ALMA observations of z > 6.5 quasar hosts: forming massive galaxies in the epoch of reionisation

Bram Venemans

Team Quasars @ MPIA

Chiara Mazzucchelli, Emanuele Farina, Roberto Decarli, Fabian Walter, Eduardo Bañados (→ Pasadena)

+ Gijs Verdoes-Kleijn (Groningen), Laura Zschaechner (MPIA), Xiaohui Fan (Arizona), ...

Quasars: accreting black holes

Quasars powered by accreting black holes

Quasars: accreting black holes

Quasars: accreting black holes

Quasars powered by accreting black holes

Discovered up to z > 7 (UKIDSS, VIKING, PS1, HSC, DES)

Supermassive (> 10⁹ M_{sun}) black holes exist within 1 Gyr after the Big Bang

• When were the first supermassive black holes formed?

• When were the first supermassive black holes formed?

Properties of black hole hosts

• When were the first supermassive black holes formed?

Properties of black hole hosts

 Are distant quasars located in high density environments?

• When were the first supermassive black holes formed?

Properties of black hole hosts

 Are distant quasars located in high density environments?

Study of distant quasars

Enormous increase in number of $z \gtrsim 6-7$ quasars

See Monday talks

Study of distant quasars

Enormous increase in number of $z \gtrsim 6-7$ quasars

See Monday talks

Spectral energy distribution

- UV/optical: accretion disk
- mid-infrared:
 hot dust and torus
- far-infrared: cold dust
 - → host galaxy

(sub-)mm observations of quasars

Ground-based (sub-)mm observations (ALMA, NOEMA):

dust continuum

- star-formation (SF) tracer
- ISM mass

• [C II] 158 μm line

- main ISM coolant
- strongest line in FIR
- SF tracer

• CO lines:

- ISM tracer
- cold gas supply for SF

(sub-)mm observations of quasars

Ground-based (sub-)mm observations (ALMA, NOEMA):

- dust continuum
 - star-formation (SF) tracer
 - ISM mass
- [C II] 158 μm line
 - main ISM coolant
 - strongest line in FIR
 - SF tracer
- CO lines:
 - ISM tracer
 - cold gas supply for SF

(sub-)mm observations of quasars

Ground-based (sub-)mm observations (ALMA, NOEMA):

- dust continuum
 - star-formation (SF) tracer
 - ISM mass
- [C II] 158 μm line
 - main ISM coolant
 - strongest line in FIR
 - SF tracer
- CO lines:
 - ISM tracer
 - cold gas supply for SF

ALMA observations of z > 6.5 quasars

10 z>6.5 quasars observed: all hosts detected

ALMA observations of z > 6.5 quasars

- Sizes from [C II]: 1 − 3 kpc
- SFRs: $100 1500 \, M_{sun}/yr$
- SFRD: $50 400 M_{sun}/yr/kpc^2$
- → Orion-like SFRDs, over kpc scales

- Sizes from [CII]: 1-3 kpc
- SFRs: $100 1500 \,\mathrm{M}_{\mathrm{sun}}/\mathrm{yr}$
- SFRD: $50 400 M_{sun}/yr/kpc^2$
- → Orion-like SFRDs, over kpc scales

Any evidence for feedback?

 FIR continuum due to AGN heating?

High S/N ALMA data of z > 6.5 quasars

No evidence for >> 10 kpc outflows

Correlation FIR and quasar luminosity

Correlation FIR and quasar luminosity

[CI], [CII], CO observations of z = 6.9 quasar

Detection of CO(6-5), CO(7-6), [C_I] and [C_{II}] with ALMA in a quasar host galaxy at z = 6.9

Line ratio [CII]/[CI] ≈ 20

Constraining the ISM at z=6.9

Radiation dominated Radiation dominated by star-formation by the AGN [CII] / [CI] line ratio [CII] / [CI] line ratio 10⁵ 100 Radiation field 40 10⁴ 10 5 10³ 10² 10⁵ 10⁶ 10⁵ 10⁶ 10⁴ 10⁴ Density Density

- Sizes from [C II]: 1 − 3 kpc
- SFRs: $100 1500 M_{sun}/yr$
- SFRD: $50 400 M_{sun}/yr/kpc^2$
- → Orion-like SFRDs, over kpc scales

- Line width and size → dynamical mass
 - assume [CII] rotating disk
- Dynamical masses are in the range: $10^{10} 10^{11} \,\mathrm{M_{sun}}$

Local black hole-bulge mass relation

Summary

• Many new quasars at z > 6.5, visible from $z > \frac{15}{0.00}$

- Line ratios indicate FIR emission due to SF
- Black holes are "overmassive"

→ Sub-kpc ALMA imaging in queue

