Faint z>4 AGNs in GOODS-S looking for contributors to reionization

Giallongo, Fiore, Grazian, Fontana, Pentericci et al. (INAF-Observatory of Rome)

Giallongo et al. 2015; Fiore et al. 2016 in prep.; Giallongo et al. 2016 in prep

Reionization history controls galaxy formation and evolution

CHANDRA deep imaging can give an important contribution to this topic

When: z_{ion}~6-8

Gunn-Peterson absorption in QSO spectra z_{ion} >6 Planck Thomson scattering z_{ion} ~8.5 but z~7 is allowed (Adam et al. 2016) How: which are the sources responsible for the reionization?

Obvious candidates: QSOs and/or star forming galaxies

$$M_{UV}$$
~ -21 (I~25 at z~3)

Faint	Bright			
Galaxies	Galaxies			

Faint	Bright			
AGN	QSOs			

Composite HST/COS spectrum 159 AGNs z<1.48 From Shull, Stevans, Danforth 2012 Stevans, Shull et al. 2014

Bright AGNs are known to ionize their neighbourhood but they are too few at z>3 to provide the needed ionizing UV background (e.g. Haardt & Madau 2012)

More common star forming galaxies are thought to be responsible for reionization at z>4

Their contribution depends on their abundance at faint magnitudes and on the escape fraction of ionizing photons

$$\epsilon = \int \langle f(L) \rangle N(L) L \frac{E_{912}}{E} dL$$

Uncertainties on f_{esc} of SF galaxies leave room for a significant contribution by fainter AGNs if their f_{esc} keeps as high as in the brighter population

First step: looking for faint AGNs close to the reionization epoch Difficult task: requires very deep multiwavelength surveys like GOODS-S

CANDELS

Cosmic Assembly NIR Deep Extragalactic Legacy Survey

AGN selection proceeds in two steps.

Very deep selection in NIR H band (UV-rest at z>4) + X-ray detection (Fiore et al. 2012)

1. Parent sample selection:

CANDELS SEDs and phot. z catalog (Guo et al. 2013, Dahlen et al. 2013)

CANDELS H_{AB}<27 galaxies in GOODS-S 170 arcmin² 1113 sources at z>4

Phot. z constrained by UV-rest dropout due to IGM absorption

Selection of best candidates with narrow PDFs or PDFs located at high z

2. AGN selection of z>4 candidates

Measuring X-ray flux in the H band position

AGNs with $F_X \ge 1.5 \times 10^{-17}$ erg/cm²/s correspond to a probability of spurious detection of 2×10^{-4}

Candels 28476 z=6.3 H=26.8

In G15 we provided a list of 22 AGN candidates at z>4

8 previously X-ray selected AGNs from Xue (2011)

z>4 implies Log $L_X \sim 43.2$ (2-10 keV)

