(Qh*)~'6°—may have become frozen in at this
epoch. Discrete structures (galaxies, clusters, superclusters, etc.) could
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conceivably grow from primordial seeds going back to this epoch. (For
reviews and discussions of some of these problems, see 81, 84, 125).

The confidence with which physicists extrapolate their discussions to
epochs as early as 1073 s rests on the successes of the standard hot big-
bang model at the first two stages, namely the prediction of relic abun-
dances of light nuclei and the interpretation of MBR as the relic radiation.
The standard theory encounters many problems of a fundamental nature,,
however, which require a radical rethinking of the very early scenario.
This was the motivation for introducing the concept of inflation. Before
considering the proposed remedy, it is appropriate to take a look at the
problems.

2.2  Some Puzzling Features of the FRW Models

The problematic features of the standard hot big-bang model can be briefly
summarized as follows:

2.2.1. THE HORIZON PROBLEM The typical fundamental observer O at a
given epoch ¢ has his past light cone truncated at ¢ = 0, the epoch of the
big-bang. A light signal in the radiation-dominated era could have only
travelled a proper distance

Ry(?) = a(¢) Lt % = 2ct 9.

during the time interval (0, ). Thus, any causal communication to O is
limited by a sphere of radius Ry centered on O. This boundary is called the
particle horizon. Two observers O and O’, separated by a proper distance
larger than 2Ry(¢) at epoch ¢, will therefore have totally disjoint spheres
of communication (see Figure 1). Causal connection is a necessary require-
ment for establishing homogeneity across a large region. Therefore there
1S no a priori reason to expect O and O’ to have a similar physical
environment. In short, the existence of a particle horizon limits the physical
processes that might have led to an attainment of homogeneity in the
universe.

If the present features of the universe were essentially frozen at the
GUTs epoch, we expect the sphere of radius 2Ry at that epoch to have
expanded sufficiently to encompass the present observable universe with
a size of about ~10%® cm. (This would provide a natural explanation for
the observed homogeneity of our universe.) Since the expansion factor
increases in inverse proportion to temperature from the GUTs epoch
(T ~ 10" GeV) to the present MBR temperature of Ty ~ 2.4 x 10~ % eV
(=2.75 K), the overall expansion is a factor 4 x 10%%. At t ~ 1073 s,
however, 2Ry ~ 6 x 10~%° cm. Thus the primordial sphere of homoge-
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Figure 1 The particle horizons of O and O’ at world points B and C are given by the
segments of the ¢ = 0 line where their past light cones interact it. In the situation illustrated
above, O and O’ are so far apart that their particle horizons are disjointed.

neity would have expanded only to a radius of about 2.4 x 10? cm, a
value far short of the size of the present universe. So the presently observed
large scale isotropy of the MBR and the very large scale homogeneity of
discrete structures cannot be explained unless one postulates homogeneity
at some initial epoch. The discrepancy is progressively reduced as one
moves this epoch away from the big bang but is significant even when it
is taken as late as when the radiation decoupled from matter at the last
scattering surface.

2.2.2. THE FLATNESS PROBLEM We have ignored the curvature term
kc?/a? in Eq. 2 in considering the very early universe. The use of the density
parameter Q in Eq. 2 leads to the relation

kc?
ke 10.
QH-1=", 0

A comparison with the present epoch gives, assuming k # 0,
2

Q1) —1 =ng—(£2—1). 11.

Since, as t — 0, |d| = oo, the convergence of (7) onto the flat value 1 is
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very rapid as we approach ¢ = 0. Expressed as a function of temperature,
this relation becomes

T -2
Q(T)—1 =4 x 10-15(9—1)<1M6V> . 12,

The present astronomical observations place Q within a range of 0.1 to 2.
Thus |Q— 1| is of order unity. At the GUTs epoch, however, with a oc ¢'/?,
we have @* oc ¢~ '. Putting in numbers, we find that 3/a> < 10~ *%. In other
words, |Q(¢) — 1] is extremely fine-tuned to value zero.

Stated differently, had this fine-tuning not occurred, the universe would
have contracted back to a =0 (for £k =1) or diffused to a = oo (for
k = —1) long before the present epoch. In the absence of any physical
mechanism, this fine-tuning has to be imposed ad hoc at the GUTs epoch
in the standard model.

The flatness problem can be posed alternatively as follows. The entropy
density of photons at thermal equilibrium at temperature 7T is given by
(4n%/45)T?>. Since a oc T, the total entropy in a proper volume, v o a°,
in an expanding universe is conserved. Its present value in the observable
region is about 10%°. Such a large value for a dimensionless conserved
quantity is hard to explain.

2.2.3. MoNOPOLES The spontaneous breakdown of symmetry in the
GUT scenario causes the initial larger symmetry group of the unified
interactions to decompose into smaller ones, which include the symmetry
group of the electromagnetic theory. A general theorem tells us that what-
ever the initial symmetry group, the process of symmetry breaking inevi-
tably generates physical solutions that describe magnetic monopoles. The
energy of a monopole is about 10'® GeV, corresponding to a mass of about
1.8 x 10~ ® g. Assuming that no more than one monopole is created in one
horizon-size sphere, the mass density of monopoles at the GUTs epoch
works out to about 1.7 x 10%° gcm ™2, This is diluted by expansion through
a factor of about 4 x 10%® to a present mass density of 10~ !° g cm~3—far
in excess of the critical density. With a density of this order, the universe
would have contracted to a = 0 in time less than 10° years! Since mono-
poles are stable objects, they cannot be destroyed. Thus the problem of
excess monopole density seems insurmountable within the standard model.

2.2.4. DOMAIN wALLS The GUTs phase transition produces certain
characteristic discontinuities in the matter distribution. This happens during
the spontaneous breakdown of symmetry, which leads the mediating scalar
fields to have a discrete set of characteristic values. Thus one region or
“domain” has one value of the scalar field, while its neighbor has another.
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The boundary wall between the domains would therefore be a region of
discontinuity. We expect to see this as a sheet of inhomogeneity in the
large scale matter distribution in the universe. The present data do not
reveal any such inhomogeneity in the observable universe.

2.2.5. SMOOTHNESS PROBLEM The horizon problem discussed above was
in the context of the large-scale homogeneity in the universe. A related
problem arises when we take into account the extraordinary smoothness
of the MBR at small angles (for a review see 32, 96, 128). The difficulty for
the standard model comes from the chronology of the proposed scenario in
which discrete structures are supposed to evolve from primordial seeds.
Most theories of structure formation predict that some imprint of this
event remains on the MBR in the form of small fluctuations of the order
AT/T ~ 10~ * in the temperature over angular sizes ranging from a few
arc seconds to a few arc minutes. Contrary to these expectations no
such fluctuations have been detected. The current upper bounds are
AT/T < 10~°. We discuss this point at length in Section 2.3.

2.2.6. THE A-TERM The cosmological constant A was introduced by
Einstein somewhat empirically to arrive at a static model of the universe
(38). Although with the discovery of the cosmological redshift law by
Hubble, the original need for A disappeared, it is still taken seriously by
many cosmologists. Observationally, the value of A has to be of the order
of the square of Hubble’s constant at present. Thus |[A| < 10733572,

The GUTs epoch generates a cosmological term purely from quantum
field theoretical effects. The order of magnitude of this term is very large,
however, about ~107° s™2. Thus we have to find why the present A-term
is smaller by an order ~ 107 '%° of the primordial A-term.

2.3 The Problem of Formation of Structures

The above discussion is based on an idealized model of the universe,
populated by matter that is assumed to be homogeneous and isotropic;
the density p and pressure p are taken to be spatially uniform: p(z, x) = p(z)
and p(z,x) = p(r). The real universe, of course, is quite different and
has a very inhomogeneous distribution of matter. One possible way of
characterizing such inhomogeneities is to use the “two-point-correlation
function.” Suppose 7 is the constant mean number density of galaxies in
space. If the galaxies are distributed at random, the chance of finding a
galaxy in a given volume dV is simply 7o V. If, however, the galaxies are
distributed inhomogeneously, the chance of finding a galaxy in a volume
element 6V at a distance r from another galaxy, picked at random, may
be expressed as
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5P = A{l+ @)}V, 13.

where &(r) is called the covariance function or two-point correlation function.
Detailed studies of the galaxy counts indicate that the two-point cor-
relation function for galaxies is &(r) = (r/5h~! Mpc) ¥ showing sig-
nificant clustering of matter at scales r < 5A~' Mpc (28, 98). On the
other end, deep three-dimensional surveys indicate evidence for filaments
(1004~ ' Mpc long and 54! Mpc across) and voids (empty regions about
60h~! Mpc in diameter) at very large scales (6, 34, 47, 68, 70, 114). The
average density contrast in the universe also shows significant variations
depending on the coarse-graining scale. It is about 10° at galactic scales
and about 107 at the scale of clusters.

