High Redshift Galaxies and Cosmic Reionization: Where Next?

Richard Ellis (UCL & ESO)

8.6

Dark Ages Heidelberg 2016

8.8

July 1st 2016

9.5

Planck Indicates Late and Fast Reionization

CMB polarisation probes foreground Thomson scattering from the start of reionization to the present epoch.

Optical depth of scattering τ constrains the mean redshift <z> and (model dependent) duration of reionization

Reionization begins

Models consistent with Planck T

Planck consortium (2016) find τ = 0.058 ± 0.012 corresponding to <z> ~8.3 ± 0.5 Models indicate reionization began at z~10-12 and ended at 6

Census of Star Forming Galaxies

Reasonable agreement between blank & lensed surveys

Reconciling Star-Forming Galaxies with Planck

Making (questionable) assumptions about their ionizing output, the demographics of early galaxies from HST data can match the Planck τ with reionization also contained with 12 < z < 6

Focus thus turns to demonstrating the validity of these assumptions about the ionizing output of early galaxies

Robertson et al (2015), see also Bouwens+(2015), Mitra+(2015)

So Did Galaxies Reionize Universe?

Ionization rate
$$\dot{\eta}_{\rm ion} = f_{\rm esc} \xi_{\rm ion} \rho_{\rm UV}$$

Recombination time

$$t_{\text{rec}} = [C_{\text{H II}}\alpha_{\text{B}}(T)(1 + Y_{\text{p}}/4X_{\text{p}})\langle n_{\text{H}}\rangle(1 + z)^{3}]^{-1}$$

Key observables:

- 1. Integrated abundance of high z star-forming galaxies especially contribution of low luminosity sources : ρ_{uv}
- 2. Nature of the stellar populations in distant galaxies which determines the rate of ionising photons: ξ_{ion}
- 3. Fraction of ionizing photons that escape: f_{esc}

Improved Measures of Luminosity Density ρ_{UV}

Faint end slope of the LF α is critical!

UDF12 indicated $\alpha = -1.87 \pm 0.18$ @ z~7 to M₁₁=-17

Frontier Field lensing data (3 clusters) gives $\alpha = -2.04 \pm 0.13$ to $M_{\text{LV}} = -15.5$

Including cosmic variance, 6 FF clusters should $\Delta\alpha$ to \pm 0.05

This would reduce uncertainty on integrated ρ (< M_{UV} =-13) to 30% Schenker et al (2013), Robertson et al (2014), Atek et al (2015)

Progress in Estimating Ionization Parameter ξ_{ion}

Define ionization output ξ_{ion} via no. of LyC photons per UV (1500Å) luminosity Traditionally estimated using HST colors and stellar models:

- (i) metal-poor galaxies with steep UV continua, i.e. large ξ_{ion}
- (ii) metal-enriched systems with flatter spectral slopes, i.e. lower ξ_{ion}

 $z\sim7-8$ galaxies show a uniform slope $\beta=-2$ consistent with mature (>100 Myr) enriched stars and

 $\log \xi_{ion} \sim 25.1 (cgs)$

but ambiguities remain depending on composition, dust and IMF.

Better Diagnostics of ξ_{ion} using UV Metal Lines

Spectra of metal-poor lensed 10^{6-9} M $_{\odot}$ z \sim 2-3 galaxies similar to those at z > 7

Prominent rest-frame UV emission lines with high ionization potentials

- CIV 1548 Å 48 eV
- O III] 1664 Å 35 eV
- CIII] 1909 Å 29 eV

valuable indicators of ionizing radiation field

Interpreting UV Emission Lines for ξ_{ion}

Grids of photoionisation models predict nebular emission line ratios:

Young stars: Charlot-Bruzual15 (new tracks, WR stars) + CLOUDY

AGN-driven: Power law $F(v) \sim v^{\alpha} + CLOUDY$

Feltre et al 2016

Other Sources of Ionizing Photons? – An Italian Viewpoint

UV Luminosity Function of AGN

Integrated ionising emissivity

Recent estimates of number of faint AGN and, assuming $f_{\rm esc}$ =1, implies a significant contribution to reionizing photons from non-thermal sources. Key issue is whether all UV light is non-thermal?

Giallongo et al (2015), Madau & Hardt(2015)

Strong [O III] Emitting Early Galaxies

Most z > 7 galaxies to date were selected primarily on the basis of a strong Lyman continuum drop and a blue rest-frame UV continuum. As we have seen, few show Ly α

But for 7 < z < 9 [O III]/H β pollutes the 4.5 μ m Spitzer IRAC band. Selecting sources with a strong 4.5 μ m excess targets intense line emitters

4 such luminous objects (H~25) located in CANDELS fields

Luminous z > 7.5 Galaxies Reveal Ly α Emission!

EGS-zs8-1 at z=7.73

- H=25.0; 2 hrs with MOSFIRE
- $Z_{phot} = 7.92 \pm 0.36$; $Z_{spec} = 7.73$;
- Ly α EW \approx 21 Å

EGSY8p7 at z=8.68

- H=25.3; 4.3 hrs with MOSFIRE
- $Z_{phot} = 8.57 \pm 0.3$; $Z_{spec} = 8.68$;
- Lyα EW ~ 30 Å

Also confirmed EGS-z38-2 $z(Ly\alpha)=7.477$, COSMOS source $z(Ly\alpha)=7.15!$

Oesch et al (2015), Zitrin et al (2016)

Luminous sources have strong ionizing radiation?