RA	Dec	zphot	zspec	С	Н	mag	$\log F_X$	$\log L_X$	Previous Catalogs
						$[1450\ (1+z)]$	${ m erg/cm^2/s}$	$\mathrm{erg/s}$	
53.1220463	-27.9387409	4.49	4.762^{1}	c	23.96	24.95	-15.97	43.80	M208,X403
53.1664941	-27.8716803	4.28		cf	25.57	25.92	-16.46	42.90	_
53.1465968	-27.8709872	4.70		cf	26.36	27.86	-16.38	43.40	M70437,L306,X485
53.1605007	-27.8649890	4.32		\mathbf{c}	25.47	25.96	-16.50	42.90	<u> </u>
53.1026292	-27.8606307	4.41		\mathbf{c}	25.16	26.03	-16.66	42.75	X331
53.1280240	-27.8593930	5.39		\mathbf{c}	25.71	26.29	-16.45	43.10	-
53.0868634	-27.8295859	4.23		\mathbf{c}	26.90	26.94	-16.43	42.90	
53.1970699	-27.8278566	4.52		\mathbf{c}	25.74	27.19	-16.77	42.65	=
53.1715890	-27.8208052	5.86	5.70^{2}	\mathbf{c}	26.54	26.74	-16.46	43.15	HUDF322
53.1619508	-27.8190897	4.34	4.497^{3}	cd	24.99	25.29	-16.65	42.75	=
53.0689924	-27.8071692	4.94		\mathbf{c}	25.06	25.90	-16.42	43.10	M8728
53.1514304	-27.7997601	4.43	4.62^{4}	\mathbf{c}	25.54	25.67	-16.58	42.85	HUDF3094
53.0211735	-27.7823645	4.92	4.823^{5}	\mathbf{c}	23.43	23.83	-16.38	43.10	M10548
53.1115637	-27.7677714	4.52		\mathbf{c}	25.67	27.27	-15.91	43.85	M70168,L245,X371
53.1198898	-27.7430349	4.84		\mathbf{c}	25.31	28.21	-16.48	43.00	E1516,X392
53.1583449	-27.7334854	5.23		\mathbf{f}	24.44	25.42	-16.29	43.25	E2551
53.2036444	-27.7143907	4.13		\mathbf{c}	24.56	25.36	-16.49	42.85	==
53.0646867	-27.8625539	6.26		f	26.77	27.74	-16.60	43.10	M70407
53.0409764	-27.8376619	9.73		cf	26.33	27.94	-15.96	44.00	M70340,L103,X156
53.2131871	-27.7816486	4.73		\mathbf{f}	26.41	26.70	-15.69	43.75	₹0 S 577 1
53.0547529	-27.7368325	4.98		\mathbf{c}	26.89	27.21	-16.44	43.10	E2199
53.0062504	-27.7340678	6.06		cf	25.90	26.73	-16.26	43.65	E2498,L57,X85
	53.1220463 53.1664941 53.1465968 53.1605007 53.1026292 53.1280240 53.0868634 53.1970699 53.1715890 53.1619508 53.0689924 53.0511735 53.1115637 53.1115637 53.1198898 53.2036444 53.2036444 53.0646867 53.0409764 53.2131871 53.0547529	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

NEW 7 Ms CHANDRA DF

G15 Archival Image

7Ms New co-adding with careful removal of spurious events (Puccetti, Fiore et al. 2016) resulting in lower background

6'x6'

Criterion for X-ray Detection (Fiore et al. 2012, 2016)

Multidimensional source detection as clustering of events in space, energy and time at the H band position

The background is fitted in three different circular spatial regions

In each source extraction region (10" radius) the B. shape is normalized at 7-11 kev where the source contribution is small and then subtracted to the source counts in the chosen energy band (e.g. 0.8-2 KeV)

Fig. A.1. The spectrum of the background in the *Chandra* 4 Ms exposure of the CDFS. The spectrum has been extracted from a circle of 8 arcmin radius, after excluding 5 arcsec radius regions around all detected sources (10–20 arcsec for bright sources and extended sources).

The standard energy band in the 7Ms is 0.5-2 KeV (efficiency low at <1 KeV where noise is mainly added to faint sources)

Accuracy of the average relative astrometry is ~1 arcsec up to 9 arcmin off-axis

CHANDRA high resolution is crucial to select faint high z AGNs some of which near local brighter H band sources

Nevertheless, still insufficient to disentangle multiple possible associations at the HST resolution

New catalog 19 AGN candidates in 7Ms GOODS-S

Example of AGN candidates excluded because of possible contamination

Circle r=2"

Examples of AGN candidates included in the 7Ms sample

Heidelberg 2016: Illuminating the Dark Ages

Only relatively bright X-ray sources are detected at H=27

Average correction for incompleteness by more than a factor 2 at the faint end

X-ray non-detection is expected not only for faint AGN candidates in the H band Example of bright AGN without X-ray detection in deep Chandra field

Fig. 2.—Observed spectrum of HDF-oMD 49, a narrow-lined AGN that is undetected in the 1 Ms Chandra Deep Field–North X-ray image (R.A. = $12^{\rm h}37^{\rm m}4^{\rm s}34$, decl. = $62^{\circ}14'46\rlap.{''}2$ [J2000.0]). This object has an unusually weak Ly α emission line with respect to the high-ionization N v and C IV lines, possibly indicating a large amount of extinction in the narrow-line region.