This raises the question: How do we reconcile the existence of small-
scale structures— galaxies, groups, and clusters—with the overall homo-
geneity of the universe? In particular, how should the theoretical frame-
work be modified to take these inhomogeneities into account?

Two approaches are possible regarding this issue. We may try to obtain
more realistic cosmological models in which the source energy momentum
tensor of matter Ty (¢, X) isinhomogeneous and anisotropic with an average
value equal to that in a typical Friedman-Robertson-Walker (FRW) uni-
verse. The exact spacetime metric g, (f, x) obtained as a solution to this
problem will provide a more realistic description of our universe. Because
Einstein’s equations are nonlinear, no simple relation exists between the
(large-scale) average value of the metric {g,(z, x))> and the average value
of Ty. Thus, this model for the universe may show significant departures
from the FRW universe, even at large scales (39). This idea is extremely
difficult to put into practice, however, because of our inability to find
inhomogeneous solutions to Einstein’s equations.

The alternative point of view, which enjoys considerable popularity, is
the following: Let us assume that at some very early epoch ¢ = ¢, (say), the
physical variables describing the universe had small deviations around
their mean values. The metric was g; (¢, X) = g (f) + Az (2, X) and the source
was Ty(t,x) = Ty(?) +14(2, X), where the quantities with an overhead bar
denote the FRW values and the terms 4, and 7, are small corrections to
these mean values. Since these terms are small, one can linearize Einstein’s
equations in these variables and study the linear growth of metric and
matter perturbations. These studies show that matter perturbations do
grow under favorable circumstances, and will reach values comparable to
their mean value in finite time (73, 98, 122). When this happens, the over-
dense region (effectively) decouples from the expansion of the universe
and collapses further to form a condensation. It is generally believed that
the structures in the universe arose by this process, that is, the gravitational
growth of small, primordial seed perturbations.
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The above picture runs into several difficulties when the details are
worked out. Of these, the following three appear to be the most serious
ones:

1. To have any predictive power in this model, we need to know the origin
and magnitude of the initial density perturbations. In the conventional
big-bang model, there is no natural seed for these perturbations. Truly
primordial perturbations, e.g. those due to quantum gravitational effects
at t = tp, are likely to be of the order of one [((1)] and will be difficult to

‘estimate. Thus, the theory lacks predictive power.

2. The second difficulty is of technical nature. We define the “density
contrast” 4(z, x) and its Fourier transform 6,(¢) by the relations

00— _ [ &%
s = PSI0 [

d’k .k
= IW S (2) exp{l%'l}, 14.

where (k/a) is the physical wave number and |1| = |a(?)x| is the proper
distance. The Fourier transform separates a given inhomogeneity into
components of different characteristic sizes, which may grow at different
rates in the expanding universe. We can identify two effects in the time
evolution of (¢, x): (a) the growth of the amplitude 6,(¢) due to gravi-
tational instability and (b) the kinematic “stretching” of the proper wave
lengths (2n/k)a(t) due to the overall expansion of the universe. Thus, a
perturbation at a characteristic physical scale 4, today would correspond
to a proper length of Ay[a(?)/ay] oc t" in the past, if we take a(z) oc t". The
characteristic expansion scale of the universe, on the other hand, is given by
the Hubble radius ¢cH ~'(¢) = c(d/a) ™' = cn™'t. In realistic cosmological
models, # < 1 and hence the ratio [A(z)/cH ~'(?)] increases as we go to the
earlier epochs. In other words, A(¢) would have been larger than the Hubble
radius at sufficiently high redshifts.
To every wavelength A,, we can associate the mass scale:

Cdn_ [(2OY . AR
M) =5 p(1) (T) =1.5 x 10" M, Qh IMpc) 15.

5](( Z) eik-x

which remains constant during expansion of the universe (since p oc a™°

and A oc a). For example A ~ 1.88 Mpc corresponds to the galactic mass
of 10'* M; of course, galaxies today are much smaller, because over-
dense regions have collapsed gravitationally and ceased to expand with
the universe. Thus A is the hypothetical size containing galactic mass, if it
had continued with the cosmic expansion. This parametrization turns out
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to be extremely useful. The wavelength of this perturbation will be bigger
than the Hubble radius at all redshifts z > z.,,.,(M) where,

1.41 x 105(QAh2) V3 (M/10"2 M)~ /3
M < My ~3.2 x 10" My 0%(Qh?) >
1.10 x 108(QA%) =3 (M/10'2 M o)~ 3; '
M > M, ~ 3.2 x 10" My0%(Qh?) > 16.

ZCD(M) ~

It is usual to say that the perturbation carrying mass M enters the Hubble
radius at z = z,,,, or that the perturbation with mass M was outside the
Hubble radius at z > z.,,. The discontinuity in the two forms for Eq. 16
arises because the universe changes from the radiation-dominated phase
to the matter-dominated phase at some z,, = 4.36 x 10'°(Qh?%)~?6° s with
Zog = 2.32 x 104(QA%)07*. A scale of 1, ~ 13 Mpc (Qh?)” '0° enters the
Hubble radius at ¢, carrying the mass M., = 3.19 x 10'* M. Scales
with 4 < 4, (M < M,,) enter the Hubble radius before (z > z.,), when
a(?) oc t'2, whereas the scales A > ., enter later (z < z.,), when a(f) oc ¢*°.

Notice that according to the above calculation, a galactic mass per-
turbation was bigger than the Hubble radius for redshifts larger than a
moderate value of about 10°. This result leads to a major difficulty in
conventional cosmology. It is usually assumed that physical processes can
act coherently only over sizes smaller than the Hubble radius (see e.g. 8,
17). Thus any physical processes leading to small density perturbations at
some early epoch ¢ = ¢; could have only operated at scales smaller than
cH~'(t}), but most of the relevant astrophysical scales (corresponding
to clusters, groups, galaxies, etc.) were much bigger than c¢H ~'(¢) for
reasonably early epochs! Therefore, if we want the seed perturbations to
have originated in the very early universe, it is difficult to understand how
any physical process could have contributed to it.'

3. A further major difficulty in the study of structure formation is the
following: It can be shown that the linear baryonic density perturbations

'The conclusion above based on cH ~'(¢) as a distance scale limiting causal interaction is
accepted by most physicists, though it is very difficult to prove in general terms and cannot
be proved by causality arguments because cH ~ '(¢) and the horizon size can be quite different
in a general FRW model (see 40, 93). Normally, the particle horizon at an epoch limits the
range of causal communication from the past, while the event horizon limits the range of
such communication to the future. The radiation-dominated era has a particle horizon of
the order of Hubble radius, whereas the de Sitter universe has an event horizon of the same
order. In the above argument, both the horizons are used to limit causal communication in
the same sense. Moreover, for its limited duration, the inflationary phase cannot claim even
to have an event horizon! Thus one must consider the Hubble radius in the above argument
only as a hand-waving device.
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(at scales smaller than the Hubble radius) grew as A(f) oc a(#) in a matter-
dominated universe from z = z4. up to a redshift of about (Q~'—1) (see
e.g. 98). Since zg, ~ 1.1 x 10°0~", these perturbations could have grown
only by a factor of about Qz,,, since then. Today 6 = (dp/p) is of order
unity at scales larger than A ~ 84! Mpc. Therefore, in a baryonic uni-
verse, these perturbations must have been at least § ~ 0.8 x 107° Q5 ' 2
5 x 1073 at decoupling if we take into account the constraint Qg < 0.16
coming from the primordial nucleosynthesis calculations (130). In the
simplest models, this will lead to a temperature anisotropy of MBR
of (AT/T) ~0.36 ~ 1.7 x 107> at angular scales of about 4.4’. [The
angular scale of anisotropy 6 and the linear scale A of the perturbation
producing the anisotropy are related by 6 ~ 0.55'QA(4/1 Mpc).] No such
anisotropy has been discovered. The bounds on (AT/T) [lessthan3 x 1072
at 4.5 (119)] suggest that ¢ is less than at least 10~ at the time of
decoupling. This density contrast is insufficient to produce the observed
structures in a purely baryonic universe.

The perturbations described here, and elsewhere in this review, are called
adiabatic perturbations or curvature perturbations. They actually change
the curvature of space-time [locally, the equivalent Newtonian potential
changes by d¢; ~ (An,c” 'H)J,]. It is possible to think of another kind
of perturbation (isothermal) in which dp = 0 but the p = p(p) equation
changes from place to place. We do not discuss them here because it seems
unlikely that they are able to account for structures in the universe. [For
a more detailed discussion of this and related issues, see (7, 101, 118).]

