

Frederick Davies (MPIA/ENIGMA)

Illuminating the Dark Ages, MPIA 2016

+ Steven Furlanetto (UCLA), George Becker (UCR)

Lyα forest transmission constrains the end of the reionization epoch

Fan et al. 2006

At "low" redshift, the Ly α forest represents the cosmic web processed by a uniform UV background $_{z=3.0}$

Formation of cosmic structure predicts scatter in optical depth

40

At high optical depths, the scatter increases

Lidz et al. 2006

Above $z \sim 5.5$, variation in Ly α forest opacity increases above the density field expectation

**Optical depth measured in (roughly) 50 Mpc/h bins of the

Observation: ~ 100 Mpc/h Ly α GP trough at z ~ 5.7

Theorists: ?????????

Median Ly α optical depth at z \sim 5.7 is \sim 2.5

ULAS J0148+0600 Ly α trough optical depth > 7.4!

But: there is substantial Lyß transmission, probably not incomplete reionization!

Lyα dark trough

Some physical property of the *ionized* IGM must be responsible...

What is required to reproduce the J0148+0600 trough? Fraction of

Lyα forest opacity

$$\tau_{\rm eff}({\rm large\ scale}) \propto x_{\rm HI}^{\approx 0.6}$$

$$x_{\rm HI} \propto \Gamma^{-1} T^{-0.7}$$

lonizing background
strength

IGM temperature

neutral

hydrogen

Two possible scenarios to account for the observed trough (within scatter!):

factor of ~3-4 weaker ionizing background than average (Davies & Furlanetto 2016)

OR

"Semi-numerical" cosmological simulation: cheap, easy, large-volume Quasi-linear density field @ z Semi-numerical

= 5.6

Davies & Furlanetto (2016)

Semi-num code: DexM Mesinger & Furlanetto (2007)

Semi-numerical halo field

~25 million galaxies with $-12.9 < M_{HV} < -23.4$

Mean free path fluctuations can greatly increase ionizing background fluctuations

Halo field ($M_{IIV} < -18$

Davies & Furlanetto (2016)

Idonization rate fluctifating

log Ionization Rate (relative to

Relationship between Lyα forest opacity and density field is reversed VS low-Z

Density field @ z = 5.6

Opaque troughs correspond to <u>large-</u>
<u>scale voids</u> which have a weak ionizing background

Black = opaque White =

50 Mpc/h Lyα ftrestarent

Davies & Furlanetto (2016)

Flubtifating oansing

haberekon ende al

Could it be temperature instead?

D'Aloisio et al. 2015:

Temperature variations due to an extended reionization

process

Gas instantaneously heated to a few times 10⁴ K (e.g. Abel & Haehnelt 1999)

Colors reionization redshift

Extended reionization leads to strong large-scale temperature variations

Opaque regions are <u>large-scale overdense regions</u> which reionized early

Open question: what is the nature of the last large opaque troughs in the $Ly\alpha$ forest?

If it's the ionizing background:

Large voids, far away from sources

If it's the gas temperature:

Large cold overdensities, which were ionized early (z>8? 9?)

The two effects oppose each other, one has to dominate!

Is there another way to distinguish the models? How about using galaxies to detect the large-scale density?

Need to simulate distribution of galaxies in rare

~100 Mpc-scale features in the ionizing background and Lya

50 Mpc/h Lyα forest

"Bright" M_{UV} < -19 galaxies

Davies et al., in $\mathrm{Mpc/h}$

Adding temperature fluctuations

to the semi-numerical model

Need to include two more calculations:

 $\frac{dT}{dt} = -2HT + \frac{2T}{3\Delta} \frac{d\Delta}{dt} - \frac{T}{n_{\text{tot}}} \frac{dn_{\text{tot}}}{dt} + \frac{2}{3k_B n_{\text{tot}}} \frac{dQ}{dt}$ 3×10^4

 $z_{re} = 6.0$

 2×10^4

 10^{4}

 $\Gamma(\Delta)$

Temperature evolution

Equilibrium $\log \Delta(z=5.7)$

Davies et al., in

Inhomogeneous IGM

temperature model

See also: Trac et al. 2008 Lidz & Malloy 2014

Inhomogeneous IGM

Relationship between density and Lyα forest opacity is opposite between the two models

Relationship between density and Lyα forest opacity is opposite between the two models

Can we distinguish between models with a galaxy survey?

ULAS J0148+0600 GP trough covers $z\sim5.52-5.88$ LBG redshifts accurate to $dz\sim1$ (photo-z) LAE redshifts accurate to $dz\sim0.1$

The void or overdensity is weak, but large scale, need a very large field of view for statistical Subaru Hyper Suprim

How many galaxies (LAES) should we see around a giant Gunn-Peterson trough?

Outer dashed circle: Ratio between models is Subaru Hyper Suprime-Cam field of view $\sim 4x$

The nature of observed Gunn-Peterson troughs is <u>unknown!</u>

Are they underdense, overdense, or neither?

????

Residual temperature variation.

Extra: Subaru predictions

Your name tags are a "real" semi-numerical reionization simulation!