TABLE 2
A complete list of the resulting z≥7 sources identified after applying our selection

ID	R.A.	Dec	m _{AB} ^a	[3.6]-[4.5]	z _{phot} b	Y ₁₀₅ – J ₁₂₅ ^c
COSY -0237620370 EGS-zs8-1 EGS-zs8-2 EGSY -2008532660	10:00:23.76 14:20:34.89 14:20:12.09 14:20:08.50	02:20:37.00 53:00:15.35 53:00:26.97 52:53:26.60	25.06±0.06 25.03±0.05 25.12±0.05 25.26±0.09	1.03±0.15 0.53±0.09 0.96±0.17 0.76±0.14	$7.14\pm^{0.12}_{0.12} \\ 7.92\pm^{0.36}_{0.36} \\ 7.61\pm^{0.26}_{0.25} \\ 8.57^{+0.22}_{-0.43}$	-0.13±0.66 1.00±0.60 0.66±0.37

4/4 sources with z_{phot} > 7.5 with 4.5µm excess show prominent Ly α ! EGSY8p7 at z=8.68 shows Ly α where IGM is expected to be ~60% neutral

How can this be?

Patchy reionisation – certainly possible..OR

Luminous galaxies have stronger radiation fields which created early ionized bubbles. Conceivably AGN or unusually hot stellar populations?

[O III] strong sources also @ $z\sim6$ with Ly α emission (Smit et al, Pentericci)

Evidence for Strong Ionizing Radiation

High ionization emission lines in luminous z > 7 galaxies indicates harder radiation fields (larger ξ_{ion}) possibly due (in part) to active nuclei (stay tuned!)

Stark et al (2015, 2016); Bouwens et al (2015)

z~3 LAEs with intense [O III] as analogs: harder ξ_{ion}

How Much Ionizing Radiation Escapes into the IGM?

Need $f_{esc} > 10\%$ to maintain reionization!

Simulations suggest young galaxies are porous with high escape fractions but hard to verify observationally

Foreground Contamination and low f_{esc} at z~2

subsequent Hubble imaging and

lae2292 1.23 *lae2436 At z~2 direct imaging below Lyman limit is practical, but for promising candidates selected from ground-based images, lae2966 spectroscopy reveals contamination from

lae6662

0.89

Implies f_{esc} < 2-5%

lower redshift galaxies.

AT z > 6 DIRECT METHODS*lae7180 0.63 **CAN'T BE APPLIED!**

Mostardi et al (2015)

Outflowing Neutral Gas as probe of f_{esc}

Stacked spectra have pros and cons – absorption also probes kinematics Recent survey of seven 4 < z < 5 lensed galaxies demonstrates inhomogeneous covering of neutral gas with average $f_{\rm esc} \sim 10\%$

Jones et al (2012,2013); Leethochawalit et al arXiv 1606.05309

Resolved Covering Fractions in z~5 Lensed Galaxy

0.2

0.0

MS1358

A1689

A2219

7.5 hour DEIMOS exposure on MS1358 (z=4.92) allows us to explore the covering fraction of low ionization gas internally as a function of local SFR.

Inferred escape fraction is **lower** in intensely SF regions consistent with time delay between burst-like activity and leaking LyC photons

Leethochawalit arXiv 1606.05309

10

SFR(Msun/yr)

MACS0940

Jones et al. 2013

MS1358 clumps

0.8

1.0

100

z~3 LAEs with intense [O III] as analogs: high f_{esc}?

STOP PRESS! HST PROGRAM TO TEST THIS IDEA (PI: ROBERTSON)

ALMA's Important Role

ALMA has key role in two respects:

- Tracing the emergence of early dust (affects interpretation of HST/Spitzer photometry and constrains chemical enrichment)
- 2. Exploring ionization state & composition via emission lines complementary to those in UV e.g. [O III]/[CII]>12 at z >7 ——could indicate ionized & low metallicity ISM and high f_{esc}

Band 6 dust continuum @ z=7.5 (log $M_{dust} \sim 8$)

Watson et al (2015), Inoue et al (2016)

The Future

Coming Soon: Distribution of Lya Emitters

Subaru HSC/PFS will chart distribution of Lyα emitters at end of reionization (5.7<z<7.1) over 25 deg² in possible coordination with LOFAR Constrains evolving sizes of ionized bubbles & longevity of ionizing sources.

Not Long to Wait: Spectroscopy with JWST

NIRSpec Instrument

z=8 galaxy; 25 hour exposure

JWST spectroscopy will detect the stellar continuum and measure composition of gas and the nature of ionizing radiation in redshift 8-12 galaxies using rest UV and optical lines ([O II], [O III], $H\alpha$) beyond reach of ground-based telescopes

Ground-Space Synergy 2020s: ELT AO Imaging

AO will enable ELTs to outperform JWST in image quality
Unique advantage in rest UV studies of physically-small distant galaxies

Locating the First Generation?

A commonly promoted idea for isolating first generation systems has been to search for chemically pristene examples

Simulations suggest surprisingly prompt metal enrichment in early halos on timescale of 50-80 Myr; so pristene galaxies may be very rare

Outstanding Challenges

- Is the low Planck τ correct? Main evidence for `late reionisation' since Lyα fraction test is hard to interpret quantitatively
- Soon will see new constraints on late reionization from Subaru HSC distribution of LAEs and 21cm pathfinders (e.g. LOFAR)
- Escape fraction of ionising photons f_{esc}
 - to maintain ionization at $z\sim7-8$ needs $f_{\rm esc}>10\%$
 - direct measures not possible in reionization era even with JWST
 - need to study nebulae with lower z analogs (z~3 LAEs?) or have better faith in covering fraction tests
- Production rate of ionizing photons per unit SFR ξ_{ion}
 - diagnostic spectroscopy of Balmer & high ionization lines
 - evolution of hot main sequence stars also critical
- Contribution of AGN? They must be there beyond z>7 with high f_{esc}
- Dust at high redshift? Crucial to secure more ALMA continuum measures