3. THE CONCEPT OF INFLATION

3.1 The Basic Mechanism

Some of these difficulties of the standard FRW models may be approached
by modifying the dynamics of the very early universe. The trick lies in
introducing a temporary phase during which the universe expanded expo-
nentially as in the classical de Sitter (35) model. Such an exponentially
expanding phase is called inflation. The de Sitter model described an empty
universe with expansion caused by negative stresses due to the A-term.
The inflationary universe also requires a A-term; but here it arises and is
supposed to last only during the transient stage in which the GUTs phase
transition is taking place. We consider the actual mechanisms proposed
for this purpose in Section 3.2. Here we outline the actual model that
emerges and the way it can handle some of the awkward features of the
standard model.

Consider a model for the universe in which the universe was radiation-
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dominated up to, say, ¢t = ¢;, but expanded exponentially in the interval
L<t<t:

a(t) = a;exp H(t—1t) L<t<t. 17.

For t>t;, evolution is again radiation-dominated [a(f) oc ¢'/*] until
=1, 4.36 x 10'°(Qh% 2 s. Evolution becomes matter-dominated for
feg < t < Iney = to. Typical values for ¢,, ¢, and H suggested in the literature
are

tox 107 %s; H =~ 10'"°GeV; trxT0H ™!, 18.

which give an overall inflation of about 4 = exp N = exp (70) = 2.5 x 10*°
to the scale factor in the period ¢, <t < t. At t =1, the temperature
of the universe is about 10'* GeV. During this exponential inflation, the
temperature drops drastically but the matter is expected to be reheated
to the initial temperature ~10'* GeV at ¢~ ;. The reheating takes
place when the phase transition is over, and the energy released in the
process is passed on to the radiation content of the universe. The
situation is analogous to the reheating that takes place when supercooled
steam condenses and releases its latent heat. Thus, inflation effectively
changes the value of S = T(¢)a(?) by a factor 4 = exp (70) ~ 10°°. Note
that this quantity S is conserved during the noninflationary phases of the
expansion.

Such an evolution, if it can be implemented dynamically, has several
attractive features. Let us first explore how this evolution helps us to
overcome some of the difficulties of the FRW models (48, 67, 107).

Consider first the “flatness problem,” which concerns the unusually
small value of the curvature term (kc?/a?) in the early epochs. Inflation of
a(?) by a factor 4 decreases the value of this term by a factor 4= % = 10,
Thus one can start with moderate values of (kc?*/a*) before inflation and
bring it down to a very small value for ¢ 2 1033 s. This solves the flatness
problem, interpreted as the smallness of (kc?/a?). Notice that no classical
process can change a k = +1 universe to a kK = 0 universe, since doing so
involves a change in topological properties. What inflation does is to
decrease the importance of (kc?/a®) so much that, for all practical purposes,
we can ignore the dynamical effect of the curvature term, thus having the
same effect as setting k = 0.

Inflation also solves the horizon problem by bringing the entire observed
region of the last scattering surface into a causally connected patch. The
coordinate size of the region in the LSS from which we receive signals
today is
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‘o ecdt 3¢
(20, taee) = f — > (t§td"), 19.
Ldec a(t) Agec

while the coordinate size of the horizon at ¢ = 4. will be

4 . 1/2
Kt 0) = f det  Act; (’—) A 20.

0 a(t) Agec tf

1

[We have used the relations fy> fgee, A > 1, t;,~ H™!

;A (t4ee/2) V?]. The ratio

I(2 400, 0) l [2 (td 173 A
R -~ 0*1— — _;cc ~ 4 .
o)~ 2 G 13\, Pl gw) A

is far larger than unity for 4 ~ 10°°. Thus, all the signals we receive are
from a causally connected domain in the last scattering surface (LSS).
Note that, in the absence of inflation, /(Z4,0) = (2¢tsec/Adec), SO that
R = 2/3(t4ec/t0)* < 1. This value is amplified by the factor 247,(¢/4..) ™'/
~ 107 in the course of inflation.

Inflation can also reduce the density of any stable, relic particle, e.g. the
magnetic monopoles, by a dilution factor 473 ~ 10~°°, provided these
relics were produced before the onset of inflation. Likewise, any dis-
continuities, e.g. the domain walls etc., are expanded away from one
another so that the chance of observing one by a typical observer is made
negligibly small. Further, because of the reheating at the end of inflation,
one arrives at the large entropy presently observed in the universe. By the
same token, any relic of the early universe that survives to the present (like
baryon number) must be generated after the end of inflation.

The most attractive feature of the inflationary model is, however, the
possibility of generating the seed perturbations that can grow to form the
large-scale structures (8, 49, 52, 111). This can be achieved in the following
manner:

In the FRW models with a(f) oc t” (n < 1), the physical wavelengths
(which grow as 4 oc a oc ¢*) will be far larger than the Hubble radius [which
grows as H(¢) ™! oc £]in the early phases. This situation is drastically altered
in an inflationary model. During inflation, physical wavelengths grow ex-
ponentially [4 oc a oc exp Ht] while the Hubble radius remains constant.
Therefore, a given length scale has the possibility of crossing the Hubble
radius twice in the inflationary models. Consider, for example, a wave-
length A, ~ 2 Mpc today [which, according to (15) contains a mass of a
typical galaxy 1.2 x 10'*(Qh*)M ]. This scale would have been

and Aiec =
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t T
Aty = AOZT(;O)) = 2Mpc (T(t(;)) ~ 1.8 x 107 *cm 22.

at the end of inflation. (This is, of course, much larger than the typical
Hubble radius at that epoch, cH~' ~ 1.4 x 10~ %% cms.) But at the begin-
ning of inflation, its proper length would have been

a(t;)
a(t;)

This is much smaller than the Hubble radius. This Hubble radius remains
constant throughout the inflation while A increases exponentially. In an
interval of At = t—t, ~ 18H~!, A will grow as big as the Hubble radius.

The situation is summarized in Figure 2. We see that the scales that are
astrophysically relevant today were much smaller than the Hubble radius
at the onset of inflation. (Therefore, causal processes could have operated
at these scales.) During inflation, the proper wavelength grows, and
becomes equal to the Hubble radius ¢cH ' at some time ¢ = f;. For a
mode labeled by a wave vector k, this happens at z.,; (k) where,

M) = M) =5 = A~"'A(t) = 1.8 x 107> cms. 23.

2 A(te) = cH ™. 24.
k

That is, when (kc/aH) = 2n. In the radiation-dominated era after the
inflation, the proper length grows only as ¢!/ whereas the Hubble radius
grows as t; thus the Hubble radius ““catches up” with the proper wavelength
at some t = toe (k). For ¢ > t.,,, this wavelength will be completely within
the Hubble radius.

Inflationary models thus allow A to be less than cH ~ ! at two different
epochs: an early phase, ¢ < (k) and a late phase, ¢ > f.. (k). Any
perturbations generated by physical processes at ¢ < ., can be preserved
intact during f.,; < t < fr and can lead to formation of structures at
[ > Tenter-

What can lead to perturbations at ¢ < f.,;,? Since the physical processes
taking place in this epoch are quantum mechanical by nature, quantum
fluctuations in matter fields are obvious candidates as seed perturbations.
Therefore, in principle, we can now generate (and compute) the density
inhomogeneities in the universe—indeed a major achievement of inflation.

Notice that all the above conclusions only depend on the scale factor
growing rapidly (by a factor 10° or so) in a short time. For example, if
the energy density &(¢) varies slowly during #; < t < t, then one has near
exponential expansion with

© Annual Reviews Inc. * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1991ARA%26A..29..325N&db_key=AST

FT991 ARARA. .~297 “375N

340 NARLIKAR & PADMANABHAN

=
pre—
o
c
2
o
o
// Behaviour of Hubble radius
/%< in non - inflationary
// cosmology
/

RADIATION
DOMINATED

RADIATION

»<—— INFLATION —_—:’(_{DOMINATED

—log al(t) —>

————Ar— N —A—
inflation  density perturbations inflation ~ density

begins at wa\:lelengths A,and A2 ends perturbations
leave " the Hubble radius “————' [e-enter the
N ~ J Hubble radius

| V)

v

Figure 2 The figure illustrates the growths of the length scales of primordial fluctuations
in relation to the Hubble radius during the inflationary and Friedman phases of expansion.

I
a(t;) = a(t,) expj H(t)dt = a(t)exp N 25.

where H?(¢) = [8nGe(t)/3¢?]. This provides a general definition of N.
3.2 The Epicycles of Inflation

Since the inflationary idea seemed to be quite attractive, several mech-
anisms were devised by which this idea can be implemented. Each of these
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models has some advantages and disadvantages and none of them is
completely satisfactory. We briefly highlight three models.