R=24.8 z=2.2 AGN not detected in the 2Ms Chandra image GOODS-N (Steidel et al. 2002, Grazian priv. comm.)

Only relatively bright X-ray sources are detected at H=27

Average correction for incompleteness by a factor ~2 at the faint end

LF corrected for: H band counts incompleteness and X/H incompleteness

Adding SLOAN QSOs 2 power-law fit Faint slope 1.5-1.8 Bright slope 3.1-3.3

L (break) is unconstrained $M_{1450} = -23.2 \div -23.6$

Work in progress on GOODS-N 175 arcmin²
H<27 from CANDELS

BUT

 $f_{lim}(x) \sim 2^* f_{lim}(GOODS-S) \sim 3 \times 10^{-17}$

12 candidates consistent with GOODS-S considering incompleteness due to shallower X-ray flux limit

AGN activity/feedback in active galaxies in GOODS-S

Cimatti, Talio et al. 2013, 2016

Brighter galaxies with hidden AGN activity show rather normal UV spectra

Active X-ray galaxies have Log L_X>42.3 Threshold between SF dominated and AGN dominated X-ray flux (Ranalli et al. 2003; Bauer et al. 2004)

km/s

outflows 500-700 km/s X-ray – outflow connection for active SFGs Probable mechanical feedback in action

fesc from AGNs

SSDS spectra show significant ionizing flux escaping from high z QSOs with significant ionizing photon path

(Prochaska et al. 2009, Worseck et al. 2014)

MUSE data show large Lya halos around bright AGNs up to 300 kpc with gas at T ~10⁴K (17 QSOs at 3<z<4 Borisova, Cantalupo et al. 2016)

Heidelberg 2016: Illuminating the Dark Ages

AGNs Ionizing Emissivity at 912 Å

$$\epsilon_{ion}(z) = \langle f \rangle \epsilon_{912} =$$

$$\langle f \rangle \int \phi(L_{1450}, z) L_{1450} \left(\frac{1200}{1450} \right)^{0.44} \left(\frac{912}{1200} \right)^{1.57} dL_{1450}$$

We assume < f > =1and average AGN spectral template at $\lambda < 1450$ Å

Predicted Photoionization Rate

$\Gamma(z)$ depends on emissivity and mfp redshift evolution

$$\Gamma_{-12}(z) \simeq 0.6 rac{\epsilon_{24}(z)}{3+\mid lpha_{UV}\mid} \left(rac{\Delta l}{65Mpc}
ight) \left(rac{1+z}{4.5}
ight)^{3-\eta}$$

A decline by a factor ~7 from z~4 to z~6 due to decrease of both emissivity and mfp

Still consistent with the level of ionization of the IGM

Future prospects: we are planning to add Chandra/HST GOODS-N and COSMOS field to the analysis

SUMMARY

- Possible Scenario emerging from the present study:
- Few % of z>4 galaxies show X-ray emission at AGN levels (Log L_x>43) in GOODS
- Brighter X-ray galaxies show outflows 500-1000 km/s possibly connected with large escape fractions of ionizing photons
- The volume density of faint AGNs at M_{1450} > -22 is ~3x10⁻⁵ and it is consistent with double power-law LFs predicting ionization parameters at z>4 in agreement with that derived from the IGM ionization level if $f_{\rm esc}$ =50%-100%

It's time to reconsider the role of AGNs as important driver of the ionization history of the Universe

What next: Ideally a CDF in COSMOS, in practice 500ks per pointing i.e. 7 Ms Sampling the LF at $M_{1450} \sim -22 \div -24$ where we expect the bulk of the emissivity contribution