For the universe to expand exponentially, the energy density should
remain (at least approximately) constant. Various models of inflation
differ in the process by which this is achieved. In most of them the quasi-
constant energy density &(?) is derived from phase transition at the GUTs
epoch. Although in specific details one grand unified theory may differ
from another, almost all of them involve gauge theories with a mediating
role played by the Higgs scalar field ¢. We need not go into the intricacies
of how ¢ is related to the other matter fields. The feature of interest to us
is that the potential energy density ¥ of the scalar field ¢ depends on the
ambient temperature 7.

At any given temperature 7 that is higher than a critical temperature
T., the minimum value of V'is found to be at the expected zero of ¢. We may
term this minimum at ¢ = 0 as the vacuum state of ¢. As the temperature is
lowered, however, the minimum of ¥ may no longer remain at ¢ = 0 but
may shift to a finite value ¢ = ¢. This phase transition occurs at T = T
and may be likened to the condensation of steam. Thus ¢ would tend to
transit from ¢ = 0to ¢ = o.

If ¢ were to condense immediately at 7., all the excess energy could be
released at once. In the more likely case of supercooling, however, ¢ may
continue at ¢ = 0 and move to the true minimum ¢ = ¢ later. During this
transitional stage, the state ¢ = 0 is called the false vacuum state, since the
true vacuum is now at ¢ = o. The original model for the inflation, due to
Guth (48), invoked this temperature dependence of the potential energy
of the Higgs field V(¢, T). [The potential energy has the form shown in
Figure 3. Here 7, ~ 3 x 10'* GeV.]

At temperatures T > T,, the potential V' has only one minimum (at
¢ = 0) with V(0) ~ (10'* GeV)*. As the temperature is lowered to T ~ T,
a second minimum appears at ¢ = . For T < T, the ¢ = ¢ minimum is
the “true” minimum [i.e. V'(¢) ~ 0 < V(0)]. Now consider what happens in
the early universe as matter cools through 7'~ T.. At T » T, the minimum
configuration corresponds to ¢ = 0 whereas for T'~ T, itis ¢ = o. Matter
in the universe does not instantaneously switch over from ¢ = 0 to ¢ = o,
however. The universe can get ““stuck’ at ¢ = 0 (the false vacuum), with
V ="V(0), even at T < T,, and will expand exponentially because the
dominant energy density driving the expansion is the constant
V(0)— V(o) ~ V(0). Over the course of time, thermal fluctuations and
quantum tunneling will induce a transition from the false vacuum ¢ = 0
to the true vacuum ¢ = o, thereby ending the inflation in localized regions
(“bubbles”). The phase transition is expected to be completed by the
expanding bubbles colliding, coalescing, and reheating the matter.
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Figure 3 'The potential energy of the Higgs field ¢ at various temperatures in the original
model proposed by Guth.

Detailed analysis, however, shows that this model does not work (50).
In order to have sufficient amount of inflation, it is necessary to keep the
“false” vacuum fairly stable. In such a case, the bubble nucleation rate is
small and even the resulting bubbles do not coalesce together efficiently.
The final configuration is very inhomogeneous and quite different from
the universe we need.

The original model was soon replaced by a version based on a very
special form for V'(¢) called the Coleman-Weinberg potential (3, 74, 75).
At zero temperature, this potential is given by (25)

1 ¢* 1 .

V(p) = EBO'4+B¢4 |:1n;7 — 5]; B~ 1073 ox2x10"°GeV. 26.
This potential is extremely flat for ¢ < o and drops rapidly near ¢ ~ o.
At finite temperatures, the potential picks up a small barrier near the origin
[at ¢ ~ O(T)] with height O(T?), creating a local minimum at ¢ =0
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(see Figure 4). This false vacuum, however, is quite unstable when the
temperature becomes (10° GeV) (74). The scalar field rapidly tunnels to
¢ =~ ¢y~ O(H), and starts “rolling down” the gently sloped potential
toward ¢ = o. Since the potential is nearly flat in this region, the energy
density driving the universe is approximately constant and about
V(0) = (3 x 10" GeV)*. The evolution of the scalar field in this slow roll-
over phase can be approximated as

O+ V' (¢) = ¢+3Ho+V'(¢) = 3Hp+V'(¢) =0, 27.

where we have ignored the ¢ term and H = (4nBGo*/3¢?) =~ 2 x 10'°GeV
(in energy units). If the slow roll over lasts when ¢ varies from ¢y, >~ O(H)
to some ¢.q S O(a), then

t . do J‘qﬁe H?
N=| Hdt=H| —~3| ——4d
ﬁ I s, V(D)

i ¢s
For the typical values of the Coleman-Weinberg potential, this number
can easily be about 10% thus ensuring sufficient inflation.

As ¢, approaches o, the field “falls down” the potential and oscillates
around the minimum at ¢ = ¢ with the frequency w? = V"(¢) =~ (2 x 10'*
GeV)? » H*. These oscillations are damped by the decay of ¢ into other
particles (with some decay time I'"!, say), and by the expansion of the
universe. If I'~! < H~!, the coherent field energy (3¢>+ V) will be con-

¢. 28.

10} False vacuum

Y

!

Veff
0°Gev?) 5

|

True vacuum

1 ] |
0-5 -0 1-5

5
—4:/(10' GeV) —>

Figure 4 The Coleman-Weinberg potential that was used in the first major revision of the
inflationary model.
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verted into relativistic particles in a timescale Atypens ® I'™' < H~'. This
will allow the universe to be reheated to a temperature of about
Trepent & 0 & 2 X 10'* GeV ~ Tipa- The decay width of several Coleman-
Weinberg models can be about I'"! ~ 10'° GeV » H. This ensures good
“reheating” of the universe (2, 4, 36). Because the field has already tunneled
out of the false vacuum before the onset of inflation, we do not face the
problems that plagued the original inflation. Instead of several bubbles
having to collide, coelesce, and make up the whole observable universe of
today, we have one huge bubble encompassing everything observable now.

Though it is an improvement on the original version, this model, too,
is not free from problems. The field should start its slow roll over from a
value ¢, ~ H to ensure sufficient inflation. The quantum fluctuations in
the scalar field are about A¢ ~ (H/2x) (75, 120). Since ¢, ~ A¢, the entire
analysis based on semiclassical V' (¢) is of doubtful validity. The second
and more serious difficulty stems from the calculation of density per-
turbations in this model: They are too large by a factor of about 10,
unless the parameter B is artificially reduced by a factor 10~ '? or so! (See
Section 4.)

The original model for inflation used a strongly first order phase tran-
sition whereas the second model may be considered to be using a weakly
first order (or even second order) phase transition. It is possible to con-
struct inflationary scenarios in which no phase transition is involved. The
idea of chaotic inflation, suggested by Linde, falls in this class (76). In this
model, the potential has a very simple form: V(¢) = A¢*. Inflation results
because of the rather slow motion of ¢ from some initial value ¢, toward
the minimum. (The initial nonzero value of the ¢, is supposed to be due
to ““chaotic” initial conditions.) This model can also lead to sufficient
inflation but suffers from two other difficulties: (@) To obtain the correct
value for the density perturbation, it is necessary to fine-tune A to very
small values: A ~ 4 x 10~ ' (b) In order for the inflation to take place,
the kinetic energy of the scalar field has to be small compared to its
potential energy. Detailed calculation shows that this requires the field
to be uniform over sizes bigger than the Hubble radius, a requirement
completely against the original spirit of inflation!

A further epicycle in the saga of inflation envisages a universe whose
origin was without a big bang (77). In this version, the de Sitter type
inflationary phase is self-reproducing in a chaotic set up with the help of
large scale quantum fluctuations of a scalar field ¢. The bubbles of FRW
models are nucleated in it at random points of space and time through
quantum phase transitions.

An attractive feature of the de Sitter expansion is that because of its
rapidity, the universe loses all information on initial conditions. This is a
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conjecture known as the cosmic baldness hypothesis (10). It has not been
rigorously proved but looks plausible. On the basis of this hypothesis, one
can assert that whatever the initial conditions, the universe will eventually
reach the de Sitter state.

A solution to the bubble nucleation and coelescence problem of the
original Guth model (sometimes referred to as the graceful exit problem)
was proposed in yet another way by La & Steinhardt (71). In their extended
inflationary cosmology, these authors used the Brans-Dicke theory of
gravity (see 20) instead of general relativity as the background theory for
the early universe. The inflationary phase in this model has a power law
type of expansion factor instead of the exponential one, thus allowing the
inflationary phase to end gracefully through bubble nucleation.

Nevertheless, this idea also ran into trouble with distortions of the MBR
and was changed to hyper-extended inflation. The background theory of
gravity for this model differs from the Brans-Dicke theory through the
inclusion of higher order couplings of the scalar field with gravity (113).
In a rapidly changing subject in which the half-life of a theory is one year,
passing judgment on the merits of this scenario is difficult.

The schemes and shortcomings discussed above are typical of several
other models suggested in the literature. The most serious constraint on
inflationary scenarios arises from the study of density perturbations (dis-
cussed in detail in Section 4). No single model for inflation suggested so
far can be considered completely satisfactory.

3.3 Historical Comment

We have already pointed out the similarity between the inflationary phase
and the de Sitter spacetime. A closer similarity exists between some of the
ideas invoked in inflation and the steady state model (16, 55). In the steady
state model, a steady exponential expansion [with (d/a) = constant] was
made compatible with a constant density of matter (p = constant) by
invoking the continuous creation of matter. Where did this matter come
from?

McCrea (78) had proposed negative stresses in vacuum to provide the
required energy tensor to drive the expansion. In the 1950s, particle physics
had not advanced to the sophisticated levels of today and so McCrea’s
phenomenological ideas were largely ignored by physicists. Today we can
view them with greater sympathy.

An alternative theory based on Hoyle’s earlier ideas of a cosmological
field creating matter (55, 56) was investigated further by Hoyle & Narlikar
(57-60). This involved a scalar C-field, whose action function was first
proposed by Pryce (103; private communication). The C-field action had
two terms as part of the overall Hilbert action:
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1 . . oC
S’c = — EfJ\J‘C,-Cl«/ —gd4X+ZjCidx¢lu Ci = 6—)67’ 29.

of which the first, pure field term had a negative energy density and negative
stresses for the coupling constant f > 0. This was responsible for driving
the expansion. The second, field-matter interaction term, involving the
effect of the C-field on matter particles (labelled by a, b, . . .) and vice versa,

came into operation only at the instant of creation of matter.

The advantage of the formulation by Pryce was that it is based on an
action principle and hence guarantees conservation of matter and energy.
In the steady state solution, matter creation is compensated by aug-
mentation of the strength of the C-field, which has negative energy. In this
solution the Hubble constant is given by

4
H= | ”3Gf. 30.

There were also solutions of this theory with no creation of matter,
however. What role did they have to play? Hoyle & Narlikar (59) argued
that these solutions appear as “bubbles” in a highly dense steady state
universe with H »> H,, the present value of Hubble’s constant. The mech-
anism of the switch-over from a “‘creation” to “noncreation” mode was
left undiscussed for want of a quantum field theory of the C-field.

Thus, the key idea of the inflationary scenario of the present FRW
model originating as a bubble in an external de Sitter type universe was
anticipated 15 years earlier. The 1966 version [like McCrea’s (78) 1951
paper] appeared too far ahead of its time to be appreciated by the con-
temporary particle physicists.

Finally, the cosmic baldness conjecture had also been anticipated by the
steady state cosmology (57), which argued that the C-field driven expan-
sion would wipe away any initial departures from nonuniformity.

In later years, other papers discussed the idea of inflation before or
around the time of Guth’s paper. For example, Kazanas (67) explicitly
discussed the notion of inflation as a solution to the horizon problem.
Kazanas assumed a temperature-dependent energy density of the vacuum
and showed that during the phase transition, the universe would expand
substantially faster than the a oc z'/?1aw. For some temperature-dependent
vacuum energies Kazanas obtained an exponential expansion law.

Sato (107) also discussed the implications of a first order phase transition
of vacuum in the very early universe, and obtained the exponential expan-
sion rate. Sato calculated the bubble nucleation rate, which depends on
the particle physics theory used. He found that if the nucleation rates are
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small and the vacuum stays at the metastable state for a long enough time,
the universe would expand exponentially, with the result that the phase
transition would be further stretched out in time. Sato also considered
the possibility of density and velocity fluctuations created by the phase
transition growing to form galaxies.

4. THE PROBLEM OF STRUCTURE FORMATION
4.1 The Scale Invariant Spectrum

The most attractive feature of inflation, from the point of view of an
astronomer, is the possibility that inflation may provide the seed per-
turbations that grow to form the structures we see today. In this section
we provide an overview of how this is achieved and what difficulties arise.

We have discussed in Section 3.1 how inflation may lead to seed per-
turbations. To construct a working model from these ideas, we must
(a) have a scenario that produces the observed structures from seed-
perturbations and decide on the form of the seed perturbations needed, and
(b) compute explicitly the nature of perturbations produced by inflation. A
comparison of the outcomes of (a) and (b) will decide the measure of
success achieved by inflation.

The first task can be achieved in principle by determining p(x, ) today
observationally and extrapolating it backwards theoretically. In practice,
of course, this is an impossibly difficult task! The structures seen today are
the result of very complicated nonlinear evolution in the “recent” past
(say 0 < z < 50), and we do not have a sufficiently well-defined theoretical
formalism to allow us to extrapolate back in time. (Neither do we know
p(X, to) to sufficient accuracy.) An indirect approach to this problem is,
therefore, necessary.

We know from observations of MBR that the density perturbations in
the universe must have been quite small (< 1) at the time of decoupling
(z = 10?), for all astrophysically relevant scales (27, 96, 128). We also
notice from Equation 16 that all these relevant scales “‘entered the Hubble
radius” in the radiation-dominated era, i.e. before decoupling. It follows
that the linear approximation is valid when the density perturbations enter
the Hubble radius. One can, therefore, characterize the density per-
turbations completely by giving the amplitude (< 1) of each perturbation
when it enters the Hubble radius. In other words, we need to specify the
function

F(k) = |5(k> t)|t2=tem,(k) = |5[k9 tenter(k)]lz 31.

where 7.....(K) is the time at which the perturbation labeled by k enters the
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Hubble radius decided by the equation 27tk ™ 'a(fenier) = ¢H ™ '(fener) - [Here,
most physical quantities depend only on the magnitude k£ = |k|; in such a
situation, we simplify notation by writing, say J(k, ), instead of d(k, ?),
etc. We may also use J, to denote the same quantity as was done earlier.]

The study of the linear perturbation theory allows us to evolve further
a perturbation that enters the Hubble radius (see e.g. 98, 102). Per-
turbations with 4 < 4, ~13 Mpc (Qh%)~'0% carrying mass M, =
3.19 x 10" M (Qh?*)~20°, enter the Hubble radius in the radiation-
dominated era; they grow by a small factor S—about @O(10) or so—
until ¢ = t,, and grow in proportion with a(f) afterwards. Those per-
turbations with 1 > 4., enter the Hubble radius when the universe is
matter-dominated and will grow as a(?) if the wavelength is bigger than
the Jeans length. (For the scales in which we are interested, this condition
is usually satisfied). Taking F(k) = ak”, one can easily work out (k, t) for
all k at ¢ > t,,. We obtain

K318(k, £)|? oc

{k”“'Sz[a(t)/aeq]z oc M=+ )< ), M < M, 3

k"t ki la(D)aeg]® oc MDA > R, M > My

where M is the mass carried by the particular perturbation. Scales with
A > cH™'(f) are still outside the Hubble radius at this time; it can be
shown that they grow as a’(¢) in the radiation phase and as a(¢) in the
matter dominated era; they also satisfy the scalings given above for 4 > 1,
(see e.g. 98).

The quantity k%|J,|? is directly related to the r.m.s. fluctuation in the
mass M(R) contained in a size R. For a power-law spectrum |d,|% oc k7, it
can be easily seen that the average value of {((6M/M)?*) in a region of size
R is proportional to k%|,|? at k = R™'. Therefore (SM/M)?* oc M ~+3/3
for M < M., and (M/M)* oc M~"* 71 for M > M.,

Some constraints on the form and amplitude of this spectrum can be
obtained from the bounds on the temperature anisotropies of MBR. A
perturbation of size A will produce anisotropies in the MBR at angular
scale 0 ~ 0.55'Qh (1/1 Mpc) (see e.g. 98). A scale of iy = 65(Qh?) 12
Mpc, subtending an angle of 05 ~ 0.87°Q"%(z4,,/1100) ~ /2, will be entering
the Hubble radius at the time of decoupling ¢ = #4,.. Temperature aniso-
tropies in MBR at larger angles (6 > 0, ~ 1°) arise from perturbations
that are still outside the Hubble radius at ¢ = ¢4, and are due to Sachs-
Wolfe effect: (AT/T) =~ 0.56(k, t4..) (106). Fluctuations at smaller scales
arc due to baryons that are coupled to photons: (AT/T) =~ 0.33
Obaryon(K; taec) (see €.g. 66 and references cited therein). Bounds on (AT/T)
from (1°-30°) imply that § < 10~ “at scales corresponding to (65-3000)4 "
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Mpc today. Such a uniformity suggests that (n+3) = —0.1. One can also
show thatif 6 ~ O(1) at M ~ 10'%°g ~ 3 x 10~ '° M, there will be far too
many compact black holes today, thus suggesting (n+3) < 0.2 (21, 22).
These considerations therefore favor (n+3) =0, i.e. a n = —3 spectrum
with the amplitude of about 10~ °-10~* when each perturbation enters the
Hubble radius.

Zeldovich and, independently, Harrison had argued, based on theor-
etical considerations, that at the time of entering the Hubble radius, the
perturbations should have the index n» = —3 (51, 134). In other words,
F(K) = |6(K, foneer(K)|? oc k=2 or k*F(k) should be a constant. In that case
{(6M/M)*) will be independent of the scale R at ¢ = t,,,.,(k), giving equal
power at all scales at the instant of entering the horizon.

Three points need to be stressed regarding the above discussion. First,
note that k°|d(k, £)|* is not expected to be scale-invariant (in fact, it will
not be); it is only the quantity k°|6[K, f..:(K)]|* that is expected to be
independent of k. That is, each scale enters the Hubble radius with an
amplitude which is independent of k; but, of course, each scale enters at a
different time 7.4, (k). Second, the excess mass at scale R is in general
related to the integrated power spectrum and depends on [§(k)|? at all
0 < k < R~ ! rather than just to power at k = R™'. Finally, theoretical
calculations are expected to fix only |§(k, £)|% the phase of 5(k, ?) is not
known. This is equivalent to supposing that [p(x, f) — p(#)] is a random
variable with zero mean and some specified dispersion. What is determined
by the theory is the power spectrum of this random variable, which is the
Fourier transform of the two-point correlation function {p(x+Yy, ) p(y, £)>
where the brackets denote statistical averaging over the random phases

of 8(K, 7).
4.2 Origin of Density Perturbations

Having decided the form of the density perturbations that is required, we
now turn to the actual mechanism by which these are produced. The
most natural choice, in the context of inflation, comes from the quantum
fluctuations in the scalar field ¢ (¢, x) driving the inflation. The computation
of classical perturbations generated by a quantum field is a difficult and
technically involved issue. Several questions of principle are still unresolved
in this calculation (see e.g. 17, 94). Since this review is primarily intended
for the astronomer, we limit discussion to the physical idea rather than to
the technical aspects of the calculation.

During inflation, the universe was assumed to be, on the average, in a
FRW state with small inhomogeneities. This implies that the source—
which is a classical scalar field ¢ (¢, x)—can be split as ¢ (¢) + f(¢, x), where
¢o(?) denotes the average, homogeneous part and f(¢, x) represents the
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spatially dependent, fluctuating part. Since the energy density due to a

scalar field is pc? = b2, we obtain

3p(t,x) = p(x, ) —p(t) = $o()f (2, x)/¢? 33.

(where 5(7)c? = 3¢o(£)? and we have assumed f < ¢,). The Fourier trans-
form will now give

Sp(k, H)c? = $o(HO(D), 34,

where we have put

d3k k-x
ft,x) = jm Ox(t)e™ ™. 35.

Since the average energy density during inflation is dominated by the
constant term V', we have the density contrast

Op” _ $o()0u)

5k, 1) =
(k, 2) v, 7

36.

It might now appear that all we have to do is to compute the quantities
¢o(t) and Q,(r) from the equation of motion for the scalar field. For ¢ (¢)
we can use the mean evolution of the scalar field during the slow roll-over
phase and determine ¢ ,(#) from the classical solution. The fluctuating field
f(¢,x) is supposed to be some classical object mimicking the quantum
fluctuations. Such a quantity is conceptually difficult to visualize and
justify. What is usually done is to choose some convenient quantum mech-
anical measure for fluctuations and define Q, in terms of this quantity.

In quantum theory, the field ¢ (¢, x) and its Fourier coefficients g, () will
become operators related by

. d’k
o(1,x) = JW Gi(1)e™ ™. 37.

The quantum state of the field can be specified by giving the quantum state
Vi(qw, t) of each of the modes §,. (One can think of g, as coordinates of a
particle and (g, t) as the wavefunction describing this particle.)

The fluctuations in g, can be characterized by the dispersion

oi(t) = Ylgi (DY) — Wla>* = Plgi DIy 38.

in this quantum state. (The mean value of the scalar field operator
{P(t,x)> = ¢o(¢) is homogeneous; therefore, we have set (4> to zero in
the above expression. Note that we are interested only in the k # 0 modes.)
Expressing gy in terms of ¢(z,x), it is easy to see that
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i (t) = Jd3X<¢l$(t,x+y)<5(t,y)l¢>€“""- 39.

In other words, the power spectrum of fluctuations o} is related to the
Fourier transform of the two-point-correlation function of the scalar field.
Since o7(7) appears to be a good measure of quantum fluctuations, we
may attempt to define Q,(¢) as

Qk(t) = O'k(t). 40
This 1s equivalent to defining the fluctuating classical field f(z,x) to be

d3k ik x
f(t, X) = J‘W O'k(t)e . 41.
This leads to the result
ho(t
ok, 1) = ¢IO/( ) 6 (7). 42.
0

The procedure may be summarized as follows:

1. In quantum theory, the field ¢(z,x) and its Fourier coefficient §,(f)
become operators. In any quantum state, the variables will have a mean
value and fluctuations around this mean value.

2. Since the mean evolution of the scalar field is described by a homo-
geneous part ¢,(z), we expect the mean values of g, to vanish (for
k # 0); <¥|g()|¥> = 0. The fluctuations around these mean values,
however, characterized by a7(¢) = {¥|§?|y>, do not vanish.

3. We incorporate these quantum fluctuations in a semiclassical manner
by taking the scalar field to be ¢(z,x) = ¢o(?) + f(¢, x), where f(¢,X) is
related to o,(f) by (41).

4. The density perturbations are calculated by treating ¢(z, x) as a classical
object.

The expression derived above gives the value of 4(k, ¢) in the inflationary
phase: ¢, < t < t;. To compare this with observations, we need to know
the value of 4(k, 1) at t = t.,.(k), that is, when the perturbations enter the
Hubble radius. Fortunately, an approximate conservation law relates the
value 0(K, Zeper) With 0(K, 2.,;), Where £, (k) is the time at which the relevant
perturbation “leaves” the Hubble radius in the inflationary epoch (8, 19,
46). This law can be stated as

5[1(9 texit(k)] . 6[ka tenter (k)]
1 + W(texit) B 1 + W(tenter) ’

43.
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where W(7) is the ratio between pressure p(f) and the energy density p(f)c?
of the background (mean) medium: W(¢) = p(¢)/p(¢)c*. In the inflationary
phase with the scalar field,
1., N oF
PO =5¢5—Vo; p(Oc"=5do+Ve, 1+W(EH=——, 44.
2 2 Vo
where we have used the fact ¢2 < V. In the radiation-dominated phase
(at t = teper), 1+ W = 4/3. Therefore

4(v
5(k9 tenter) = 6(k5 texit) : 5 (QS—(Z))’ 45

0

or using Eq. 42,

4 (o Ot
OK, loner) = = | 1 =\ o) "
( L] Cl’lter) 3 <qs 0>I= Toxit (é 0)t= Texit 6

This is the final result.

The problem now reduces to computing o,(7) and ¢4(z), which can be
done once the potential V(¢) is known. For a Coleman-Weinberg potential
(see Section 3.2), detailed calculations give (see e.g. 17) the final result

O(K, lonter) = AVEN2k732 2 10%k 22, 47.

where we have taken the effective e-folding time N =~ 50 and A ~ 0.1. We
see that the density perturbations have the correct spectrum but too high
an amplitude. To bring it down to the acceptable value of about 104, we
need to take the dimensionless parameter A to be about 10~ '*! This requires
an extreme fine-tuning for a dimensionless parameter, especially since we
have no other motivation for such a value.

This has been the most serious difficulty faced by all realistic inflationary
models: They produce too large an inhomogeneity. The qualitative reason
for this result can be found from Eq. 46. To obtain slow roll-over and
sufficient inflation, we need to keep ¢, small, and this tends to increase
the value of 6. We could have saved the situation if it were possible to
keep o, arbitrarily small; unfortunately, the inflationary phase induces a
fluctuation of about (H/2n) on any quantum field due to field theoretical
reasons (see e.g. 18, 72). This lower bound prevents us from getting sensible
values for 6 unless we fine-tune the dimensionless parameters of V'(¢) (for
a general discussion, see 92). Several solutions have been suggested in the
literature to overcome this difficulty but none of them appears compelling
(see e.g. 42, 54, 62, 86, 90, 94, 108).
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4.3 A Critique of Inflation: Expectations and Performance

The concept of inflation enjoyed considerable popularity in the first half
of the last decade, though this enthusiasm seems to have died down
somewhat in recent years. Taking stock of the expectations raised by
inflationary scenarios in the light of its actual performance is therefore
worthwhile.

Such a discussion falls conveniently into two types of questions:

1. How serious are the original problems that the inflation was invoked
to solve? What alternative explanations are possible for these difficulties
and how well does inflation perform vis a vis the other solutions?

2. What are new features, good and bad, that inflationary scenarios have
introduced into cosmology?

Let us start with the first set of questions. In the original version,
inflation was suggested as a possible solution to the horizon, flatness,
and monopole problems. Of these, the monopole problem has received
considerably less attention in recent literature. The currently favored uni-
fied field theories do not lead to a monopole problem. Thus, we concentrate
on the flatness and horizon problems.

Itisindeed true that inflation does solve these problems if these problems
were stated in a particular form: inflation can suppress the value of (kc?/a?)
term; it can also make the observed region of the last scattering surface
(LSS) a causally connected domain. One should not ignore, however,
certain disturbing features in the inflationary solution to these problems:

Both these problems deal with the initial conditions for our universe.
Since Einstein’s equations permit kK = —1, 0 or +1 in a FRW solution,
the value of k needs to be supplied as an extra input to classical theory. But
the creation of the universe (i.e. physics at ¢ < #,) needs to be understood
quantum mechanically rather than classically! [It is quite possible that
quantum gravitational effects make a k£ = 0 model highly probable (see
e.g. 87).] Inflation thus tries to provide a classical answer to an inherently
quantum gravitational question.

This anomaly is quite striking when we consider the horizon problem.
The horizon problem exists because the integral

‘' d
0=,

is finite. But do we know that it is finite? To make such a claim we have
to assume that there was a singularity at t = 0 and that we know the
behavior of a(?) arbitrarily close to ¢ = 0. For ¢ < #,, quantum gravitational
effects will modify the behavior of a(¢) and will probably eliminate the
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singularity problem. Then, for almost all a(z) (except for a class of func-
tions of measure zero), the above integral will diverge, automatically
solving the horizon problem. In other words, flatness and horizon prob-
lems owe their existence to our using classical physics beyond its domain
of validity. There are several quantum gravitational models in which
these problems are solved as an offshoot of elimination of the singularity
problem (see e.g. 82, 83, 88). This is a possibility that did not exist in
classical cosmology.

Even within the context of the inflationary models, the solutions to these
problems work only for a limited time (40, 41, 93). For example, Ellis has
shown how the flatness problem will resurface in the late-time behavior of
a k # 0 universe. [This should be clear from the fact that at sufficiently late
times, both the k = +1 and £ = —1 models will behave very differently
irrespective of the present value of the (kc?/a®) term.] In the case of the
horizon problem, it can be shown that LSS will appear homogeneous only
for times ¢ < ¢, when

g, &
fit = — A° = —exp2H(t—1,). 49.
y I

[For ¢, % 1073*s, t, & 100z;, H ~ (10° GeV), 1,4 ~ 3 x 10%* s, which is far
larger than 7, ~ 3 x 10'7 s; so, right now, #, < f..] This quantity z.;, is
determined once and for all by microscopic physics at ¢ ~ 107 3* s! If we
wait long enough, ¢ will be larger than 7., and the horizon problem will
resurface. Thus inflation offers only a temporary, though long, relief from
these problems, and one has to invoke the anthropic principle (11) to
justify its success. In contrast, solutions based on quantum gravitational
models solve these problems permanently.

Let us now consider the second question, that is, the new features that
inflation has brought into cosmology. The major success of inflation in
our opinion lies in these factors.

First, inflation has provided a mechanism that allows one, in principle,
to compute the spectrum of density inhomogeneities from fundamental
physics. This must be considered a success because this is the first time we
have a computable mechanism for producing density inhomogeneities.

Also, a definite prediction emerges from inflationary models. The same
mechanism that produces the density inhomogeneities also produces
gravitational wave perturbations. These perturbations also have a scale
invariant power spectrum and an r.m.s. amplitude of about (H/10'° GeV).
The energy density of the gravitational waves contributes a fraction
Qv & 107 °(H/m,)*h™? to the critical density, where m, is the Planck mass
(1,5,43,105, 129). Such perturbations can induce a quadrupole anisotropy
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in the MBR. The present bounds on this anisotropy (510~ %) suggest
that H < 10'> GeV. The value of Q,,, can also be restricted by the
timing measurements of the millisecond pulsar; the present bound is
Qpro(A ~ 1pc) < 3 x 10~ 7. A positive detection of quadrupole anisotropy
in MBR or a direct detection of relic gravitational radiation will certainly
go a long way toward boosting confidence in inflation. [The Laser Inter-
ferometer Gravity Wave Observatory (LIGO) and similar projects can, in
principle, reach a sensitivity of Qg,, ~ 107 ']

Second, several investigations have suggested that inflation could be a
generic feature of cosmology; in other words, for almost any kind of V(¢)
and for a large class of initial conditions, the universe will undergo a phase
of exponential expansion (63, 64, 112, 116). The amount of inflation, time
of occurrence, etc. can all be quite varied, but the physical phenomenon
is probably here to stay (see, however, the discussion in Section 6).

The above two features also have a negative side, discussed in Section
4.2: Inflation produces too much density inhomogeneity. Every unwork-
able model for inflation rules out a parameter range for the potential V(¢)
and can, in principle, constrain particle physics models. This is probably
the most important unsolved problem in the physics of the early universe.

5. INFLATION AND DARK MATTER

Observations indicate that our universe may contain a large amount of
nonluminous, “dark” matter. Inflation adds an interesting new dimension
to this issue.

In the noninflationary cosmologies, there is no preferred value for the
density parameter Q. This quantity was treated by most astronomers as
an input from observations into the theory. Inflationary models, however,
make a very definite prediction about Q: In the usual scenarios,
Q = 14+0(10~*%) [the correction of @O(10™*%) arising because of the fluc-
tuations in the curvature induced by density inhomogeneities]. This pre-
diction can be tested in two ways: First, this constraint, added to the fact
that the universe is matter-dominated today, implies that Hyt, = (2/3). If,
based on stellar and galactic ages, we take ¢, = (12-20) Gyr, we have to
rule out values of /4 greater than 0.65. An independent determination of
H, leading to, say, & > 0.65 will rule out inflation.

More directly, inflationary models can be ruled out if observations
conclusively point out a value of Q < 1. Since luminous matter in the
universe contributes far less than unity, one may say that the inflationary
idea can be correct only if there exists some form of dark matter in sufficient
quantities.

The observational status of the value of Q is not very certain. The
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following claims have been made in the literature (for a review, see 13,
Ch. 10, 100, 115):

1. The mean density in the solar neighborhood gives about 0.0032 .

2. Studies based on the Magellanic stream and timing arguments in local
groups give a higher value of about 0.06A™ .

3. The mass density in groups of galaxies contributes about 0.16 and that
in large clusters give about 0.25.

4. The Virgo centric fall also suggests a mass density of 0.25.

5. The constraints from primordial nucleosynthesis imply a constraint on
the baryonic contribution to mass density: Qp = (0.014—0.026)4~2; or
if we take 0.5 <h < 1, we get 0.014 < Qp < 0.104. (Authors differ
somewhat on the upperbound on Qg and the cited values are in the
range 0.1 to 0.2; 69.)

Two features stand out in the above estimates if they are all correct.
First, there seems to be a tendency for Q to increase with the scale over
which it is measured. (This conclusion is somewhat tentative and quite
controversial.) If we use gravitational effects occurring in a system of size
L to measure Q, we will miss out on matter distributed smoothly over sizes
significantly larger than L; thus, if the universe has a significant fraction
of mass distributed smoothly over scales larger than, say 50 Mpc, we can
still reconcile the above observations with Q = 1. Second, the observations
are just marginally consistent with a fully baryonic universe with Qy ~ 0.2
if (and only if) & = 0.4. Thus, these observations alone probably do not
rule out a completely baryonic universe (yet!).

Inflation makes definite claims regarding the above situation. First,
inflation is not compatible with a purely baryonic universe (since
Qp < 0.2). Thus not only does inflation demand dark matter, it demands
nonbaryonic dark matter. Second, inflation requires most of the dark
matter (a fraction of about 0.75) to be distributed smoothly at scales larger
than about 20 Mpc or so, to escape small-scale bounds on Q.

Non-baryonic dark matter may be needed for a completely different
reason. As discussed above, perturbations in the baryonic matter are
constrained to be less than about 10~ * at decoupling. This does not give
sufficient time for these perturbations to grow into the structures we see
today. The constraints on non-baryonic matter, which does not couple
directly to radiation, are often less severe. Dark matter perturbations can
grow by a factor of at least (T,/Tye.) from the epoch of matter domination
till the time of decoupling. Baryonic matter can be allowed to “catch up”
with dark matter perturbations after the decoupling. This can reduce the
(AT/T) value by a factor of about 50—100 or so in many models (e.g. 109).

A model for galaxy formation incorporating these constraints is not
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very easy to build, however. If we assume that the dark matter is made of

‘weakly interacting massive particles (WIMPs), we can broadly distinguish
between two scenarios for structure formation depending on the mass m,
of the WIMP.

The growth of structures in a universe dominated by a non-baryonic
dark matter particle of mass m, proceeds as follows: These particles
will become nonrelativistic at a temperature Tyg = m, corresponding
to the time fr~g "* (Mm)/Tie) ~1.2 x 10"s(m,/1 KeV) %,
where the r is the ratio of the g-factors for the x-particle and photons.
This implies that these particles were moving with relativistic velocities
from the time #p they decoupled from other matter until #yg. Since
these particles can cover a distance of c(fng—p) & ctng (“free stream-
ing”) in this time, all perturbations at scales less than ctyg would
have been wiped out (14, 15, 99). This corresponds (today) to the wavelength
Ars = (ctnr) (Tnr/To)r =& 1 Mpc (m,/ KeV)~'r, containing a mass of
Mgs ~ 1.5 x 10" Mg (Qh*)(m,/1 KeV)~*r*. This drastically reduces the
power in the spectrum k%8, for M < Mys. Thus the spectrum has
significant power only in the range Mys < M < M,y; within this range,
the spectrum is also reasonably flat.

Candidates for dark matter with Mg < M., (i.e. for m, < 100 V) are
called hot dark matter; their power spectrum will be peaked around
Mgs ~ M, ~10'%-10"° M. Candidates with m, > 10 KeV are called
cold dark matter; they will have a relatively flat, gently declining, power
spectrum from about 10 M to 10'° M.

For m, < 100eV (hot dark matter), the first structures that form contain
masses of about 10'° M ; these structures collapse, forming “pancakes”
and “filaments” around which baryons cluster (132, 133). Numerical simu-
lations suggest that in order to reproduce the observed galaxy-galaxy
correlation function, the collapse should have occurred rather recently
(z = 1-2), a requirement that is difficult to reconcile with the existence of
quasars of higher redshift (23, 126, 127). Many astronomers, therefore,
view the hot dark matter scenarios with disfavor.

If WIMPs have considerably higher mass [say m, ~ (1 GeV) or so], it
is possible to form galactic size objects first and evolve larger structures
by gravitational clustering. Numerical simulations with these scenarios
produce results that are in better agreement with observation, provided
that Qh =~ 0.2 or so (29-33). This, of course, is a priori inconsistent with
inflation. In contrast, HDM can easily accommodate Q = 1.

Several attempts have been made to reconcile cold dark matter (CDM)
scenarios with inflation. This can be done (for example) by invoking a
very smooth contribution Q .., = 1 —Qcpm & 0.8 due to some relativistic
particle (85, 95, 117), or, more brazenly, by postulating a cosmological
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constant of the required magnitude. An alternative would be to produce
a scenario in which galaxy formation is ““biased””—i.e. only very overdense
regions (30 peaks) lead to the galaxies we see (9, 65). The more numerous,
lo-peaks will be distributed in a relatively smoother fashion. No final
consensus has emerged regarding these ideas and none of them appears to
have a compelling simplicity or naturalness.

In conclusion, it is worth pointing out one loophole in the conclusion
Q = 1in an inflationary scenario. If there is a residual A-term, then Q = 1
need not correspond to & = 0. Should it turn out that the FRW models
with k£ = 0, Q = 1 are inconsistent with data, the inflationary scenario can
still survive with a nonzero A, although such a formula for survival would
have been purchased dearly at the cost of simplicity and Occam’s razor.

We next discuss the role of the A-term in the context of inflation.

6. THE COSMOLOGICAL CONSTANT

The source term for Einstein’s equations is any conserved stress tensor. If
this stress tensor is isotropic with strength A (corresponding to an equation
of state p = —pc? = — A, implying either pressure or density to be nega-
tive), then the quantity A is called the cosmological constant. Such a term
was originally postulated by Einstein and has an interesting history (see
e.g. 124).

The value of such a constant is severely constrained by cosmological
considerations. Since A contributes Q, = (8nGA/3H3) to the critical
density, one can safely conclude (in spite of any astronomical uncer-
tainties!) that

Al S 107 gem~3 ~ 10747 (GeV)™. 50.

As discussed below, this small value is a deep mystery.

To begin with, nothing prevents the existence of a A-term (say, A,) in
Einstein’s equations (as postulated by him). This will make the gravi-
tational part of the Lagrangian dependent on two fundamental constants
A, and G, which differ widely in scale; the dimensionless combination
made out of these fundamental constants, (Gh/c*)A,, has a value less than
10— 1 26!

The surprise in the smallness of |A| is mainly due to the following: We
do not know of any symmetry mechanism that requires it to be zero. In fact,
we know of several independent, unrelated phenomena that contribute to
A. To produce such a small A, these terms have to be fine-tuned to a
bizarre accuracy.

Quantum field theory provides a wide variety of contributions to A. For
example, consider a scalar field with a potential V(¢). The particle physics
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predictions do not change (except possibly in theories with exact super-
symmetry, a condition not realized in nature) if we add a constant term
V, to this potential. A potential like

1 A
Vig) = — 5 u>+ 5 ¢

e-9)

will give the same effects, though they differ by the constant term (u*/424),
but such a shift in the energy-density will contribute to A. According to
currently accepted scenarios, the value of this constant changes in every
phase transition by E* where E is the energy scale at which the phase
transition occurs: at the GUTSs transition, it is 10°¢ (GeV)*; at the Salam-
Weinberg transition, it changes by 10'° (GeV)“. These are enormous
numbers compared to the present value of 10~ *’ (GeV)*. How a physical
quantity can change by such a large magnitude and finally adjust itself to
be zero at such fantastic accuracy is not clear.

Finally, one should not forget that the “zero-point energy” of quantum
fields will also contribute to grav1ty (91, 131). Each degree of freedom
contributes an amount

kmax Aqlc? dlc 5 5 ki
A:J; a)—j—\/k +m :87'52’ 51

where k. 1s an ultraviolet cut-off. If we take general relativity to be valid
up to Planck energies, then we may take k. ~ 10'° GeV and A will be
1076 (GeV)*.

If we assume that all the contributions are indeed there, then they have
to be fine-tuned to cancel each other, for no good reason. Before the entry
of GUTs into cosmology, we needed to worry only about the first and last
contribution, both of which could be tackled in an ad hoc manner. One
arbitrarily sets Ay =0 in the Lagrangian defining gravity and tries to
remove the zero-point contribution by complicated regularization
schemes. (Neither argument is completely water-tight but both seem plaus-
ible.) With the introduction of GUTs and inflationary scenarios however,
the cosmological constant becomes a dynamical entity and the situation
becomes more serious. Notice that it is precisely the large change in the
V(¢) that leads to a successful inflation; it has to be large to inflate the

and
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universe and change to a small value in the end for a graceful exit from
the inflationary phase.

Several mechanisms have been suggested in the literature to make the
cosmological constant zero: supersymmetry (26, 79, 80, 135), complicated
dynamical mechanisms (37, 97, 110, F. Wilczek and A. Zee, unpublished),
probabilistic arguments from quantum gravity (12, 24, 53, 89), and
anthropic principle (123) are only a few of them. None of these seems to
provide an entirely satisfactory solution. A somewhat different approach
in which scale invariance was used to set A =0 was provided by the
conformal theory of gravity (61).

The smallness of the cosmological constant is probably the most impor-
tant single problem that needs to be settled in cosmology. We have no idea
as to what this mechanism is, but if it is based on some general symmetry
consideration, it may demand vanishing of A at all epochs. This can wipe
out the entire inflationary picture.

7. OUTLOOK

The inflationary model epitomizes the deep influence very high energy
particle physics can have on cosmology. The idea is an attractive one,
and, given the current momentum on the frontier of particle physics and
cosmology, further epicycles are not ruled out. In the last analysis,
however, astronomers should judge it by its impact on present day obser-
vations. Does it leave relics that are observed today? The formation of
structures, the values of the density parameter, and the cosmological
constant are examples of such relics. The present evidence on these issues
is at best ambivalent and at worst embarrassing for the current theories of
inflation. This may be because the particle physicists have not yet been
clever enough to hit the jackpot of the correct unification theory.
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